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The procedure of improving the structures damping performance was proposed by
interconnecting two structures with a connecting member consisting of a spring and
a damper. The modal equations of the "rst mode of both framed structures interconnected
were shown using equations for the motion of a two-degrees-of-freedom (2d.o.f.) system, with
two masses and three springs. The tuning method of a connecting element in the above
2d.o.f. system, by which the damping performance of the two systems in the 2d.o.f. system
was equalized and maximized, was proposed, and the approximate tuning method of the
connecting member, by which the damping performance of the "rst mode of the two framed
structures interconnected was equalized and the maximized, was proposed using the tuning
method of a connecting element in the 2d.o.f. system. In numerical investigations, the
usefulness of the approximate tuning method and the e!ectiveness of the interconnecting
member were shown.

( 2001 Academic Press
1. INTRODUCTION

It is well known in general use of the #exible structures that the serious problems due to free
vibration over a long period of time after action of the external forces, sometimes occur
because of the slight damping performance. Therefore, it was suggested that a free vibration
should be damped quickly. Many improvement procedures of the structure damping
performance have been contrived in designing many kinds of structures. In this paper, an
optimum improvement procedure of the damping performance is proposed by
interconnecting the two structures with a connecting member, which consists of a spring
and a damper. Many examples, in which passive and active members are used as
a connecting member, are found to control vibrations passively and actively in buildings
[1]. However, systematical investigation and discussion for the improvement of the
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structure damping performance by applying the interconnecting member, has not been
reported in literature. In this paper, we proposed an approximate tuning method of
a connecting member by which the damping performance of the "rst vibration mode of the
two structures interconnected by a connecting member is equalized and maximized.

In the analysis, the structures were treated as a discrete system and it was supposed that
the two structures were connected to each other with one connecting member. The
approximate tuning method of a connecting member was deduced by the following
procedure: (1) modal equations were derived from the equations for motion of two
structures interconnected, using the modal matrices of each structure; (2) modal equations
for the "rst vibration mode have proven to be equivalent to equations for the motion of
a two-degrees-of-freedom (2d.o.f.) system with two masses and three springs; (3) the tuning
condition of a connecting element of a 2d.o.f. system, from which two modal damping ratios
of the above 2d.o.f. system were equalized to each other and maximized, was given when
two natural circular frequencies are equal to each other and two modal damping ratios are
equal; and (4) the approximate tuning method of a connecting member, by which the modal
damping ratios of the "rst vibration mode of both framed structures interconnected are
equalized to each other and maximized, was derived from the above tuning condition of the
connecting element of the 2d.o.f. system. The tuning method proposed here is an
approximate method, because the modal damping ratio of only the "rst vibration mode of
each framed structure interconnected, is maximized by this method. Finally, the
applicability of an approximate tuning method of the connecting member, and the
usefulness of the connecting member, were shown using numerical investigations for two
columns and two framed structures.

2. EQUATIONS OF MOTION AND MODAL EQUATIONS OF TWO STRUCTURES
INTERCONNECTED

In this study, space-framed structures shown in Figure 1 were chosen. It was supposed
that the natural circular frequency of the "rst mode of &&Structure 1'' in Figure 1 is larger
than the natural circular frequency of the "rst mode of &&Structure 2''. &&Structure 1'' is
a Md.o.f. system and &&Structure 2'' is a Nd.o.f. system. The equations for the motion of
interconnected framed structures shown in Figure 1 and modal equations of those
structures in the modal co-ordinates of each structure were shown in the following.
Figure 1. Interconnected structures.
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2.1. EQUATIONS OF MOTION

Suppose that the joint i of &&Structure 1'' connected to the joint j of &&Structure 2'' with
a connecting member and that both of the structures were undamped systems. The
equations for the motion of interconnected framed structures shown in Figure 1 are
expressed as

Equation for motion of 00Structure 111
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are the mass matrices of &&Structure 1'' and &&Structure 2'', K
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the sti!ness
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elements and K, C the spring constant and damping coe$cient of connecting member.

2.2. MODAL EQUATIONS

In deriving the modal equations, it is considered that the rigidity of a connecting member
is small, therefore, the "rst vibration mode shapes of both structures interconnected are
similar to that of each structure, which is not interconnected.

Suppose that the natural circular frequency and eigenvector of the pth mode of &&Structure
1'' are denoted by u

1p
and /
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, respectively, and those of the qth mode of &&Structure 2'' are

denoted by u
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and /
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respectively. The orthogonal condition of the eigenvectors and the
relationship between the natural circular frequencies and the eigenvectors for both
structures are expressed as follows:
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Displacement vectors in the vibrating state of the interconnected structures under the

assumption mentioned above can be approximated by eigenmatrices of both structures as
follows:
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Here, U
1

and U
2

are modal matrices of &&Structure 1'' and &&Structure 2'' when both
structures are not interconnected and those are expressed as follows:
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are unknown vectors of the time of &&Structure 1'' and &&Structure 2'', and those are

expressed as follows:
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Substitution of equation (7) into equations (1) and (2) and their rearrangement according to
equations (3)} (6), give the following modal equations:
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In equations (11) and (13),;
1ir

, <
1ir

and=
1ir

are the displacements in the directions of x-, y-
and z-axis at the joint i in the rth vibration mode of &&Structure 1''.;

2js
,<

2js
and=

2js
are the

displacements at the joint j in the sth vibration mode of &&Structure 2''. l, m and n are
direction cosines of the connecting member (i&j ) by which the joint i and the joint j are
connected.

3. APPROXIMATE TUNING METHOD OF THE CONNECTING MEMBER

Improvement of the damping performance of the lower order vibration modes, especially
that of the "rst mode, is eagerly desired for actual structures. This is because the vibrating
displacements of the high order vibration modes are small and converge rapidly, more than
those of the low order modes. In this paper, the improvement of the structure damping
performance is carried out by increasing the damping performance of the "rst vibration
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mode of the structures. Consequently, the tuning method of the connecting member, which
is proposed in this study, is the maximizing method of the damping performance of the "rst
vibration mode of the structures. An approximate tuning method of the connecting member
was derived based on the following assumptions: (1) the natural circular frequencies of each
structure, which is not interconnected, are not very close to each other; (2) the displacements
at a connecting joint in the "rst mode of each structure are considerably large compared
with those of the other modes of the same structure; and (3) the connecting member is
attached to the position near the loop of the "rst vibration mode. Under the above
assumptions, the displacements at the connecting joint in the "rst vibration mode of each
structure occupy most of the total displacements in a freely vibrating state of each structure,
and the occupying ratio of the displacements of high order modes is low. Therefore, the
following relationships are satis"ed in equations (11) and (13):
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These relationships enable us to pick out the terms concerning only the "rst vibration mode
from equations (10)} (13).

In the following, the tuning method of the spring constant and the damping coe$cient of
the connecting member, by which two modal damping ratios in the coupling state of the
"rst vibration mode of both structures become equal to each other and are given
a maximum value, is shown.

3.1. MODAL EQUATIONS AND THE 2d.o.f. SYSTEM

When the terms concerning only the "rst vibration mode of each structure in equations
(10)}(13), are adopted for the reason mentioned above, the modal equations are
approximately given as follows:
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The above modal equations can be rewritten as

M
11

oK
11
#u2

11
M

11
o
11
#aC(oR

11
!boR

21
)#aK(o

11
!bo

21
)"0, (18)

M
21

b2
(boK

21
)#

u2
21

M
21

b2
(bo

21
)#aC(boR

21
!oR

11
)#aK (bo

21
!o

11
)"0, (19)

in which

a"D2
1i1

, b"
D

2j1
D

, (20)

1i1



Figure 2. Two-degrees-of-freedom system with two masses and three springs.
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where
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These equations correspond to those of the motion of a 2d.o.f. system shown in Figure 2.
Damping performance of the "rst vibration mode of &&Structure 1'' and &&Structure 2'' is
improved by maximizing the damping performance of o

11
(t) and o

21
(t) in Figure 2, as is

obvious from equation (22).
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In the next section, the estimation method of a spring constant and a damping coe$cient of
the connecting element in the 2d.o.f. system shown in Figure 2 is described, and then the
tuning method of the connecting member of the framed structure interconnected, by which
the damping performance of the "rst mode of each structure is maximized, is explained.

3.2. TUNING METHOD OF A CONNECTING ELEMENT IN THE 2D.O.F. SYSTEM

When the masses, spring constants, damping coe$cients and displacements in Figure 2
are replaced as follows:
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modal equations (18) and (19) are rewritten as
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The 2d.o.f. system described in equations (24) and (25) has two natural circular frequencies,
u

1
and u

2
, and two modal damping ratios, m

1
and m

2
. Natural circular frequencies and

modal damping ratios of the above 2d.o.f. system with variation in the spring constant k
2

and the damping coe$cient c
2

of the connecting element have the same behavior as those
shown in Figures 3 and 4 respectively. Those "gures show the behaviors of modal damping
ratios and natural circular frequencies of the 2d.o.f. system with constant masses,
M "6)268 and M "6)187 kg, constant spring constants k "1)132 and k "8)954 N/cm,
1 2 1 3



Figure 3. Behavior of modal damping ratios with variation in connecting spring constant and damping
coe$cient in 2d.o.f. system.

Figure 4. Behavior of natural circular frequency with variation in connecting spring constant and damping
coe$cient in 2d.o.f. system.
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varying spring constant k
2
and damping coe$cient c

2
. Figure 3 indicates the behavior of the

modal damping ratio, and Figure 4 indicates that of the natural circular frequency. It was
revealed from those behaviors that the 2d.o.f. system with two masses and three springs has
the following characteristics.
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damping ratio are similar to those of the 2d.o.f. system with two masses and two springs,
which is the 1d.o.f. system with a tuned mass damper (TMD) [2, 3].
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The solutions of equation (28) are expressed as the following conjugate complex form:
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When the coe$cients a and b are eliminated in the above equations, the following
relationships are given:
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and a modal damping ratio m and a natural circular frequency u are obtained from equation
(31) as
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Equations (36) and (37) are conditions which maximize the damping performance of the
2d.o.f. system shown in Figure 2. When the spring constants k
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3.3. TUNING PROCEDURE OF CONNECTING MEMBER

The tuning procedure of the connecting member, by which the modal damping ratios of
the "rst mode of both framed structures, which are interconnected, are equalized to each
other and then maximized, is explained using the above-mentioned tuning procedure of the
connecting element in the 2d.o.f. system with two masses and three springs.

(1) When the material and geometrical constants and boundary conditions of both of the
structures which are interconnected (&&Structures 1 and 2'') are given, the mass matrices,
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, are estimated using the mass matrices
and the sti!ness matrices calculated above.

(3) A connecting joint of &&Structure 1'', i, and a connecting joint of &&Structure 2'', j are set.
The direction cosine of the connecting member (i&j), l, m and n, are estimated by the
co-ordinates of the connecting joints i and j. The displacements ;

1i1
, <

1i1
and=

1i1
at

the joint i in the "rst vibration mode of &&Structure 1'' are decided from the modal vector
/
11

, and the displacements;
2j1

, <
2j1

and=
2j1

at the joint j in the "rst vibration mode
of &&Structure 2'' are decided from modal vector /

21
.
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(4) The following quantities of the 2d.o.f. system in Figure 2 are estimated using the values
calculated above:

k"
M

2
M

1

"

M
21

b2M
11

, k
1
"u2

11
M

11
, k

3
"

u2
21

M
21

b2
,

l2
1
"

k
1

M
1

"

u2
11

M
11

M
11

"u2
11

, l2
3
"

k
3

M
2

"

u2
21

M
21

b2
]

b2

M
21

"u2
21

,

f 2
3
"

l2
3

l2
1

"

u2
21

u2
11

.

(5) The modal damping ratio m, with which the damping performance of the "rst mode of
each framed structure, which is interconnected, is equal to each other and is at its
maximum, is estimated by the following expression using the "rst equation of equation
(38):

m"
(1!u2

21
/u2

11
)

2[1#MM
21

/(b2M
11

)N (u2
21

/u2
11

)]S
M

21
b2M

11

. (41)

(6) Optimum spring constant K
opt

of the connecting member is given from equation (39) as

K
opt

"

(1!u2
21

/u2
11

) [1![M
21

/(b2M
11

)N2 (u2
21

/u2
11

)]

a M1#M
21

/(b2M
11

)N2[1#MM
21

/(b2M
11

)N (u2
21

/u2
11

)]
]

u2
11

M
21

b2
. (42)

(7) Optimum damping coe$cient C
opt

of the connecting member is given from equation
(40) as

C
opt

"

2(1!u2
21

/u2
11

) MM
21

/(b2M
11

)N
a M1#M

21
/(b2M

11
)N

]S
M

11
M

21
u2

11
/b2

M1#M
21

/(b2M
11

)N [1#MM
21

/(b2M
11

)N (u2
21

/u2
11

)]
. (43)

3.4. RESTRICTION ON TUNING METHOD

When the damping performance of the 2d.o.f. system and that of the "rst mode of each
framed structure, which is interconnected, are at a maximum, the modal damping ratio of
them are given by equations (38) and (41) respectively. When natural circular frequencies of
each system in the 2d.o.f. system, l

1
and l

3
, are equal to each other and the "rst natural

circular frequencies of both of the structures which are interconnected, u
11

and u
21

, are
equal to each other, modal damping ratio m is zero as is obvious from equations (38) and
(41). Consequently, the proposed improvement method of the damping performance is not
e!ective in the above cases. However, the damping performance increases when the
di!erence between the "rst natural circular frequencies of both of the systems in the 2d.o.f.
system and the di!erence between the "rst natural circular frequencies of both structures,
which are interconnected, increase.

The optimum spring constant of a connecting element in the 2d.o.f. system and that of
a connecting member in the interconnected structures are expressed by equations (39) and



Figure 5. Feasible region of approximate tuning method.
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(42) respectively. The values of equations (39) and (42) must be positive because the spring
constant of the actual spring is a positive value. Therefore, the dynamic characteristics of
both systems in the 2d.o.f. system and the dynamic characteristics of both structures, which
are interconnected, have to satisfy the following conditions:

1!f 2
3
*0, 1!k2f 2

3
*0 for the 2d.o.f. system, (44)

u
21

u
11

)1,
M

21
M

11

)

b2

u
21

/u
11

for the interconnected structure, (45)

in which the "rst conditions 1!f 2
3
*0 and u

21
/u

11
)1 are always satis"ed under the

assumption described previously, that the "rst natural circular frequency of &&Structure 1'' is
larger than that of &&Structure 2''.

The domain to which the second condition in equation (45) is applied, is indicated by the
hatched region in Figure 5. On that region, the actual connecting spring, which maximizes
the damping performance of the "rst mode of both structures which are interconnected,
exists and the approximate tuning method proposed here can be applied for maximizing the
damping performance of them.

4. NUMERICAL INVESTIGATION

The two columns shown in Figure 6 were adopted as a numerical example for
two-dimensional structures, and two framed structures shown in Figure 11 were chosen as
numerical examples for three-dimensional structures. The usefulness of the approximate
tuning method proposed here is con"rmed numerically and the e!ectiveness of the
interconnecting member is assessed. The results of the investigation for those structures
were shown in the following.



Figure 6. Interconnected columns and their co-ordinates.

TABLE 1

Geometrical constants, generalized masses and natural circular frequencies

Column 1 Column 2

l
i
(m) 30)0 20)0

EI
i
(Nm2) 4)0]108 4)0]107

m
i
(N s2/m2) 1)0]103 2)0]103

M
i1

(N s2/m) 0)49799 256)46
u

i1
(rad/s) 2)4708 1)2431
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4.1. INTERCONNECTION OF TWO COLUMNS STOOD SIDE BY SIDE

The geometrical constants of two columns shown in Figure 6 are shown in Table 1 with
the generalized masses and the natural circular frequencies of the "rst vibration mode of
them.

It was con"rmed by equation (45) that the optimum spring constant and the optimum
damping coe$cient of a connecting member at various distances from the bottom of the
tower can be estimated. On the domain shown in Figure 5, data of the interconnected
columns with a connecting member at the various distances were plotted. Those optimum
values were estimated from equations (42) and (43). Then, the natural circular frequencies
and modal damping ratios of the interconnected columns with a connecting member tuned
were exactly calculated by the complex eigenvalue analysis method.

4.1.1. ;sefulness of approximate tuning method

The natural circular frequencies and modal damping ratios of the "rst, second, third and
fourth modes of the two types of interconnected columns were calculated by the complex
eigenvalue analysis method when the spring constant K of a connecting member is equal to
K

opt
and the damping coe$cient C changes. One of the interconnected columns has



Figure 7. Behavior of natural circular frequencies and modal damping ratios. (a) Attaching point of connecting
member"0)25l

2
; (b) attaching point of connecting member"0)85l

2
: *e*, "rst mode; *h*, second mode;

*n*, third mode; *]* , fourth mode.

346 T. AIDA E¹ A¸.
a connecting member at the distance, 0)25 l
2
, from the bottom, and the other has

a connecting member at the distance, 0)85l
2
. The behaviors of the natural circular

frequencies and the modal damping ratios of them were shown in Figure 7. Figure 7(a)
corresponds to the behavior of the interconnected columns with a connecting member at
the distance, 0)25l

2
, from the bottom, and Figure 7(b) corresponds to that with a connecting

member at the distance, 0)85l
2
. In these "gures, an optimum spring constant K

opt
and an

optimum damping coe$cient C
opt

for each interconnected column, were indicated with the
modal damping ratio, m, which is calculated from equation (41). The maximum modal
damping ratio of the "rst mode, which corresponds to a peak on the curve of modal
damping ratio of the "rst mode, which is calculated by the complex eigenvalue analysis
method, was also indicated.

The following facts were obvious from the previous "gures: in the case of a connecting
member attached to the vicinity of the top, (1) the natural circular frequencies of the "rst
and second modes agree well in the vicinity of C/C

opt
"1)0; (2) the modal damping ratios of

the "rst and second modes agree preciously between C/C
opt

"0)0 and 1)0, and they diverge
at the vicinity of C/C

opt
"1)0; (3) the modal damping ratio obtained by equation (41) agrees
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with the maximum one (exact modal damping ratio of the "rst mode) calculated
numerically by the complex eigenvalue analysis method; therefore, (4) the approximate
tuning method is useful for the interconnected column with a connecting member in the
vicinity of the top. In the case where a connecting member is attached to the vicinity of the
bottom, (1) the natural circular frequencies of the "rst and second modes do not approach
each other; (2) the modal damping ratios of the "rst and second modes do not agree,
between C/C

opt
"0)0 and 1)0; (3) the modal damping ratio of the third mode is at

a maximum in the vicinity of C/C
opt

"0)3 and that is far larger than the maximum modal
damping ratio of the "rst mode; (4) the modal damping ratio obtained by equation (41) does
not agree with the maximum one (exact modal damping ratio of the "rst mode) calculated
numerically by the complex eigenvalue analysis method; therefore, (5) the approximate
tuning method cannot be applied to the interconnected column with a connecting member
in the vicinity of the bottom. This is the reason that the optimum spring constant K

opt
and

the optimum damping coe$cient C
opt

are very large and the connecting member is attached
to the position in the vicinity of the loop of the "rst vibration mode of each column, at which
the displacement of the "rst mode of each column occupies most of the total displacement in
a free vibration.

4.1.2. E+ect of position of connecting member

The damping performance of the interconnected columns with a connecting member at
various distances from the bottom, was investigated by the approximate tuning method
proposed here. The behaviors of an optimum spring constant K

opt
and optimum damping

coe$cient C
opt

of the connecting members, estimated by equations (42) and (43), were shown
in Figure 8, and the behavior of modal damping ratios estimated by equation (41) and the
behavior of the "rst modal damping ratios at C/C

opt
"1)0, which were estimated by the

complex eigenvalue analysis method, were shown in Figure 9. The behaviors of natural
circular frequency and modal damping ratio of the "rst, second, third and fourth modes of
the interconnected columns with a connecting member at the various distances from the
bottom were also investigated by the complex eigenvalue analysis method when the spring
constant K of a connecting member equal to K

opt
and the damping coe$cient C changes.

Those behaviors of the interconnected columns with a connecting member attached to the
upper part (0)6)z

2c
)1)0) were similar to the behaviors shown in Figure 7(b) and those

behaviors of the interconnected columns with a connecting member attached to the lower
part (0)0)z

2c
)0)6) were similar to the behaviors shown in Figure 7(a).
Figure 8. Optimum spring constants and damping coe$cients of a connecting member: (a) spring constant;
(b) damping coe$cient.



Figure 9. Maximum modal damping ratio of "rst mode.
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The following facts were proven by the above "gures and calculated results: (1) the
optimum spring constant and the damping coe$cient of a connecting member near the top,
are smaller than those of a connecting member near the bottom; (2) the damping
performance due to a connecting member near the top is better than that due to
a connecting member near the bottom; (3) the modal damping ratios, calculated by
equation (41), of the interconnected column with a connecting member at the upper part of
the tower, agree comparatively with the exact modal damping ratios obtained by the
complex eigenvalue analysis method. However, the modal damping ratios, obtained by
equation (41), of the interconnected column with a connecting member attached to the
lower part, are di!erent from the exact modal damping ratios. Therefore, the approximate
tuning method can only be applied to the columns with a connecting member at the upper
part; and (4) the best damping performance is given by a connecting member at a distance of
0)85l

2
from the bottom and can be accurately estimated by the approximate tuning method.

From the above investigation, the following facts are desired in designing the connecting
member: (1) the assumptions that the rigidity of the connecting member is soft and the
connecting member is attached to the position, at which the displacement of the "rst
vibration mode occupies most of the total displacement in free vibration, are satis"ed; and
(2) the modal damping ratios of the interconnected structure with the connecting member
having the optimum spring constant K

opt
, and the optimum damping coe$cient C

opt
, are

calculated by the complex eigenvalue analysis method for estimation of the exact damping
performance.

4.1.3. E+ect of internal viscous damping of tower

The e!ect of the internal viscous damping of a column on the approximate tuning
method was investigated for the interconnected column with a connecting member at the
distance of 0)85l

2
from the bottom. First, the optimum spring constant K

opt
and the

damping coe$cient C
opt

of the connecting member, by which the columns without internal
viscous damping were interconnected, were estimated from an approximate tuning method.
The behaviors of the natural circular frequencies and the modal damping ratios of the
interconnected column with a connecting member having the optimum spring constant



Figure 10. Behavior of natural circular frequencies and modal damping ratios in case of including the viscous
damping (damping ratio"0)05):*e*, "rst mode;*h*, second mode;*n*, third mode;*]* , fourth mode.

Figure 11. Interconnected framed structures.
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K
opt

and the various damping coe$cient C, were estimated by the complex eigenvalue
analysis method, when the damping ratios for each vibration mode of each column were
equal to m"0)05. The behaviors of natural circular frequencies and modal damping ratios
of the "rst, second, third and fourth modes were shown in Figure 10.

The following facts became clear from the above "gure: (1) the natural circular
frequencies do not change much, in comparison with those of the interconnected column
without internal viscous damping, which are shown in Figure 7; and (2) the modal damping
ratios for each mode are nearly equal to those which added 0)05 to each modal damping
ratio of the interconnected column without internal viscous damping.

4.2. INTERCONNECTION OF TWO FRAMED STRUCTURES STOOD SIDE BY SIDE

Dimensions and dynamic characteristics of two framed structures with three stories
shown in Figure 11 are indicated in Table 2. In this investigation, a connecting member was



TABLE 2

Dimensions and dynamic characteristics of framed structures

Dimensions of framed structures

Structure 1 Structure 2

Height (m) 3]h
1
"12 3]h

2
"12

Width (m) =
1
"4 =

2
"4

Depth (m) D
1
"6 D

2
"4

Natural circular frequencies and predominant modes

Structure 1 Structure 2 Predominant mode

First mode (rad/s) u
11
"26)23 u

21
"20)65 Bending in y-direction

Second mode (rad/s) u
12
"36)46 u

22
"40)61 Bending in x-direction

Third mode (rad/s) u
13
"40)90 u

23
"43)39 Torsion

Figure 12. Disposition of framed structures in ground plan and position of a connecting member.
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attached to the top story of each frame. Disposition of two framed structures in the ground
plan and the attaching position of a connecting member were shown in Figure 12. In the
connecting state of Case 1 shown in Figure 12, the bending vibration mode with the
predominant displacements in the y-direction are a!ected by interconnection. Case 1 can be
investigated as a two-dimensional structure like a column. In the connecting state of Case
2 shown in Figure 12, the above bending vibration mode and torsional vibration mode are
a!ected.

Optimum spring constant K
opt

and optimum damping coe$cient C
opt

of a connecting
member in each case were calculated by equations (42) and (43), and modal damping ratio
m in each case was calculated by equation (41). K

opt
, C

opt
and m of case 1 were

K
opt

"3)396]106N/m, C
opt

"6)820]105 Ns/m and m"0)1141 respectively. The values
in case 2 were almost equal to those of case 1. This is the reason that displacements of two
attaching points (points A and C) of framed structure 1 in the "rst mode are almost equal to
each other and displacements of two attaching points (points B and D) of framed structure
2 in the "rst mode are also almost equal to each other. Two values of a in cases 1 and 2 are
equal to each other and two values of b in both of the cases are equal to each other, as is
obvious from equations (20) and (21).



Figure 13. Behavior of natural circular frequencies and modal damping ratios of interconnected framed
structures. (a) Case 1; (b) case 2:*e*, "rst mode;*h*, second mode;*n*, third mode;*]* , fourth mode;

, "fth mode.
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The natural circular frequencies and modal damping ratios of the "rst, second, third,
fourth and "fth modes in two cases of the framed structures interconnected with
a connecting member with the optimum spring constant K

opt
and the various damping

coe$cients C were calculated by the complex eigenvalue analysis method. The behaviors of
the natural circular frequencies and modal damping ratios were shown in Figure 13. Figure
13(a) corresponds to case 1 of the framed structures interconnected and Figure 13(b)
corresponds to case 2 of those. The maximum modal damping ratio of the "rst mode, which
corresponds to a peak on the curve of the "rst modal damping ratio, was also indicated in
those "gures. The maximum modal damping ratio of the "fth mode, in which torsional
displacements are predominant, was also indicated in Figure 13(b).

The following facts were obvious from those "gures: in case 1, (1) the behaviors of natural
circular frequencies and modal damping ratios are similar to those of the interconnected
columns with a connecting member attached to the upper part of column; (2) the modal
damping ratio obtained by equation (41) agrees with the maximum one, calculated by the
complex eigenvalue analysis method, within an error of about 10%; therefore, (3) the
approximate tuning method is useful in this case. In case 2, (1) the natural circular
frequencies of the "rst and second modes do not approach each other; (2) the modal
damping ratio obtained by equation (41) does not agree with the maximum one of the "rst
mode, which is calculated by the complex eigenvalue analysis method; (3) the modal
damping ratio of the "fth mode (torsional mode) increases as the damping coe$cient of the
connecting member increases; therefore, (4) the approximate method proposed here is not
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useful for tuning the connecting member interconnected the framed structures arranged like
in Case 2 in which the torsional vibration occurs; and (5) the modal damping ratio of
torsional mode increases considerably.

5. CONCLUDING REMARKS

A procedure for improving the structure damping performance of the "rst vibration
mode was proposed by using the interconnection of the two structures with a connecting
member which consists of a spring and a damper. This procedure was proposed based on
the following assumptions: (1) the rigidity of the connecting member is soft; (2) the natural
circular frequencies of each structure, which is not interconnected, are not very close to each
other; and (3) the connecting member is attached to the position at which the displacement
of the "rst vibration mode of each structure occupies most of the total displacement in free
vibration.

Modal equations of the "rst vibration mode of each structure, which were interconnected
with a connecting member, were shown to be approximately equivalent to the equations for
the motion of the 2d.o.f. system with two masses and three springs. It was found that the
damping performances of the 2d.o.f. system is at maximum when the two modal damping
ratios are equal to each other, and also the two natural circular frequencies are equal. The
tuning method of the connecting element in a 2d.o.f. system with two masses and three
springs, was proposed using the above characteristics.

The approximate tuning method of a connecting member, by which the modal damping
ratios of the "rst mode of both framed structures interconnected were equalized to each
other and then maximized, was proposed using the tuning method of the connecting
element in the above 2d.o.f. system. Moreover, the conditions for which the tuning method
proposed here can be applied, were also shown. It was also shown that the connecting
member is not e!ective for the improvement of the damping performance, when
the "rst natural circular frequencies of both framed structures, which are interconnected,
are equal to each other, and the e!ectiveness of the connecting member increases
as the di!erence between the "rst natural circular frequencies mentioned above
increases.

The following facts became clear from the numerical investigation: in the case of the
interconnected column, (1) when the connecting member is attached to the position in the
vicinity of a loop of the "rst mode of structure, the damping performance of the
interconnected structure greatly improves, and the approximate tuning method is accurate;
(2) when the connecting member is attached to the position at a distance from the loop of
the "rst mode of the structure, it is not useful, and the degree of improvement of the
damping performance is low. Consequently, the approximate tuning method is not e!ective;
and (3) the damping ratio, due to the internal viscous damping in the structure, is
added to the modal damping ratio of the interconnected structure. In the case of the
framed structure interconnected, (1) when three-dimensional framed structures
interconnected by a connecting member vibrate two-dimensionally, the approximate
tuning method is e!ective in the same way as a interconnected column; however,
(2) when the framed structures interconnected vibrate three-dimensionally and torsional
vibration is caused by this connecting member, the accuracy of the approximate tuning
method is not satisfactory. In these cases, freely vibrating displacement vectors d

1
and

d
2

denoted by equations (7) should be expressed by the sum of the "rst, second and third
mode vectors in deriving the modal equations. As for such a case, a description will be made
in a separate paper.
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