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The dynamic sti!ness method applies mainly to excitations of harmonic nodal forces. For
distributed loads, modal analysis is generally required. In the case of a clamped}clamped
beam, the modal decomposition of a uniformly distributed load by the eigenbeam functions
inherits slow convergence because the "nite loads at the beam-ends cannot be represented
e$ciently by the zero de#ection and zero slope of the clamped}clamped beam functions. The
computed reactions at the supports do not converge at all. The problem is eliminated in this
paper by using the "nite element interpolation functions for the distributed load. If the
distributed load is adequately represented, explicit exact solutions are found. Otherwise, the
residual load is expanded in the modal space. As the residual modal force is much smaller
and agrees well with the clamped}clamped conditions, fast convergence is achieved. By
means of the principle of superposition, a structure with members having distributed loads
can be analyzed by two systems: one is associated with the individual members having
distributed loads and the other is associated with resulting equivalent nodal forces. The
required frequency functions are given for all possible cases. The results presented are exact
if the load is interpolated adequately by "nite element shape functions. Both deterministic
and random loads are considered. Closed-form solutions are obtained for the "rst time.
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1. INTRODUCTION

The dynamic sti!ness method [1] employs the solutions of the governing equations under
harmonic nodal excitations as shape functions to formulate the analytical sti!ness matrix
called the dynamic sti!ness matrix. The method requires the closed-form solutions of the
governing equations which restricts the application areas. A brief introduction of the
method and a review is given in section 2. So far, the excitations considered are nodal forces
only. Distributed forces will be studied for the "rst time for both deterministic and random
excitations. If the distributed forces can be interpolated adequately by the "nite element
shape functions, analytical solutions are possible.

The principle of superposition is introduced in section 3 to study a structure with some
members having distributed loads. Formulation using an Euler}Bernoulli beam is given as
an example. The axial and torsional vibrations are studied in section 4. It is found that the
classical modal analysis takes more than a thousand terms to converge to four signi"cant
"gures for the support reactions if the bar is under the excitation of a uniformly distributed
load. The bending vibration is considered in section 5 and it is found that the classical
sPresent address: Building and Construction Department, City University of Hong Kong, Tat Chee Avenue,
Kowloon, Hong Kong.
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modal analysis does not give solutions to the support reactions for uniformly distributed
load. Formulae for boundary conditions other than clamped}clamped are given in
section 6. The method is generalized to other structural members in section 7. The random
response is studied analytically in section 8. Finally, numerical examples are presented in
section 9.

2. THE DYNAMIC STIFFNESS METHOD AND ITS REVIEW

Various methods are available for establishing a mathematical model for the vibration
response of structures, among which the "nite element method based on static
displacements is the most commonly used. There are two forms of the displacement-based
"nite element method in dynamics. The "rst, an approximate method, which interpolates
the displacements using piecewise polynomial shape functions. The second, referred to as
the exact method, which interpolates the displacements using shape functions that satisfy
the static equilibrium equations exactly, results in a continuum element. Both forms exhibit
inaccuracy since the frequency-independent shape functions fail to represent fully the true
eigenfunctions, which depend explicitly on the corresponding natural frequency. The
dynamic sti!ness method can eliminate such inaccuracy problems by employing the
frequency-dependent shape functions that are exact solutions for the governing di!erential
equations, and therefore provides exact natural modes for a vibrating structure. It
eliminates spatial discretization error and is capable of predicting on in"nite number of
natural modes by means of a small number of degrees of freedom. Because the shape
functions used are frequency-dependent, the resultant dynamic sti!ness matrices [D] are
inherently frequency-dependent. The eigenproblem for free vibrations or forced vibrations
by modal analysis should be replaced by

[D(u)]MuN"M0N

and

[D (u)]"[K(u)]!u2[M(u)],

where [D(u)] is the dynamic sti!ness matrix, [M] and [K] are the global mass and sti!ness
matrices, MuN is the nodal displacement vector, and u is the eigenfrequency.

Therefore, the method of dynamic sti!ness matrix in vibration analysis of structures has
certain advantages over the conventional "nite element method, particularly when higher
frequencies and higher accuracy of results are required. This is because, in the "nite element
method, the properties of an individual element are derived from the assumed shape
functions and so are not &&exact'', whereas the properties obtained from the dynamic sti!ness
method are based on the closed-form analytical solution of the di!erential equation of the
element and hence are justi"ably called &&exact''. The disadvantages lie in the
transcendentality of the dynamic sti!ness matrix and in the need to solve a non-linear
eigenproblem. However, this can be solved without di$culty by means of the
Wittrick}William algorithm [2].

The history of the dynamic sti!ness method can be traced back to as early as the 1940s
with Kolousek's work [3}6] in which the author calculated the element dynamic sti!ness
matrix for uniform Euler}Bernoulli and Timoshenko beam elements. Historical notes on
the dynamic sti!ness method and early references can be found in Akesson's publication [7]
in which he mentioned the works of Gaskell [8], Raithel [9, 10], Veletsos and Newmark
[11], Rogers [12], Mohsin and Sadek [13], Armstrong [14], Cheng [15], and Swannell [16].
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Later development and applications of the dynamic sti!ness method can be found in the
works of Afolabi [17], Akesson et al. [18, 19], Banerjee and Williams [20], Capron and
Williams [21], Chen [22, 23], Curti et al. [24], Eisenberger [25, 26], Friberg [27, 28],
Hallauer and Liu [29], Hencky [30], Leung [31}40], Lunden and Akesson [41], Ovunc
[42, 43], Pilkey [44], Richards and Leung [45], Williams and Kennedy [46], Williams and
Wittrick [47], and Zhang and Wu [48] among others. A major advancement of the
dynamic sti!ness method is made by Leung [1], who was extended the method to a wide
range of problems including natural vibration and response analyses, conservative and
non-conservative problems, uniform and non-uniform structures, straight and curved
members.

A comprehensive literature review on the dynamic sti!ness method can be found in
Fergusson's dissertation [49] in which the development and application of the dynamic
sti!ness method to various kinds of elements and structures are introduced in detail. Some
recent development of the method for curved and non-uniform members can be found in
Leung et al. [50}55] and Eisenberger [56, 57].

3. PRINCIPLE OF SUPERPOSITION

The principle of superposition enables one to study the distributed load on one element
beam member at a time and to superimpose the results. Consider the simple structure
shown in Figure 1. The structure (a) with a distributed load is equivalent to
a clamped}clamped beam (b) plus the structure (c) with equivalent nodal loads only. The
equivalent nodal loads equal the reactions of the clamped}clamped beam with their
directions reversed.

Therefore for the solution for the clamped}clamped beam under distributed load in
harmonic vibration, the distributed load problem of the structure can be solved by the
dynamic sti!ness method. Usually, the clamped}clamped beam under distributed load is
solved by the modal analysis. However, the clamped}clamped beam functions cannot
represent the distributed load at the ends of the beam as both the eigenfunctions'
displacements and slopes are zero at the ends. For example, the expansion of the uniformly
distributed load in terms of the simply supported beam function is

f (x)"
4h

n A
sinx

1
#

sin 3x

3
#

sin 5x

5
#2B, (1)
Figure 1. Principle of superposition (a) a simple structure with a distributed load; (b) a clamped}clamped beam
with a distributed load; (c) the structures with equivalent modal loads; (d) displacement and slope degrees of
freedom.
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where h is the intensity of the load and n is the length of the beam for simplicity. Equation
(1) converges extremely slowly to a step function. Alternatively, the distributed load may be
expanded into

f (x)"[N(0, x)]MqlN#+ /
i
(x)Q

i
, (2)

where [N (0, x)] is a row vector of the "nite element shape functions which are the dynamic
shape functions at zero frequency, MqlN"Mq

1
, q

2
, q

3
, q

4
N represents the displacement

magnitudes and slopes at ends 1 and 2 in Figure 1(d), respectively, /
i
(x) is the ith mode and

Q
i
is the intensity of mode i. For uniformly distributed loads, q

1
"q

3
"h, the load intensity,

and q
2
"q

4
"0. Therefore, the load is exactly represented without using natural modes. It

is shown below that the end reactions (shears and moments) are simply proportional to the
mass matrix if the "nite element shape functions are adequate to represent the distributed
loads. In general, the "nite element shape functions, represented by the "rst term on the
right-hand side of equation (2), take good care of the portion of distributed load at the two
ends of a clamped}clamped beam. The residual load conforms very well with the beam
functions and the second term on the right-hand side of equation (2) converges rapidly. The
deterministic distributed loads are considered "rst and the random loads are considered
later.

4. AXIAL AND TORSIONAL VIBRATIONS OF AN EULER}BERNOULLI BEAM

The governing di!erential equations and boundary conditions of axial and torsional
vibrations of an Euler}Bernoulli beam under harmonic excitations are given, respectively,
by

EAuA#u2oAu"!q
u

with u (0)"u(l )"0 (3)

and

GJhA#u2oIh"!qh with h (0)"h (l)"0, (4)

where u and h are the vibration amplitudes, u the vibration frequency, EI and GJ are the
rigidities, oA and oI are the inertia per unit length, q

u
and qh are the distributed loads per

unit length, l is the length of the beam, 0)x)l and a prime denotes di!erentiation with
respect to x. Since equations (3) and (4) are similar, only equation (3) need to be considered.

It is always possible to express the distributed load of equation (3) as

q
u
"[n (0, x)]MqN#+Q

i
sin(inx/l), (5)

where [n(0, x)]"[1!x/l, x/l] is the "nite element shape function matrix, sin(inx/l) is the
natural mode, and MqN and Q

i
are given. The analysis of the second term on the right-hand

side of equation (5) follows the classic modal method. It is su$cient to study the "rst term
only. Two distinct cases are identi"ed: (a) u"0 and (b) uO0.

(1) When u"0, the particular integral u
p

of equation (3) is given by

EAuA
p
"![1!x/l, x/l]MqN,

EAu
p
"!C

x2

2
!

x3

6l
,

x3

6lDMqN
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with the complementary function,

EAu"C1
x

lDMcN!C
x2

2
!

x3

6l

x3

6lDMqN, (6)

where McN is a 2-vector to be determined from the boundary conditions of equations (3).
Therefore,

McN"
0

l2

3

0

l2

6

MqN.

After putting back into equation (6), the de#ection shape due to the distributed load is given
as

EAu"C
xl

3
!

x2

2
#

x3

6l
,

xl

6
!

x3

6lDMqN. (7)

The reaction at the ends of the beam are given by

MR
u
N"G

!EIu@(0)

EIu@(l )H"!

l

6C
2

1

1

2DMqN"
!1

oA
[M]MqN. (8)

Therefore, the end reactions due to the "nite element type loading are proportional to the
mass matrix.

(2) When uO0, the complete solution of equation (3) is given by

t2EAu/l2"[cos(tm), sin(tm)]McN![n (0, x)]MqN, (9)

which consists of the complementary functions and particular integral and McN is to be
determined by the boundary conditions, where t2"u2oAl2/EA and m"x/l. From the
boundary conditions,

McN"C
1

!cott
0

cosectDMqN.

From equation (9), the de#ection shape is given by

t2EAu/l2"[cos(tx/l), sin(tx/l)] C
1

!cott
0

cosectDMqN![n(0, x)]MqN (10)

"[n (u, x)!n (0, x)]MqN,

where [n(u, x)]"[costm!cott sin tm, cosect sintm] is the shape function at frequency
u. The reactions at the ends are given by

[R
u
N"G

!EIu@ (0)

EIu@(l )H"
l2

EAt2
[D(u)!D(0)]MqN

"

1

oAu2
[D (u)!D (0)]MqN"!

[M(u, 0)]MqN
oA

,
(11)
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where

[D(u)]"
EAt

l C
cost

!cosect
!cosect

cott D (12)

is the dynamic sti!ness matrix and

[M(u
1
, u

2
)]"

[D (u
1
)!D(u

2
)]

u2
2
!u2

1

(13)

is the mixed mass matrix [1]. when lim uP0,

lim
u?0

1

oAu2
[D(u)!D(0)]"

1

oA

L
Lu2

[D(0)]"!

[M(0)]

oA
,

according to the Leung theorem [1]. Therefore, equation (11) degenerates to equation (8)
when lim uP0.

Finally, consider the Fourier terms of equation (5). The particular solution of

EIuA#u2oAu"!Q
i
sin(inx/l ) (14)

is given by

u"
Q

i
sin(inx/l )

EA (in*l)2!oAu2
. (15)

Therefore, the contribution of the Fourier terms to the reaction forces is

MR
u
N"G

!EAu@(0)

EAu@(l)H"
inlQ

i
(i2n2!t2) G

!1

(!1)iH. (16)

Finally, the total reaction is

MR
u
N"G

!EAu@(0)

EAu@(l )H"!

[M(u, 0)]

oA
MqN#

n
+
i/1

inlQ
i

(i2n2!t2) G
!1

(!1)iH (17)

for n residual modal forces.
If the load is distributed linearly, the modal decomposition is completely avoided and

exact results are obtained. Classically, without using the available "nite element
interpolation, a uniformly distributed load is expanded by the Fourier series (1), i.e,
TABLE 1

Convergence of +
i/odd

1/i2 to n2/8

Terms Value

10 1)2087
100 1)2312

1000 1)2355
n2/8 1)2337
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Q
i
"4h/ni, i"odd. The static end reactions are proportional to + 1/i2 and + (!1)2/i2

respectively. The present method gives the analytical result +
i/odd

1/i2"n2/8 immediately.
Table 1 shows that the convergence of the modal method is extremely slow.

The classical modal method requires more than 1000 terms to converge to the static
solutions up to four signi"cant "gures. In the dynamic case, it converges even more slowly
because of the reduced denominator. With equations (11) and (17), the following
closed-form summation formula can be proved

=
+

i/1,3,2

1

i2!u2
"

n (cosun!1)

4u sinun
.

5. BENDING VIBRATION OF AN EULER}BERNOULLI BEAM

The governing equation of the bending harmonic vibration of an Euler}Bernoulli beam
is given by

EIl@@@@!oAu2l"ql (x) (18)

with the clamped}clamped boundary conditions

l (0)"l@(0)"l (l)"l@(l)"0. (19)

The convergence of the classical modal analysis in terms of the clamped}clamped beam
eigenfunctions /

i
(x) will be very slow if q (0), q@l(0), ql (l ), q@l (l )O0 due to the incompatible

end conditions. The convergence to the end reactions is even slower due to the necessary
repeated di!erentiations of the displacement to determine the forces and moments. An
alternative way is to express the distributed load to

ql(x)"[n(0, x)]MqN#+Q
i
/
i
(x). (20)

The high convergent rate is due to the fact that the end loads have been taken care of by the
"nite element shape function [n (0, x)] and the residual of the distributed load is accounted
for in the eigenmodes. To get the reactions, two distinct cases are identi"ed: (1) u"0 and (2)
uO0. The "rst term of equation (20) corresponding to the "nite element distributed load is
studied "rst by the dynamic sti!ness method and the remaining modal forces are considered
later by the classical modal analysis.

When u"0, the governing equation is

EID4l"[n(0, x)]MqN, (21)

where D is a di!erential operator with respect to x. The distributed load is interpolated
according to the "nite element interpolation as shown in Figure 1(d). The solution l(x) of
equation (21) with boundary conditions (19) consists of the complementary functions and
the particular integral,

EIl"[1 x x2 x3]McN#D~4[n (0, x)]NMqN. (22)
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The constant McN is determined by the boundary conditions (19),

M0N"EI G
l (0)

l@(0)

l(l )

l@(l) H"
1 0 0 0

0 1 0 0

1 l l2 l3

0 1 2l 3l2

McN#

0 0 0 0

0 0 0 0

l4/28 l5/252 l4/168 !l5/630

2l3/15 l4/60 l3/30 !l4/120

MqN (23)

from which McN can be determined. Substituting into equation (21) gives

EIl"
l4

2520

66m2!156m3#105m4!21m6#6m7

l(21m2!22m3#21m4!14m6#3m7)

39m2!54m3#21m6!6m7

!l(9m2!131m3#7m6!3m7)

MqN. (24)

The reactions at the supports are

MRlN"EI G
l@@@(0)

!l@(0)

!l@@@ (l )

lA(l) H"!

l

420

156 22l 54 !13l

22l 4l2 13l !3l2

54 13l 156 !22l

!13l !3l2 !22l 4l2

MqN"
![M]MqN

oA
. (25)

Therefore, the reactions are again proportional to the mass matrix.
(b) Consider the case when uO0. The governing equation is

EIl@@@@!oAu2l"ql (x)"[n (0, x)]MqN. (26)

whose solution is

j4
l4

EIl"[cos jm sin jm coshjm sinh jm]McN![n (0, x)]MqN, (27)

where the constant McN is determined by the boundary conditions (19) to give the complete
solution

j4
l4

EIl"[n(u, x)!n (0, x)]MqN"oAu2l (28)

or

l"
1

oAu2
[n(u, x)!n(0, x)]MqN, (29)

in which j4"u2oAl4/EI, and [n(u, x)] is the dynamic shape function given by

[n(u, 0)]"G
cos jm

sin jm

coshjm

sinh jm H
T

1

2j3

j3!F
4
j F

2
lj !F

3
j F

1
lj

!F
6

lj2#F
4
l !F

5
!F

3
l

j3#F
4
j !F

2
lj F

3
j !F

1
lj

F
6

lj2!F
4
l F

5
F
3
l

, (30)
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which will degenerate to the "nite element shape function when u"0. The frequency
functions are given in Appendix A.

The support reactions are

MRlN"EI G
l@@@(0)

!l@(0)

!l@@@ (l )

lA(l ) H" 1

oAu2
[D(u)!D (0)]MqN"

![M(u, 0)]MqN
oA

, (31)

where the dynamic sti!ness matrix is

[D(u)]"
EI

l

F
6

sym.

!F
4
l F

2
l2

F
5

!F
3
l F

6
F
3
l F

1
l2 F

4
l F

2
l2

. (32)

Finally, the modal force part of equation (20) can be treated classically.

EIl@@@@
i
!oAu2l"Q

i
/
i
(x), (33)

which gives

l
i
(x)"Q

i
/

i
(x)/oA(u2

i
!u2), (34)

where u
i
and /

i
(x) are the natural frequency and modal shape respectively.

The reaction is

MRlN"EI G
l@@@
i

(0)

!lA
i
(0)

!l@@@
i

(l)

lA
i
(l ) H" EIQ

i
oA (u2

i
!u2) G

/A
i
(0)

!/A
i
(0)

!/A
i
(l)

/A
i
(l ) H" l4Q

i
j4
i
!j4 G

/A
i
(0)

!/A
i
(0)

!/A
i
(l)

/A
i
(l ) H , (35)

where j4
i
"oAl4/EI. Finally, the total reaction is

MRlN"
![M(u, 0)]MqN

oA
#

n
+
i~1

l4Q
i

(j4
i
!j4) G

/A
i
(0)

!/A
i
(0)

!/A
i
(l )

/A
i
(l) H (36)

for n residual modal forces.
Alternatively, without using the available "nite element interpolation, a uniformly

distributed load is expanded on to the modal space, Q
i
"2j

i
l(1!(!1)i) approximately for

i'4. The nodal series does not converge to the end reactions at all. For example, the shear
reaction force at end 1 will be proportional to +=

i/1
j4
i
/(j4

i
!j4), which is obviously not

convergent. The exact solutions by using the "nite element interpolation method can be
obtained immediately.
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6. OTHER BOUNDARY CONDITIONS

For axial vibration, the dynamic sti!ness for a "xed}free bar is

D"!tant. (37)

For bending vibration, there are four realistic special cases which require consideration:
clamped}pinned, clamped}sliding, clamped}free and pinned}pinned.

(1) Clamped}pinned beam: In this case, l(l )"0, and the dynamic sti!ness matrix is

[D(u)]"
EI

l3

F
11

!F
9
l F

10
!F

9
l F

7
l2 !F

8
l

F
10

!F
8
l F

12

. (38)

(2) Clamped}sliding beam:: In this case, l@(l )"0, and the dynamic sti!ness matrix is

[D(u)]"
EI

l3

F
18

F
19

l F
20

l

F
19

l F
21

l2 F
22

l2

F
20

l F
22

l2 F
23

l2

. (39)

(3) Clamped}free beam: In this case, l (l)"l@(l)"0 and the dynamic sti!ness matrix is

[D(u)]"
EI

l3

F
17

!F
16

l

!F
16

l F
15

l2
. (40)

(4) Pinned}pinned beam: In this case, l (0)"l(l)"0, and the dynamic sti!ness matrix is

[D(u)]"
EI

l3

F
14

F
13

F
13

F
14

. (41)

Cases (1), (3) and (4) can be constructed from Kolousek's book [6]. Case (2) is new. The
frequency functions are listed in Appendix A.

7. GENERAL FORMULATION

The results presented in the previous sections are also valid for other structural element.
A proof is given here. In order to solve the following system (a), the solutions to three more
systems (b)}(d) are required.

System (a) is the system to be solved for the boundary reaction.
Governing equation

Lu!u2qu"vq, (42)

where L is a linear di!erential operation of sti!ness, q is the inertia matrix, u (x, y, z) is
a vector function to be determined, the order of u is six for a helical beam: three
displacements plus three rotations; v is the static shape function which is a given solution of
system (b) below; q is the vector value of the distributed load at the ends, i.e., the given
distributed load r (x, y, z) is interpolated according to r (x, y, z)"v (x, y, z)q; B is a boundary
di!erential operator; and R is a boundary force operator.
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Boundary conditions

Bu"0. (43)

Reaction force

R"Ru, (44)

which is the ultimate vector to be determined.
System (b) is a given static system with unit boundary conditions.

Governing equation

Lv"0. (45)

Boundary conditions

Bv"I. (46)

Reaction force

R
0
"Rv"D (0). (47)

The last relation is derived from the fact that the boundary force is related to the boundary
displacement by means of the sti!ness matrix, i.e.,

R
0
"Rv"D (0)Bv"D (0)I"D (0).

System (c) is a given dynamic system with unit boundary conditions.
Governing equation

LU!u2qU"0. (48)

Boundary conditions

BU"I. (49)

Reaction force

Ru"RU"D(u). (50)

The last relation is derived from the fact that the boundary force is related to the boundary
displacement by means of the sti!ness matrix, i.e.,

Ru"RU"D(u)BU"D(u)I"D (u).

System (d) is a given natural mode system with clamped boundary conditions. This system is
required only when the "nite element interpolation is not adequate for the distributed load,
i.e., when the modal analysis is needed to study the residual load after the "nite element
interpolation.

Governing equation

Lu
i
!u2qu

i
"0. (51)

Boundary equation

Bu
i
"0. (52)
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Reaction force

R
i
"Ru

i
. (53)

It is to be proved that

R"!q~1M (u, 0)q#
n
+
i/1

Q
i

(u2
i
!u2)

q~1Ru
i

(54)

if the distributed load is expanded according to a "nite element part and a modal part

q (x, y, z)"v (x, y, z)q#+Q
i
u

i
(x, y, z). (55)

The modal part will be discussed later. Assuming that there is no residual modal
component, system (a) is solved in the following manner.

Let the complementary solution be Uc and the particular integral integral be vq, where
c is a vector of integration constants to be determined. Substituting

u2qu"Uc!vq (56)

into equation (42), with the help of equation (48), it can be veri"ed that equation (56) indeed
satis"es equation (42). The boundary operator can be applied to equation (56),

u2qBu"BUc!Bvq"c!q"0 (57)

because of equations (43), (46) and (49). That is, c"q. Substituting into equation (56), gives

u2qu"[U!v]q. (58)

Applying the boundary force operator to equation (58) gives

u2qR"u2qRu"[RU!Rv]q"[D (u)!D(0)]q. (59)

Therefore,

R"u~2q~1[D(u)!D (0)]q"!q~1[M(u, 0)]q. (60)

It only remains to solve the reactions resulting from the residual modal forces, i.e., to solve

Lu
i
!u2qu

i
"Q

i
u

i
, (61)

which gives

u
i
"Q

i
q~1u

i
/(u2

i
!u2). (62)

Therefore, the total reaction is given by

R"!q~1[M(u, 0)]q#
n
+
i/1

Q
i
q~1u

i
/(u2

i
!u2) (63)

for n residual modal forces.

8. RANDOM RESPONSE

Only the "nite element interpolated load for analytical solutions are now considered. The
analysis of the residual modal forces can be found in textbooks [58] and will not be
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discussed further. The present contribution is important as the classical modal analysis does
not always converge to any solution for the support reactions which are necessary for the
application of the principle of superposition in order to analyze a structure with members
having distributed loads.

Let the associated deterministic load r"r(u, x)"r(u, x, y, z) be interpolated by

r"r(u, x)"v(x)q (u), (64)

where v is the static "nite element shape functions satisfying system (b), i.e., the static
equation with unit boundary conditions and q is the vector of nodal values of the
distributed load r. The corresponding interpolated power spectral density matrix is given by

S
rr
(u, x, y)"v (x)S

qq
(u)vT(y), (65)

where S
rr
(u, x, y) is the given fully correlated power spectral density matrix of the

distributed excitation, and S
qq

(u) is the interpolated power spectral density matrix at the
nodes obtained by curve "ts. Equation (65) is obtained by taking the ensemble average of
r(u, x)rT (u, y).

Speci"cally, for curve-"t purposes, S
qq

(u) may take the following form:

S
qq

(u)"+ f
i
(u)Si

qq
. (66)

Equation (65) is used for the subsequent analysis. The governing equation of the response
power spectral density matrix S

uu
(u, x, y) corresponding to system (a) is

(L
x
!u2q) (L1

y
!u2q)S

uu
"S

rr
"v(x)S

qq
(u)vT (y), (67)

where L
x
operates on functions of x and L

y
operates on functions of y, damping is accounted

for by using complex elastic modulus and an overbar denotes complex conjugate.
Corresponding to solution (58), the response power spectral density matrix is

S
uu

(u, x, y)"u~4q~1[U(u, x)!v (x)]S
qq

(u)[U1 (u, y)!v(y)]Tq~1. (68)

Corresponding to solution (58), the reaction power spectral density matrix at the support is

S
RR

(u)"q~1M(u, 0)S
qq

(u)M1 T(u, 0)q~1. (69)

According to the principle of superposition depicted in Figure 1, the reaction power spectral
density matrix at the supports of the structural member becomes the equivalent nodal
excitation power spectral density matrix on the structure. The dynamic sti!ness equation

D(u)d"R (70)

relates the amplitude of nodal response d to the nodal excitation R. The power spectral
density matrix of d is given by

S
dd

(u)"D~1(u)S
RR

(u)D1 ~T(u). (71)

Finally, the response power spectral density matrix of the loaded member is given by the
superposition of equations (68) and (71); that is,

S
uu

(u, x, y)"u~4q~1[U(u, x)!v(x)]S
qq

(u)[U1 (u, y)!v (y)]Tq~1

#D~1(u)q~1M(u, 0)S
qq

(u)M1 T (u, 0)q~1D1 ~T (u),
(72)
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where S
qq

(u) is the given power spectral density matrix of the nodal values of the correlated
distributed force.

If the power spectral density matrix of the distributed load is adequately represented by
equation (66), the dynamic shape functions U(u, x) and the dynamic sti!ness matrix D (u)
are available, and the response power spectral density matrix of a continuously loaded
member is given analytically in equation (72).

9. NUMERICAL EXAMPLES

For axial and torsional vibration of an Euler}Bernoulli beam the governing di!erential
equations are expressed as equations (3) and (4) respectively. Some numerical examples of
the procedure of solution, as outlined in sections 7 and 8 above, are presented for harmonic
excitations and random loading respectively.

9.1. HARMONIC LOADING

For the axial vibration of an Euler}Bernoulli beam with one-dimensional harmonic "nite
element interpolated loading, the four steps presented in section 7 are followed to obtain
a solution for the displacement and boundary reactions of the system. Solution for the
residual modal forces is not considered in this section as it can be found in many textbooks
[58] and can be added to the solutions in this section by means of superposition.

Step 1. The governing equation is

EIuA#u2oAu"!q
u

with u (0)"u (l)"0, (73)

where the linear di!erential operator is L"EIL/Lx2.
Step 2. De"ne a static system with governing equation

EIvA"0 (74)

and unit "nite element boundary conditions

Bv"I, (75)

where B is a boundary di!erential operator. Solving equation (74) and imposing unit "nite
element boundary conditions (75) gives

v"[1!x/l, x/l]"[1!m m], (76)

where m is a dimensionless co-ordinate.
Step 3. De"ne a dynamic system with governing equation

EIUA#u2AU"0 (77)

and unit "nite element boundary conditions

BU"I. (78)

Solving equation (77) and imposing unit "nite element boundary conditions (78), gives

U"[cos tm!cott sin tm, cosect sin tm]. (79)
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Step 4. A solution for the complete system in Step 1 above could be obtained from
component solutions in Steps 2 and 3. Equation (58) gives

!u2oAu"[U!v]q

"[cos tm!cott sintm!(1!m), cosect sintm!m]q.
(80)

which is the displacement solution for the axial vibration of an Euler}Bernoulli beam.

9.2. RANDOM LOADING

For an axially vibrating beam with one-dimensional random "nite element interpolated
loading, the deterministic load can be expressed as

r"r (u, x)"r(u, y)"r(u, x) (81)

and it can be interpolated by

r"r(u, x)"v(x)q (u)"n(0, x)q (u), (82)

where N(0, x)"[1!x/l, x/l] is the "nite element shape function matrix. Also

U (u, x)"U(u, y)"U(u, x)"N (u, x), (83)

where n (u, x)"[cos tm!cott sintm, cosect sin tm] is the shape function at frequency u.
The interpolated power spectral density matrix given in equation (65) can be reduced to

S
rr
(u, x)"n(0, x)S

qq
(u)nT(0, x), (84)

where S
qq

(u) is the given power spectral density matrix of the nodal correlated distributed
force de"ned in equation (66). If damping is neglected in the system, the response power
spectral density matrix is, from equation (68),

S
uu

(u, x)"u~4q~1[n(u, x)!n(0, x)]S
qq

(u)[n(u, x)!n(0, x)]Tq~1, (85)

where U1 (u, y)"U(u, y)"n (u, x) as the complex conjugate of a real matrix equals itself.
The reaction power spectral density matrix at the supports is, from equation (69),

S
RR

(u)"q~1M (u, 0)S
qq

(u)MT(u, 0)q~1

"q~1[D(u)!D (0)]S
qq

(u)[D(u)!D (0)]Tq~1/u~4, (86)

where [M(u
1
, u

2
)]"[D(u

1
)!D(u

2
)]/(u2

2
!u2

1
), as presented in equation (13), is the mixed

mass matrix and [D(u)] is the dynamic sti!ness matrix. For an Euler}Bernoulli beam,

[D (u)]"
EIt

l C
cot t

!cosec t
!cosect

cott D
is solved and presented in equation (12). Therefore, the response power spectral density
matrix of a loaded Euler}Bernoulli beam can be obtained as

S
uu

(u, x)"u~4q~1[n (u, x)!n (0, x)]S
qq

(u)[n (u, x)!n (0, x)]Tq~1

#D~1 (u)q~1[D (u)!D (0)]S
qq

(u)[D(u)!D(0)]Tq~1D~1(u)/u4.
(87)
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10. CONCLUSION

The dynamic sti!ness method has been extended to distributed loads. If the distributed
load can be interpolated by the "nite element shape functions, exact solutions are possible.
It is found that the classical modal analysis fails to obtain support reactions of an
Euler}Bernoulli beam under uniformly distributed load while the present method can
handle the problem easily. Both deterministic and random loads are considered. The
present method analytically solves for the response power spectral density matrix for
heavily damped structures through complex modulus excited by fully correlated loads.
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APPENDIX A: FREQUENCY FUNCTIONS

F
1
"j(sinh j!sin j)/(coshj cos j!1),

F
2
"!j (cosh j sin j!sinh j cos j)/(coshj cos j!1),

F
3
"!j2 (cosh j!cos j)/(cosh j cos j!1),

F
4
"j2sinh j sin j/(cosh j cos j!1),

F
5
"j3(sinh j#sin j)/(coshj cos j!1),

F
6
"!j3 (cosh j sin j#sinh j cos j)/(coshj cos j!1),

F
7
"2jsinh j sin j)/(coshj sin j!sinh j cos j),

F
8
"j2(sinh j#sin j)/(coshj sin j!sinh j cos j),

F
9
"!j2 (cosh j sin j#sinh j cos j)/(coshj sin j!sinh j cos j),

F
10
"!j3 (cosh j#cos j)/(cosh j sin j!sinh j cos j),

F
11
"j3(2cosh j cos j)/(cosh j sin j!sinh j cos j),

F
12
"j3(cosh j cos j#1)/(coshj sin j!sinh j cos j),

F
13
"!j3 (sinh j!sin j)/(2sinh j sin j),

F
14
"!j3 (cosh j sin j!sinh j cos j)/(2sinh j sin j),

F
15
"!j (cosh j sin j!sinh j cos j)/(coshj cos j#1),

F
16
"j2(sinh j sin j)/(cosh j cos j#1),
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F
17
"!j3 (cosh j sin j#sinh j cos j)/(coshj cos j#1),

F
18
"!2j3sin j sinh j)/(cosh j sin j#cos j sinh j),

F
19
"j2(cos j sinh j!cos j sin j)/(cosh j sin j# cos j sinh j),

F
20
"j2(sin j!sinh j)/(coshj sin j#cos j sinh j),

F
21
"2jcos j coshj/(cosh j sin j#cos j sinh j),

F
22
"!j (cos j#cosh j)/(cosh j sin j#cos j sinh j),

F
23
"j(1#cos j cosh j)/(coshj sin j# cos j sinh j).
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