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Torque transmitted from rim to the shaft through the arms of the pulley is analyzed in this
paper. Dynamic and vibration response of the arm of the pulley of a belt drive is studied by
transferring the system to equivalent spring, mass and damper system. The number of arms
present in the load zone is assumed to take charge of the load zone angle equally as they
appear in the load zone. Hence, the arms are subjected to stepped load wave. The arm is
considered as a tapered cantilever beam "xed at the hub and stepped loading at the rim end.
Response of this equivalent system is studied by varying equivalent damping coe$cient from
0 to 5)0. This investigation aims at getting a cursory idea of the maximum stress due to
vibration.

The natural frequency of equivalent system is compared with that of tapered cantilever
beam to check its accuracy.
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1. INTRODUCTION

Belts are used to transmit power between two parallel shafts. A certain minimum distance
must separate the shafts, which is dependent upon the type of belt used, in order to work
most e$ciently. Flat-belt drives are quiet and absorb more torsional vibrations from the
system than either gears or V-belt [1].

Firbank [2] explains the theory of #at belt drives in the following way:

A change in belt tension due to friction forces between the belt and pulley will pass the
belt to elongate or contract and move relative to the surface of the pulley.

This motion is caused by elastic creep and is associated with sliding friction as opposed to
static friction. For the driving pulley, the belt "rst contacts the pulley with a tight-side
tension (¹

t
) and the velocity<

t
, which is the same as the surface velocity of pulley. At the end

of the e!ective arc, the belt leaves that pulley with a loose-side tension ¹
s
and a reduced

velocity <
s
.

The relation between ¹
t
and ¹

s
is given by

¹
t
"¹

s
ek(. (1)
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Power transmitted is given by

P"(¹
t
!¹

s
)<. (2)

A #at-belt drive is designed by limiting the maximum tension ¹
t

according to the
permissible tensile stress speci"ed for the belt material [1]. Pulley material is generally cast
iron or cast steel. Pulleys with less than 100-mm diameter are like solid discs. Pulleys with
diameter less than 600 mm, have four arms and for diameter more than 600 mm, have six
arms. The cross-section of the arm is elliptical with the major axis equal to twice the minor
axis. The cross-section of the arm is obtained by considering the arm as a cantilever, "xed at
the hub and carrying a concentrated load at the rim end. The length of the cantilever is
taken to be equal to the radius of the pulley.

In the case of the driven pulley, it is assumed that, at any given time, the power is
transmitted from the hub to the rim, through half the total number of arms. The reason put
forth, for this assumption, is that the rim is not su$ciently thick and so it cannot distribute
the load amongst all the arms.

This practice is followed in the design of pulleys of #at-belt drives [3}5]. Failure of the
arm is not reported from the industry. Hence, the design is done till date on this assumption.
Saraph et al. [6] presented a three-dimensional "nite element stress analysis of a sheave and
its experimental veri"cation. But this analysis is also a veri"cation of the same assumption.
Only static loading is considered in this work.

So far, vibration response of an arm of the pulley of a belt drive has not yet been reported
in the literature. This paper is the "rst attempt. Hence, this investigation aims at getting
a cursory idea of the maximum stress due to vibration.

2. PROBLEM FORMULATION

The portion of the rim, in the active load zone, is subjected to non-linearly varying
frictional force as per equation (1). Hence, the arms are subjected to varying load. But in
design procedure, it is assumed that the torque transmitted is equally shared by about half
the number of arms. The reason given for this assumption is that the rim is not su$ciently
thick, so it cannot distribute the load among all the arms. By equation (1), it seems that this
assumption is unrealistic. Also, there is no generalized mathematical formulation
correlating load variation of an arm as a function of its position, rim thickness, pulley
diameter, number of arms, loading condition and rim material properties. Hence, it is
impossible to predict the limit of thin rim assumption.

Modak et al. [7], stated that:

(1) Increase in rim thickness may reduce the range of variation of the armload.
(2) The arms outside the load zone must be contributing to the torque transmission.

The mechanism of torque transmission from the rim to the shaft through the arms of
a driven pulley is also suggested in this work [7]. Three approaches are suggested to analyze
this mechanism.

(1) Equal distribution of load zone by the arms based on highly simplifying assumption.
(2) Equilibrium of the rim portion in the load zone.
(3) Finite element analysis of the pulley.

This paper deals with the analysis of the mechanism of torque transmission from the rim to
the shaft through the arms of the pulley by the "rst approach, viz., equal distribution of the
load zone by the arms.



RESPONSE OF BELT DRIVE PULLEY ARM 279
2.1. EQUAL DISTRIBUTION OF THE LOAD ZONE BY THE ARMS

This is the "rst of the three above-stated approaches for analyzing the mechanism of
torque transmission of a driven pulley of a belt drive. This approach is based on two
assumptions.

(1) The rim is thin, almost a lamina.
(2) The number of arms present in the load zone takes change of the load zone angle

equally as they appear in the load zone.

The driven pulley of a belt drive rotating clockwise is as shown in Figure 1. The arms of the
pulley are designated as OA, OB, OC, OD, OE and OF. Arm OA is assumed to coincide
with radial line O1 at any instant of time t"t

1
. At this instant, four arms OA, OB, OC and

OD are in the load zone. Now when OD coincides with O2, at an instant t"t
2
, only three

arms OA, OB and OC will remain in the load zone. Hence, during the time duration
(t
2
!t

1
), four arms are in the load zone. During further rotation of the pulley, arm OF

coincides with O1, at an instant t"t
3
. Hence, during the time (t

3
!t

2
), three arms are in the

load zone.
Hence the arm, during its traversal in the load zone, is subjected to varying load.

2.2. TORQUE TRANSMITTED AND ARMLOAD

The belt tension in the active load zone, at an angle / from line of symmetry O1, is given
by

¹"¹
s
(ek/i) . (3)

Hence, the torque contributed by the portion of the load zone is given by

¹
q
(o!/

i
)"¹

s
(e(k/i )!1) r. (4)

So, the torque transmitted by the rim to the shaft, through the arms of the pulley is given by:
Figure 1. Driven pulley of a belt drive.



280 P. M. SINGRU AND J. P. MODAK
(a) four arms in load zone

¹
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"(¹
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!¹

3
) r. (7, 8)

(b) ¹hree arms in load zone

¹
q (0~/5)
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5
!¹

s
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6
!¹

5
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¹
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"(¹
7
!¹

6
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Here ¹
4
"¹

t
and ¹

7
"¹

t
, as /

4
"/

7
"/.

The armloads in load zone are as follows:

(a) Four arms in load zone

F
1
"F

b
(ek/1

!1), F
2
"F

s
(ek/2

!1), (12, 13)

F
3
"F

s
(ek/3

!1), F
4
"F

s
(ek/4

!1), (14, 15)

(b) ¹hree arms in load zone

F
5
"F

s
(ek/5

!1), F
6
"F

s
(ek/6

!1), (16, 17)

F
7
"F

s
(ek/7

!1). (18)

Equations (12)}(18) give the expressions for armloads while travelling in the load zone. The
graph for this arm load variation as a function of time is as shown in Figure 2 (by converting
angle scale to time scale by the expression t"//u).

3. EQUIVALENT SPRING}MASS}DAMPER SYSTEM

The arm of a pulley is thus subjected to varying load as shown in Figure 2. This loading
pattern is achieved subject to some assumptions as discussed in section 2.1. We want to "nd
vibration response of the arm of the pulley subjected to this varying load. We also want to
get a cursory idea of the maximum stress due to vibration. As a "rst attempt, we would like
to make a few more assumptions.

1. The arm is considered as a cantilever beam "xed at the hub as shown in Figure 3.
2. The mass of the arm is assumed to be concentrated at the tip, i.e., at the rim of the

pulley.
3. The damping present in the arm, called structural damping, is considered in terms of

equivalent viscous damping.
4. The sti!ness of cantilever at the tip is considered as equivalent spring sti!ness.



Figure 2. Variation of armload as a function of time.

Figure 3. Arm of a belt drive pulley.
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3.1. EQUIVALENT MASS

The equivalent mass of the arm is given by [8]

M
eq
"(mr

g
)/l . (19)

Here the mass of the rotating arm is transferred to its tip by equation (19).

3.2. EQUIVALENT SPRING STIFFNESS

For a cantilever beam subjected to a load at the tip [9], the sti!ness is given by

K
eq
"3EI/l3. (20)

3.3. EQUATION OF ARMLOAD

The arm of the pulley is subjected to loading pattern F (t) as shown in Figure 2. Here the
pattern can be analyzed as a combination of step input followed by shifted step input [9].
This unit step function is de"ned as

u (t!t
i
)"G

1, t't
i
,

0, t(t
i
,

t
i
*0. (21)
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The equation for F(t) is given by

F(t)"F
1
u (t)#(F

2
!F

1
)u (t!t

1
)!2(F

2
!F

3
)u(t!t

2
)#(F

4
!F

3
)u (t!t

3
)

!2(F
4
!F

5
)u (t!t

4
)#(F

6
!F

5
)u (t!t

5
)!2(F

6
!F

7
)u (t!t

6
)!F

7
u (t!t

7
). (22)

3.4. EQUIVALENT VISCOUS DAMPING

In this case, the structural damping inside the material of the beam can be modelled as
equivalent viscous damping [9, 10]. Structural damping information is well compiled by
Lazen [11]. But all the values of loss coe$cients, with which we can "nd equivalent viscous
damping, are valid for harmonic excitation. Our excitation, as given by equation (22), being
di!erent from harmonic excitation, it is di$cult to calculate the exact value of structural
damping. Hence, only equivalent viscous damping is assumed varying from 0)0 to 5)0.
Higher values of equivalent viscous damping ('1)0) are considered for beams, because of
the presence of high damping.

The equivalent viscous damping coe$cient is hence given by

C
eq
"M

eq
2mu

n
,

i.e.,

C
eq
/M

eq
"2mu

n
, (23)

where

u
n
"J(K

eq
/M

eq
). (24)

3.5. EQUATION OF MOTION OF EQUIVALENT SYSTEM

The equivalent spring, mass and damper system as shown in Figure 4, has the following
governing di!erential equation of motion:

M
eq

d2x/dt2#C
eq

dx/dt#K
eq
x"F (t). (25)

Substituting equations (19), (20), (22)}(24) into equation (25) and solving the di!erential
equation (25) by by Laplace transform method, with all initial conditions set to zero, we get

x(t)"(Aeat#Bebt )/M
eq

[F
1
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7
)], (26)

where A and B are coe$cients of partial fractions of equation,

1/(s2#C
eq
s/M

eq
#K

eq
/M

eq
)"1/[(s!a)(s!b)]"A/(s!a)#B/(s!b ) (27)



Figure 4. Equivalent spring, mass and damper system.
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with

a"((!C
eq

/M
eq

)#J((!C
eq
/M

eq
)2!4K

eq
/M

eq
))/2,

b"((!C
eq
/M

eq
)!J((!C

eq
/M

eq
)2!4K

eq
/M

eq
))/2. (28)

A and B are calculated by writing a program for partial fractions.
Substituting equation (28) into equation (26), we get the response of the system.

3.6. STRESS UNDER VIBRATION

The arm is subjected to varying load, hence it is subjected to stress under vibration. In
order to calculate the stress under vibration, we have to "rst "nd out the maximum static
stress given by

S
st
"(Fl )/Z . (29)

The equivalent dynamic force required for calculating the dynamic stress is given by

F
v
"3EIy/l3 , S

dy
"(F

v
l )/Z. (30, 31)

So the stress under vibration is given by

S
vb
"S

dy
!S

st
. (32)

3.7. NATURAL FREQUENCY

The arm of the pulley is assumed here as a tapered cantilever beam. In the present
discussion, we have further assumed it to be an equivalent spring, mass and damper system.
In order to check the accuracy of the equivalent spring, mass and damper system, we have
to "nd the natural frequency of the tapered cantilever beam, for comparison [12}17].
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3.7.1. Equivalent spring, mass and damper system

The natural frequency of the equivalent spring, mass and damper system is given by
equation (24). If we substitute equations (19) and (20) into equation (24), we get

u
n
"J(3EI )/(M

eq
l3) . (33)

3.7.2. Dunkerley1s method

By Dunkerley's method for a massless cantilever, with equivalent mass at the tip of the
cantilever, the natural frequency is given by [17]

u
n/

J2)4336EI/M
eq

l3. (34)

3.7.3. Gains and <oltera theory

Gain's and Voltera [15] have developed tables to calculate natural frequencies of cones,
truncated cones and wedges. Taking the line of centers of the cross-sections of the bar in the
equilibrium position as the X-axis of Cartesian co-ordinate system X>Z, the >-axis being
in the direction of vibration (see Figure 5), if A(x) denotes the area of cross-section, r(x) the
radius of gyration of a generic section about an axis through its center parallel to the Z-axis,
y the transverse displacement of the center of the section, the equation of motion according
to the Bernoulli}Euler theory is

oA(x)(L2y (x, t)/Lt2)"!L2/Lx2[EA(x)r2(x)) (L2y(x, t)/Lx2)]. (35)

In this paper, the lower and upper bounds of natural frequencies along with average values
are given [15]. A suitable value of the natural frequency as per our condition, i.e., for
a tapered cantilever beam with elliptical cross-section is given by

u
n/

J4)6240EI
h
/oA

h
l4. 36)

3.7.4. Gains and <oltera theory (with transverse shear and rotary inertia)

Lee [14] has considered the e!ect of transverse shear and rotary inertia, for the "rst time,
to "nd the natural frequencies of a tapered cantilever beam. This theory was used by Gains
Figure 5. Tapered cantilever beam in X>Z Cartesian co-ordinate system.
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and Voltera [15] and with equation (35), created tables of natural frequencies for a tapered
cantilever beam. The equation for natural frequency of a tapered cantilever beam with
elliptical cross-section is given by

u
n/

J4)53826EI
h
/oA

h
l4. (37)

3.7.5. Rayleigh}Ritz method

It provides a means of obtaining a more accurate value for the fundamental frequency
and it also gives approximations to the higher frequencies and mode shapes. In this method,
a series of shape functions multiplied by constant coe$cients is used [17]. The coe$cients
are adjusted by minimizing the frequency with respect to each of the coe$cients, which
results in n algebraic equations in u2. The solution of these equations then gives the natural
frequencies and mode shapes of the system. The success of this system depends on the choice
of shape functions that satisfy the geometric boundary conditions of the problem.

Here the natural frequency is given by

u2
n
"(MxNT[K] MxN)/(MxNT[M] MxN. (38)

The natural frequency found by di!erent methods by computer simulation is given in
Table 2.

4. COMPUTER SIMULATION

Computer simulation for the system, shown in Figure 4, subject to excitation as shown in
Figure 2, was performed for the following set of data. The design of belt drive was performed
using the software CADOM [18}21].

The input data are

Input power"21 kW
Speed of driving pulley"750 r.p.m.
Speed of driven pulley"250 r.p.m.

The software gave the following design speci"cation of the #at-belt drive and pulley.

Speci,cation of the driven pulley
Material!ISC 30
Diameter"1247 mm
Diameter of shaft"63 mm
Diameter of hub"172 mm
Length of hub"94)5 mm
Number of arms"6.

Cross-section of the arm is elliptical with a taper of 1 in 40.

Arm speci,cations are
Length of the major axis at the hub"90 mm
Length of the minor axis at the hub"45 mm
Width of the rim"142 mm
Thickness of the rim"16)24 mm
Crown of the rim "1.42 mm
Angle of lap"3)33 rad"1903



TABLE 1

Uniform armload in specixed time interval

Sr. Time interval (s) Uniform armload (N)

1 0}0)317(~) 596)492
2 0)0317(`)}0)04222(~) 836)952
3 0)0422(`)}0)0633(~) 1393)698
4 0)633(`)}0)0844(~) 2069)264
5 0)0844(`)}0)0950(~) 2459)331
6 0)0950(`)}0)1267(~) 3883)699
7 0)1267(`) 3883.699

TABLE 2

Natural frequency of equivalent spring, mass and damper system and tapered cantilever beam
by diwerent theories

Theory u2
n

u
n
(rad/s)

Equivalent spring, mass
and damper system

3EI/M
eq
l3 670

Dunkerley's method 2)4336EI/M
eq

l3 600
Gain and Voltera theory
(with elementary beam equation)
[15, 16]

4)6240EI
h
/oA

h
l4 242)5

Gain and Voltera Theory
(with transverse shear and
rotary inertia) [15, 16]

4)53826EI
h
/oA

h
l4 240)2

Rayleigh}Ritz method [17] (MxNT[K] MxN)/(MxNT[M] MxN) 257)5
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Length of the arm"529.28 mm
Volume of the arm"0)0011073037229 m3

Mass density of the material"7)2]103 kg/m3

Distance of the centroid from the axis of rotation"0)3178 m
Modulus of elasticity"9)1]104 MPa
Tension on slack side"1771)77 N
Tension on tight side"4978)6678 N

Average moment of inertia of the cross-section of arm"1)005]10~6 m4.
Equivalent mass and equivalent sti!ness are calculated using equations (19) and (20) as

Equivalent mass"4)117 kg
Equivalent sti!ness"1)8494 N/m.

Uniform arm loads viz., F
1
, F

2
,2,F

7
for the time zones (0!t

1
), (t

1
!t

2
)2(t

6
!t

7
)

calculated from equations (12)}(18) are as in Table 1.

5. RESULTS

The computer simulation of dynamic and vibration response of arm of driven pulley of
the belt drive was performed by using turbo C/C## ver 3)0 compiler [22]. Equation (26)



Figure 6. Arm de#ection as a function of time for free vibration of the arm: Arm de#ection (damping
coe$cient"0)1}0)5): **, Arm de#ection (free vibration).

Figure 7. Arm de#ection as a function of time for damping coe$cient"0)1}0)5:**, x (t) for damping"0)5;
}} }, x (t) for damping"0)1; ))))))), x (t) for damping"0)2; ) } )}, x(t) for damping"0)3; ) ) } ) ) ; x (t) for dampu-
ing"0)4.
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was simulated by varying time from 0 to 0)1267 s (i.e., time taken for the traversal of arm in
active load zone of 1903) and viscous damping factor m from 0 to 1 at one stage and 1}5 at
the second stage. The arm de#ections x (t) versus time graphs are plotted on the software
MS EXEL [23]. Figure 6 shows the variation of x(t) as a function of time for damping
coe$cient, m"0 (free vibration). Figure 7 shows variation of x (t) as a function of time for
di!erent values of damping coe$cient, m varying from 0 to 0)50 in steps of 0)1. Figure 8
shows variation of x (t) as a function of time for di!erent values of damping coe$cient,
m varying from 0)6 to 1)0 in steps of 0)1. Figure 9 shows variation of x(t) as a function of time
for di!erent values of damping coe$cient, m varying from 1 to 5 in steps of 1)0. As in Figures
6}8, the charts of overshoot, settling time, peak time and stress under vibration as a function
of damping coe$cient, m for m"0}1)0 are plotted, as shown in Figures 10}13.



Figure 8. Arm de#ection as a function of time for damping coe$cient"0)6}1)0:**, x(t) for; } } } , x (t) for; )))))),
x(t) for; } ) } ) }, x(t) for; } ) ) } , x (t).

Figure 9. Arm de#ection as a function of time for damping coe$cient"1)0}5)0: **, x (t) for damping"1;
}} } , x (t) for dampuing"2; )))))), x(t) for dampuing"3; } )} ) }, x(t) for dampuing"4; } ) ) }; x (t) for dampu-
ing"5.

288 P. M. SINGRU AND J. P. MODAK
6. DISCUSSION OF RESULTS

6.1. OBSERVATIONS REGARDING THE VIBRATION RESPONSE OF THE EQUIVALENT SPRING,

MASS AND DAMPER SYSTEM

The following observations can be made from Figures 6}13.

(1) From Figure 6, for m"0, the response is highly oscillatory and the settling time is large.
Stress under vibration is tensile.

(2) From Figures 7 and 8, for m"0)1}1)0, the response is highly oscillatory in the lower
range and sluggish in the higher range (m'0)8). The overshoot, settling time and peak



Figure 10. Overshoot as a function of damping coe$cient"0}1)0.

Figure 11. Settling time as a function of damping coe$cient"0}1)0.
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time values go on decreasing as damping increases. For very small damping, i.e.,
m(0)14, higher harmonics get excited. After m'0)14, only the principal harmonic is
excited. The stress under vibration is compressive and increasing with m.

(3) For m"1)0, the response is sluggish and the overshoot and settling time is very small.
(4) From the plot of settling time versus m, it is observed that for a small change in m, there is

a large change in settling time. Hence, there are dotted segments in these characteristics
[24].

(5) For m'0)14, the system settles very quickly with only the principal harmonic getting
excited. This type of step loading hence behaves like the Posicast control system [24].
This type of loading with step input followed by delayed step input allows the system to
settle quickly. Conversely, the arm belt drive pulley, with a very high damping factor, is
not subjected to large oscillations in practice. So the failure of the arms is not reported
from the industry. So our oversimplifying assumption of reducing the arm to an
equivalent spring, mass, damper system gives us a cursory idea of the dynamic response
of arm of the belt drive pulley.



Figure 12. Peak time as a function of damping coe$cient"0}1.

Figure 13. Stress under vibration as a function of damping coe$cient"0}1)0
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(6) From Figure 9, for m'1)0}5)0, the nature of response is almost the same, with the
system becoming more sluggish as damping increases. This range of m is considered
keeping in view the high values of structural damping being observed in beams.

6.2. OBSERVATIONS REGARDING ACCURACY OF EQUIVALENT SPRING, MASS AND

DAMPER SYSTEM FROM THE TABLE OF NATURAL FREQUENCIES

(1) From Table 2 it is observed that the natural frequency of equivalent spring, mass and
damper system is very high as compared to the last three methods. The reason for this
higher value is associated with our oversimplifying assumptions of,

1. The rim as a lamina,
2. The distributed mass of the system being assumed to be concentrated at the tip of

the beam.
3. The sti!ness of the beam considered on the basis of de#ection at the tip.

(2) In Dunkerley's method, the cantilever is assumed as massless and the mass is assumed
to be concentrated at its tip. Hence, the natural frequency comes out to be higher.
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(3) In the Gains and Voltera theory, natural frequency, using elementary beam theory, is
smaller than the equivalent spring, mass and damper system. This is because it
considers the mass and sti!ness of the whole system to be distributed.

(4) In the Gains and Voltera theory, rotary inertia and transverse shear are considered to
calculate the natural frequency. Hence, this approach gives a lesser and more correct
value of natural frequency.

(5) In the Rayleigh}Ritz method, natural frequency is calculated by assuming a suitable
shape function. Using CSA/NASTRAN and FEMAP, "nite element software, natural
frequency of the system is calculated [25, 26] In this software, the arm model is
created, discreitized using a tetrahedron element, material parameters and boundary
conditions are supplied. Using the Rayleigh}Ritz method, the program calculates the
natural frequency. This value is slightly higher than that calculated using (3) and (4),
because the tetrahedron element is sti!er.

So far, the vibration response of the arms of pulleys in a belt drive has not yet been
reported in the literature. This paper is the "rst attempt. Hence, this investigation aims at
getting a cursory idea of the maximum stress under vibration. Obviously, under the present
oversimplifying assumption, only that cursory idea is obtained. From Table 2, it is hence
observed that the equivalent spring, mass and damper system considered in this paper is
a crude approximation. This problem will be analyzed using the second and third approach
mentioned in the problem formulation. Experimental veri"cation of these results will be
done in future work.
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APPENDIX A: NOMENCLATURE

¹ tension in the belt at any instant in the load zone of the belt N
¹
t

tension on tight side, N
¹
s

tension on loose side, N
k coe$cient of friction (for belt}pulley surface)
u angle of lap or contact, rad
P power transmitted, W
S' 102 angle of lap in the active load zone, rad
R radius of the pulley, mm
t, t

1
, t

2
, t

3
time instances of positions of arms in the load zones, s

/
i

active angle of the lap at any instant of time t, rad
/
1
, /

2
, /

3
, /

4
angles equal to (//4), (//2), (3//4) and (/), rad

/
5
, /

6
, /

7
angles equal to (//3), (2//3) and (/), rad

¹
1
, ¹

2
,2,¹

7
belt tensions for /

1
, /

2
,2,/

7
respectively, N

¹
q

torque transmitted by portion of the load zone (0!/
i
) from 01 to any

instantaneous arm position at an angle of /
i

F
1
, F

2
, F

3
, F

4
uniform arm load in the load zone from (0!/

1
), (/

1
!/

2
), (/

2
!/

3
), (/

3
!/

4
)

respectively, N
F
5
, F

6
, F

7
uniform arm load in the load zone from (0!/

5
), (/

5
!/

6
) & (/

6
!/

7
)

respectively, N
u circular frequency of the rotating pulley, rad/s
u

n
natural frequency of the arm of the pulley, rad/s

m mass of the arm of the pulley, kg
r
g

distance of centroid of the mass of the arm from "xed end, m
l length of the arm, m
M

eq
equivalent mass of the arm, kg

K
eq

equivalent sti!ness of the arm, N/m
I average moment of inertia of both end cross-sections, m4
E modulus of elasticity of the material of the arm of pulley, N/m2
F(t) arm load at any instant of time t, N
u(t!t

i
) shifted step function

C
eq

equivalent viscous damping coe$cient
x(t) displacement of the equivalent mass, m
A, B coe$cients of partial fraction of equation (25)
a, b roots of quadratic equation (26)
m viscous damping factor
S
st

static stress in the arm, N/m2
F maximum arm load, N
Z section modulus of the arm (of average c.s.), m3
S
dy

dynamic stress, N/m
Fv equivalent dynamic force, N
S
vb

stress under vibration, N/m2
<
s

velocity of the belt on slack side, m/s
<
t

velocity of the belt on tight side, m/s
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I
h

moment of inertia of arm at the hub, m4
A

h
cross-sectional area of the hub, m2

MxN displacement vector
MxNT transpose of displacement vector
[K] sti!ness matrix
[M] mass matrix
o mass density of the material, kg/m3
A(x) area of cross-section, m2
r(x) radius of gyration of a generic section about an axis through its center parallel to

the Z-axis, m
y transverse displacement of the center of the section, m
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