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In this paper, the dynamic stability analysis of shear-deformable plates of arbitrary
polygonal planform is performed within the framework of the Mindlin}Reissner theory. The
plates are considered to be subjected to a parametric excitation by harmonic in-plane forces.
The in#uence of plate shear and rotatory inertia is taken into account, a two-parameter
Pasternak foundation is chosen, and the more accurate theory of Brunelle and Robertson is
included. Considering harmonic in-plane forces yields partial di!erential equations with
time-dependent parameters. Ordinary di!erential equations for the generalized co-ordinates
are derived by expanding the de#ection and the cross-sectional rotations of the plate in series
representations in terms of normal modes and using Galerkin's principle. The normal modes
are governed by Helmholtz-eigenvalue problems in the case of simply supported boundaries.
Parametric instability of #exural- and thickness-shear motions are studied in more detail.
The governing equations enable a number of results to be obtained which reveal the
in#uence of the special shape of the plate domain represented by the Helmholtz eigenvalue,
parameters of the foundation and a tracer for the Brunelle and Robertson theory. The main
merit of the approach is that the particular shape and mechanical properties of the
polygonal plate are represented in these equations in terms of Helmholtz eigenvalues which
allows a general analysis for plates of arbitrary polygonal planform to be performed. A vast
amount of literature exists on Helmholtz eigenvalues in the context of natural vibrations of
membranes, which may be utilized. The boundaries of the principal instability region are
calculated and the stability charts of these two motions are represented graphically. These
results are "nally derived in a non-dimensional form and illustrated by means of numerical
examples.

( 2001 Academic Press
1. INTRODUCTION

Dynamic stability of continuous structures subjected to time-dependent in-plane loads is
one of the most interesting problems in the "eld of structural vibrations. When investigating
plates, the motion is reduced to the Mathieu equation which yields the stability charts.
Instability here is in the sense that the amplitude of the response increases without limit.
The problem was extensively investigated by Bolotin [1] and further results can be found,
for example, in the book by Evan-Iwanowski [2].

It has been shown by Irschik [3] that a simply supported polygonal Mindlin plate has
three types of eigenmotions with corresponding spectra of eigenfrequencies and buckling
eigenvalues, which are related to Dirichlet's and Neumann's Helmholtz-type eigenvalue
problems. These eigenvalue problems have a mechanical interpretation as natural
vibrations of prestressed membranes with "xed or vertically sliding edges respectively. No
2-460X/01/180397#13 $35.00/0 ( 2001 Academic Press
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previous attempt has been made to determine the importance of the principal instability regions
associated with these modes and the in#uence of the corresponding Helmholtz eigenvalue.

The present study thus covers an existing gap in the understanding of the parametric
instability of continuous systems with respect to the above class of simply supported
arbitrary polygonal plates. The analysis is based on Galerkin's principle and the governing
equations are obtained by satisfying the orthogonality relations of the natural modes. These
equations are used to analyze the stability behaviour of the above plates.

The paper is organized as follows. The governing equations for #exural vibrations of
moderately thick plates, considering transverse inertia, rotatory inertia, shear and
neglecting in-plane inertia, are derived in section 2 from Mindlin's theory, which is also
referred to as the Reissner}Mindlin theory because of Reissner's celebrated preliminary
work. These are di!erential equations of sixth order in terms of the plate de#ection and the
cross-sectional rotations. The boundary conditions for straight and simply supported
Mindlin plates of polygonal shape are obtained. Section 3 deals with the eigenvalue analysis
of a simply supported polygonal plate. The plate is shown to have three decoupled types of
eigenmotion, each of them being governed by an uncoupled boundary-value problem of the
Helmholtz type. These uncoupled eigenmotions govern #exural, thickness-shear and
thickness-twist motions of the plate. Dynamic stability of a simply supported polygonal
plate subjected to a harmonic in-plane force is analyzed in section 4. Expanding in terms of
normal modes and applying the principle of virtual work yields three coupled di!erential
equations of Mathieu type for generalized co-ordinates. The main merit of the approach
becomes evident as one observes that the particular shape and mechanical properties of the
polygonal plate are represented in these equations in terms of Helmholtz eigenvalues. This
allows one to perform a general analysis for polygonal plates of arbitrary shape. The
remainder of section 4 is devoted to deriving a closed-form expression for the boundaries of
the principal instability region. Some typical instability regions are displayed in section 5.

2. BOUNDARY-VALUE PROBLEM FOR VIBRATION OF MINDLIN'S
POLYGONAL PLATES

When describing the dynamic problems of polygonal plates, Mindlin's plate theory [4] is
signi"cant. Inserting Mindlin's kinematic assumption and the constitutive equations into
the equations of motion for moderately thick plates, considering the e!ects of transverse
inertia, rotatory inertia and shear, and neglecting in-plane inertia, yields a system of three
di!erential equations of sixth order in terms of the plate de#ection w and the cross-sectional
rotations t

x
and t

y
, [4, 5]. The midplane of the plate is assumed to lie in the x}y plane, the

z-axis points downwards (Figure 1).
Taking into account a two-parameter Pasternak foundation [6], Mindlin's extended

equations read as
K
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Figure 1. Plate with acting in-plane forces.
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where the two-dimensional Laplace operator D and the operator / are de"ned as follows:
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In equation (1), the in#uence of shear is characterized by s"1/i2Gh with the shear factor
i2. The coe$cient of rotatory inertia is denoted by r"oh3/12 and K"Eh3/12(1!l2)
is the bending sti!ness. A possible lateral loading q is considered in addition, which
in the present case is attributed to the reaction forces of the Pasternak foundation,
q"!dw#eDw. Here d and e are Pasternak's foundation parameters [6]. The terms with
the tracer c in equations (1(a) and (b)), known as the &&curvature terms'', are due to Brunelle
and Robertson [7]. These terms re#ect the in#uence of the in-plane forces according to the
Tre!tz theory of elastic bodies under initial stress. With c"1 the Brunelle}Robertson
theory is a generalization of the Herrmann}Armenakas theory [8], in with c"0. In the
following, in-plane forces of the hydrostatic type, n

x
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y
"n"n

0
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t
cos(pt), n
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considered (see Figure 1).
The boundary conditions for straight and simply supported shear-deformable plates of

polygonal shape are cast in the form
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Here n and s denote, respectively, the normal and tangential unit vectors of the local
co-ordinate system on the border C, and m

n
is the bending moment.

3. EIGENVALUE ANALYSIS

The above problem for simply supported polygonal plates has three decoupled types of
eigenmotion, all of them are governed by uncoupled boundary value problems of the
Helmholtz type. In the following, the mean in-plane force n

0
in the eigenvalue analysis, for

details of the derivation are included (see Irschik [3]).

3.1. FLEXURAL MOTION

The #exural eigenfunctions wl1 with the corresponding eigenfrequencies ul1 are
governed by the following Helmholtz-eigenvalue problem with Dirichlet's boundary
conditions:

Dwl1#al1wl1"0, C : wl1"0, (4)

where al1 are the Helmholtz eigenvalues (l"1, 2, 3,2,R). The cross-sectional rotations of
the #exural mode are related to ul1 and al1 by

t
xl1"el1

Lwl1
Lx

, t
yl1"el1

Lwl1
Lx

,

where

el1"!CA1#
n
0
#e

i2GhB!
(ohu2l1!d)

i2Gh

1

al1D . (5)

The natural frequencies of the #exural motion of Mindlin}Reissner plates in terms of al1
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where b1 l and c6 l are given by
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with the characteristic frequency X"J1/sr. The following three kinematic components
determine the natural frequencies ul1 of the #exural motion:

ul1 : wl1 , t
xl1"el1

Lwl1
Lx
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. (8)
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3.2. THICKNESS-SHEAR MOTION

The eigenfunctions wl2 of the thickness-shear mode with the corresponding frequencies
ul2 are also governed by a Helmholtz-eigenvalue problem with Dirichlet's boundary
conditions:

Dwl2#al2wl2"0, C : wl2"0, (9)

where al2 are the Helmholtz eigenvalues (l"1, 2, 3,2,R). The cross-sectional rotations of
the thickness-shear mode are related to ul2 and al2 by
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The natural frequencies of the thickness-shear motion of Mindlin}Reissner plates in
terms of al2 are
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where b1 l and c6 l are given by equations (7). The natural frequencies ul2 of the
thickness-shear motion are associated with the following components

ul2 : wl2 , t
xl2"el2

Lwl2
Lx

, t
yl2"el2

Lwl2
Ly

. (12)

The eigenvalue problems, equations (4) and (9) are identical. So the Helmholtz
eigenvalues and the eigenfunctions of these two modes are equal. These two modes di!er
only in the natural frequencies and the factors of the cross-sectional rotations (cf. equations
(6) and (11)),

al1"al2 , wl1"wl2 , ul1Oul2 , el1Oel2 . (13)

Note that, due to their importance with respect to membrane vibrations, a vast amount of
literature exists on Helmholtz eigenvalues in polygonal domains (e.g., Leissa [9]).

3.3. THICKNESS-TWIST MOTION

The transverse displacement of the thickness-twist mode vanishes, wl3"0,
l"1, 2, 3,2,R. The cross-sectional rotations of this mode are given by the following
expressions:

t
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Now there is an eigenvalue problem with Neumann's boundary conditions for Hl, which
can be treated separately from wli ,

DHl#al3Hl"0, C :
LHl
Ln

"0. (15)
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The corresponding eigenvalues are al3 (l"1, 2, 3,2,R). The natural frequencies of the
thickness-twist mode follow from
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Thus, the eigenfrequencies of the thickness-twist motion are determined by the following
three kinematic components:
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4. SOLUTION CONCEPT FOR DYNAMIC STABILITY ANALYSIS

When investigating the dynamic stability of a polygonal plate with simply supported
boundary conditions and neglecting the e!ect of in-plane inertia, the parametric excitation
is modelled by time-harmonic in-plane forces of the form n (x, y, t)"n

0
#P

t
cos(pt) (see

reference [1] for principles of the dynamic stability analysis). The following application to
Mindlin plates has been the content of the doctoral thesis of the "rst author [10]. Here n

0
is

the mean normal force and spacewise constant, P
t

is the amplitude of the parametric
excitation and also space-wise constant, and p is the excitation frequency.

4.1. EXPANSION INTO NORMAL MODES

As the problem is linear, the cross-sectional rotations t*
x
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de#ection w*(x, y, t) can be put in the form
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where el1 , el2 and al3 are given by equations (5), (10) and (16). The Qli's are the generalized
co-ordinates of the "rst, second and third eigenfunctions respectively, and wl1(x, y),
wl2(x, y) and Hl(x, y) are the normalized eigenmode functions of a polygonal plate.

Inserting expressions (18) into the equations of motion (1) gives residual external
moments and forces, which are marked by a superscript *:
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The notation in equation (19) is as follows:
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4.2. APPLICATION TO THE PRINCIPLE OF VIRTUAL WORK

Galerkin's principle applied to equations (19) requires that these residual external forces
and moments form a self-equilibrating set. The application of the principle of virtual work
yields
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The expressions (18), being a linear combination of the eigenfunctions, satisfy all the
boundary conditions (3). For this reason, no residual forces and moments at the boundary
need to be considered. Inserting the virual displacements and rotations
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into Galerkin's principle, integrating by part, using the Green and the Gauss formulae,
together with the orthogonal relations of the natural modes leads to the following equations
(see Baldinger [10] for details):
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Inserting notation (20) and taking into account that a
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, the following three

equations for the generalized co-ordinates are reached:
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(see Baldinger and Irschik [11] for the initial description).
Equations (24) indicate that the particular shape and mechanical properties of the plate

are re#ected in the Helmholtz-eigenvalues a
ki

and the eigenfrequencies u
ki

of the plate. The
latter, however, follow from a

ki
via equations (6) and (11). Note also that the generalized

co-ordinate Q
k3

becomes independent of the parametric excitation in the case of missing
curvature terms (c"0).

As shown in Section 3, the potential H represents the thickness-twist motion of the plate.
In the present case, this eigenmotion is characterized by the cross-sectional rotations, but
there is no de#ection of the plate. Therefore, the thickness-twist mode is not studied in the
following derivation.

4.3. EQUATIONS GOVERNING THE PARAMETRIC INSTABILITY

Rewriting the "rst two equations (24) results in the following set of ordinary second order
linear di!erential equations:
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Equations (25) represent a set of second order linear homogeneous equations with
periodic coe$cients, referred to as Mathieu di!erential equations and describe the general
case as they contain the tracer c (see equations (26)).

The notation of equation (25) is as follows:
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The traces e
ki

are given by equations (5) and (10).

4.4. PRINCIPLE PARAMETRIC RESONANCE

Con"ning attention to the investigation of the principle parametric resonance, the
boundaries of the principal instability region are obtained by means of the following
substitution (see reference [1]):
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where a
1
, a

2
, b
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and b
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are unknown constants. Substituting equation (27) into equation (25),

carrying out the trigonometric transformations and neglecting terms containing higher
harmonics, gives the following set of equations for the unknown coe$cients a
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It is obvious that equation (28) will be identically satis"ed for a
1
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1
and b

2
"0. This

solution corresponds to the case in which traverse vibrations of the plate are absent.
Non-zero solutions can be found if equation (28) is considered as a system of homogeneous
linear equations with respect to a
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Expanding the determinants and solving the resulting equations for excitation frequency
p two quadratic equations are found:
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Solving these equation for frequency p as a function of the parametric excitation P
t
gives the

boundaries of the principal instability regions.

4.5. NORMALIZATION OF THE RESULTS OBTAINED

The present analysis has, until now, derived general expressions for the boundaries of the
principal instability regions for the #exural and the thickness-shear mode. In order to be
able to evaluate the relative importance of the principal instability regions associated with
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these two modes, it is necessary to express these regions in terms of some reference
parameters coinciding for all modes of vibrations.

Let the following scaling

a8
ki
"a2a

ki
, hI "

h

a
, dI "

da

G
, eJ"

e

Ga
, nJ

0
"

n
0

Ga
, PI

t
"

P
t

Ga
, (31)

be introduced where a denotes a characteristic length of the considered plate. Now, the
boundaries of principal instability regions may be determined and plotted in the parameter
space (pJ , PI

t
) for various Helmholtz-eigenvalues a8

ki
. When considering special polygons,

such as rectangular or triangular plates, the Helmholtz-eigenvalues a
ki

of equation (24) may
be obtained by powerful analytical or numerical methods. A vast amount of literature exists
on Helmholtz eigenvalues in the context of natural vibrations of membranes, which may be
utilized.

5. NUMERICAL ILLUSTRATIONS AND CONCLUSIONS

The numerical results are intended to display the instability regions. Figure 2 depicts the
boundaries of the dynamic instability region for various Helmholtz-eigenvalues a8

ki
. The

inner (left) and the outer (right) domain pertain to stability and instability respectively.
In order to achieve this goal an arbitrary polygonal plate is taken with the thickness ratio

hI "0)01 and the non-dimensional foundation parameters dI "0)2, eJ"0)1 The Poisson's
ratio is chosen to be l"0)312 and Brunelle and Robertson's curvature term is c"1.
Figure 2. Boundaries of dynamic instability for the principal zones. Subscript 1 pertains to the #exural motion
and subscript 2 to the thickness-shear motion: a8 ki"2000 (==); aJ ki"4000 ( } } } ); a8 ki"6000 ( ) ) ) )).



Figure 3. Zoom of the boundaries of dynamic instability for the principle zones. Subscript 1 pertains to the
#exural motion and subscript 2 to the thickness-shear motion: a8 ki"2000 (==); aJ ki"4000 ( } } } ); a8 ki"6000 ( ) ) ) )).
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Instability regions for c"0 look quite similar; however, the overlapping of the instability
regions occurs at much higher compressive forces, (see Baldinger [10] for details). The shear
factor was i2"5

6
and the non-dimensionalized mean normal force was nJ

0
"0. High values

for a8
ki

were chosen in order to make the e!ects more apparent.
The instability regions in Figure 2 appear to be shrinking with decreases in parameter a8

ki
.

These regions are also shifted for lower parameters a8
ki

to the smaller non-dimensional
excitation frequency pJ .

The instability regions corresponding to the thickness-shear motion (subscript 2) result in
a shift towards higher excitation frequencies. Comparing equations (6) and (11) shows that
u

k2
'u

k1
.

The range of comparatively low excitation levels is zoomed out in Figure 3. Here the
same e!ects as mentioned above can be seen. The instability regions of these two modes are
shown to broaden with the increase in the Helmholtz-eigenvalue a8

ki
.

Finally, Figure 4 is a diagram with the non-dimensional ordinate qJ "pJ /2uJ
k1

. All
boundaries of the #exural motion expand from qJ "1, whereas the thickness-shear modes
expand from qJ "uJ

k2
/uJ

k1
.

In considering a plate strip, one arrives at the results for a Timoshenko beam studied by
Hagedorn and Koval [12]. For the procedure of this reduction, see Baldinger [10].

Summarizing, the dynamic stability analysis of moderately thick shear-deformable plates
of arbitrary polygonal planform within the framework of the concept of Mindlin's theory
was proposed. The plates were considered to be subjected to parametric excitation by
harmonic in-plane forces. The in#uence of plate shear and rotatory inertia was taken into
account, a two-parameter Pasternak foundation was chosen and the more accurate theory
of Brunelle and Robertson was included. Consideration of harmonic in-plane forces lead to



Figure 4. Boundaries of dynamic instability in the plane of non-dimensional parameters qJ and P3
t
: a8 ki"2000

(==); aJ ki"4000 ( }} } ); a8 ki"6000 ( ) ) ) )).
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partial di!erential equations with time-dependent parameters which were reduced to
ordinary di!erential equations for the generalized co-ordinates by expanding the de#ection
and the cross-sectional rotations of the plate in series in terms of normal modes and using
Galerkin's principle. Parametric instability of #exural- and thickness-shear motions was
studied in more detail. The governing equations allow a number of results to be obtained
exposing in#uence of the special shape of the plate domain represented by the Helmholtz
eigenvalue, parameters of the foundation and the tracer for the Brunelle and Robertson
theory. The main merit of the approach is that the particular shape and mechanical
properties of the polygonal plate are represented in these equations in terms of Helmholtz
eigenvalues readily available in the vast literature on membrane vibrations. This enables
a general analysis of plates of arbitrary polygonal planform to be performed. The
boundaries of the principal instability region were calculated and the stability charts of
these two motions were graphically represented. These results are "nally derived in
a non-dimensional form and illustrated by means of numerical examples. An extension with
respect to instability regions of higher order is presently under investigation, and "rst results
have been presented by Baldinger and Irschik [13].
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