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This short note is concerned with computing the eigenvalues and eigenfunctions of
a continuous beam model with damping, using the separation of variables approach. The
beam considered has di!erent sti!ness, damping and mass properties in each of two parts.
Pinned boundary conditions are assumed at each end, although other boundary conditions
may be applied at the ends quite simply. Although applications are not considered in detail,
one possible example is a thin beam partly submerged in a #uid. The #uid would add
considerable damping and mass to the beam structure, and possibly some sti!ness. Yang
and Zhang [1] calculated these added mass and damping coe$cients for parallel #at plates.
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1. THE MODEL AND BOUNDARY CONDITIONS

Suppose an Euler}Bernoulli beam consists of two parts, one of length ¸
1

with sti!ness k
1
,

damping coe$cient c
1
, and mass per unit length m

1
, and the second of length ¸

2
, with

parameters k
2
, c

2
and m

2
. These parameters are assumed to be constant along each beam

segment, and contain contributions from the beam and any surrounding #uid. Figure 1
shows the beam on pinned}pinned supports diagrammatically. The equations of free
motion for the beams is a simple extension of the undamped equations [2], and are
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where w
i
(x, t) is the transverse displacement in the ith portion and x is the axial position

along the beam. The boundary conditions for this system depend on conditions at the ends
of the beam and also conditions to join the two beams together. In the following we
concentrate on pinned connections at the beam ends, and so these boundary conditions are
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where ¸"¸
1
#¸

2
is the total length of the beam. At the interface, one must have that the

displacement, slope, moment and shear force are all continuous, so that
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Figure 1. The pinned}pinned beam layout.
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The standard approach to solving the equations of motion is by separating the variables,
and the same procedure may be applied here. Thus, assuming that
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and substituting into equation (1) gives
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where the i
i
are constants to be determined, the overdots represent di!erentiation with

respect to time, and the superscript (IV) represents the fourth derivative with respect to x.
To satisfy the boundary conditions (6)}(9), these time functions must be equal, so that
¹
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2
(t)"¹(t). Thus, the di!erential equation for X

i
may be written as
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The i
i
are determined from the time function from equation (11), as shown in the next two

sections.

2. OVERDAMPED MODES

Overdamped modes have a time function given by

¹(t)"e~jt (13)

for some positive j to be determined. Equation (13) may also be multiplied by any constant.
Substituting into equation (11) gives,
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The i
i
given by equation (14) is real, but may be negative or positive and the form of the

solution will change depending on this sign. Suppose both i
i
are positive, then the standard

solutions to equation (12), incorporating the boundary conditions (2)}(5) are
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for some constants A
i
and B

i
, and where
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Now, following the standard route, the boundary conditions (6)} (9) are applied to obtain
four equations in the unknown parameters. These are
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Thus, for a non-trivial solution the matrix should be singular and so
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Using equations (14) and (17), k
1

and k
2

may be written in terms of j, and equation (19)
becomes
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(j))"0. (20)

This gives an equation to determine the solutions for j. These solutions are then used to
compute k

1
and k

2
, and thus the matrix in equation (19). This matrix is singular, and for

distinct eigenvalues has a null space of dimension 1. The null space may be calculated using
the singular value decomposition, and the resulting vector gives the parameters A

i
and B

i
,

and thus the eigenfunction from equations (15) and (16).
One also needs to consider negative i

i
in the solutions of equation (12). In this case, the

general solution, incorporating the boundary conditions (2)} (5), is
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where now
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Applying the same procedure as before, using the boundary conditions (6)} (9),
gives equations for the unknown parameters, and yields the following equation instead
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of equation (18):
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Of course, this implies that both the i parameters are negative. If one is positive and the
other is negative, then the obvious combination of the spatial response should be
substituted into the expression for the matrix and thus f.

3. UNDERDAMPED MODES

In some respects, the process to compute the underdamped eigenvalues is very similar to
that for the overdamped eigenvalues. The time function is now

¹(t)"ejt. (26)

Although this looks very similar to equation (13), there are three crucial di!erences. j is
a complex eigenvalue, as opposed to real. Thus, the negative sign used in equation (13) to
consider positive real j is not required. Finally, the eigenfunction will be complex, and both
the eigenvalue and eigenfunction occur as complex conjugate pairs, so that their sum
produces a real response. From equation (11), the i

i
are complex and given by
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The spatial solutions, from equation (12) and incorporating boundary conditions (2)} (5),
are now
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where $l
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are the four distinct complex solutions of
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TABLE 1

¹he physical parameters for the numerical example

Beam 1 Beam 2

Case 1 Case 2

¸
i

1 m 2 m 2 m
m

i
10 kg/m 20 kg/m 40 kg/m

c
i

0 100 N s/m2 10 kN s/m2
k
i

100 N/m2 100 N/m2 100 N/m2
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and A
i
and B

i
are now complex. Applying the boundary conditions (6)} (9) as before, gives
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Thus, j is determined to make the above matrix singular, and the null space gives the
constants A

i
and B

i
, that are used to produce the eigenfunctions.

4. NUMERICAL EXAMPLE

The computation will be demonstrated using a beam with the parameters given in
Table 1. The eigenvalues and eigenfunctions are computed using the procedure outlined
above, and also using a "nite element model for comparison. The "nite element model has
30 elements of equal length, giving a total of 60 degrees of freedom. Two cases are
considered: the "rst represents a lightly damped case, and the second the situation when
a more viscous #uid surrounds beam 2. Table 2 shows the results for the lower modes for
both cases. Case 2 has a large number of overdamped modes, whereas all the modes in case
1 are underdamped. Figure 2 shows the "rst four eigenfunctions for case 1. Figures 3 and
4 show the "rst six overdamped modes and the "rst four underdamped modes for case
2 respectively. Of particular interest in Figure 4 is the way that the majority of the
displacement in the lower modes is local to the undamped part of the beam. As the damping
in the second beam is increased this e!ect becomes more pronounced.

5. CONCLUSIONS

This paper has outlined a method to compute the eigenvalues and eigenfunctions of
a continuous, damped beam, consisting of two parts. Both the overdamped and the
underdamped eigenvalues and associated eigenfunctions have been computed for two
di!erent sets of parameters. For high damping the lower underdamped modes seem to be
local to the undamped part of the beam. The procedure given assumed the boundary
conditions to be pinned. In the general case the spatial solution would require four



TABLE 2

¹he lower eigenvalues for the numerical example

Case 1 Case 2

Continuous model Finite element model Continuous model Finite element model

!2)2552$1)2711j !2)2552$1)2711j !0)014824 !0)014824
!1)7936$10)903j !1)7936$10)903j !0)33642 !0)33642
!1)5741$24)863j !1)5741$24)863j !2)2122 !2)2123
!1)7876$43)165j !1)7876$43)166j !8)5798 !8)5808
!1)8781$68)118j !1)8781$68)121j !26)524 !26)535
!1)6984$99)327j !1)6983$99)339j !5)5929$35)044j !5)5946$35)044j
!1)6775$133)66j !1)6774$133)69j !90)984 !91)215
!1)8549$174)00j !1)8546$174)06j !18)528$124)77j !18)554$124)78j

!142)99 !142)73
!114)30$112)95j !114)26$113)15j

!212)31 !212)29
!112)10$183)55j !112)03$183)90j

!235)08 !235)08
!245)03 !245)03

Figure 2. The "rst four underdamped modes for Case 1 (solid is real part, dashed is imaginary part).
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unknown parameters for each beam section, and the boundary conditions equivalent to
pinned}pinned could not be incorporated explicitly. The result would a search for a zero
determinant of an 8]8 matrix rather than a 4]4.
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Figure 3. The "rst six overdamped modes for Case 2.

Figure 4. The "rst four underdamped modes for Case 2 (solid is real part, dashed is imaginary part).
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