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The problems of the vibration of rotating cylindrical shells are solved by using nine-node
super-parametric finite element with shear and axial deformation and rotatory inertial. The
non-linear plate-shell theory for large deflection is used to handle the cylindrical shell before
it reaches equilibrium state by centrifugal force. The effects of Coriolis acceleration,
centrifugal force, initial tension and geometric non-linearity due to large deformation are
considered in this model. Eight categories of mode of a rotating thick cylindrical shell are
presented. The effects of rotation on different three-dimensional modes of cylindrical shell
are discussed in detail.
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1. INTRODUCTION

T‘here are many engineering applications resulting from studies involving the vibration of
shells. This has been extended to studies on the vibration of rotating cylindrical shell as
there are also engineering application of a rotating shell in industry, for example, in the
drive shafts of gas turbines, motors and rotor system.

The earliest recorded work on rotating cylindrical shells was by Bryan [1], in which the
free vibration of a rotating cylindrical shell was considered and the phenomenon of
travelling modes was also discovered. Early works on rotating shells included the study of
the Coriolis effect on the free vibration by Taranto and Lesson [2] and Srinivasan and
Lauterbach [3] for infinite-length rotating shells and by Zohar and Aboudi [4] for
finite-length rotating shells. Other works included the study of long rotating cylinders
subjected to pre-stress by Padovan [5], the study of vibrations and buckling of rotating
anisotropic shells by Padovan [6] and the study of multi-layered rotating cylinders by
Padovan [7]. Saito and Endo [8] considered the effect of initial tensions. Endo et al., [9]
studied the flexural vibration of a thin rotating cylindrical ring especially from the
experimental point of view, and compared the results of experiment with that of theory.
Recently, the free vibrations of rotating composite shells have been studied by Rand and
Stavsky [10]. Extensive works on the vibration of cylindrical shell, both stationary and
rotating, have been carried out by Lam, etc. Analysis of rotating laminated cylindrical shells
using different thin shell theories have been carried out by Lam and Loy [11]. Studies have
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also been carried out on rotating laminated composite [12], sandwich-type cylindrical
shells [13] and orthotropic shell [14], Furthermore, they have extended the study of
rotating cylindrical shell to that of rotating conical shell [14-17]. A new numerical
approximate method — GDQ method has been presented to study the effects of boundary
conditions and initial pressure on the frequency characteristics [17, 18]. The resonance
phenomena of rotating cylindrical shells subjected to a harmonic moving load or periodic
axial loads have been studied by Huang and Hsu [19] and Ng and Lam [20].

It is difficult to solve the dynamic equation in general form by analytical method. For
cylindrical shells and circular plates the series-form solutions can be found, but these are not
convergent in general. For a cylindrical shell the analytical solutions are valid only for some
particular boundary conditions. Numerical solutions can be found by finite element
methods in the general case. These include the methods of Padovan [6], Chen et al. [21]
and Sivadas [22, 23].

Most of the researchers used thin theory analyze rotating shells. Studies on rotating thick
cylindrical shells are very limited. Sivadas and Ganesan [22] studied the vibration of
rotating thick cylinders by an improved shell theory with shear deformation and rotatory
inertia. But in their paper, no attempt was made to study the effect of rotation on
three-dimensional modes of rotating cylinders.

In the past, most of the investigations have also provided information about mode shapes
in order to obtain a complete understanding of the vibrations of thick cylinders. However,
the mode shapes were generally described in the circumferential and longitudinal directions
separately. The mode shape description is based on two parameters, n and m, where n is half
the number of circumferential nodes, and m is the number of longitudinal nodes [24]. Such
a method of mode description may be satisfactory for the vibrational modes of thin
cylinders, but it is not complete enough to accurately describe the modes of thick cylinders.
It can be seen from the same reference that several combinations of the same n and m existed
in the frequency range investigated. It is clearly impossible for several frequencies to have
exactly the same mode shape. Recently, Wang and Williams [25] proposed a different mode
classification of finite-length thick cylinders, based on their three-dimensional mode shapes.
Using this classification together with the descriptors n and m, all of the vibrational modes
of finite-length thick cylinders can be identified uniquely. Hence, a better understanding of
the vibrations of stationary thick cylinders can be obtained. However, extensive search of
literature has thus far shown that no work on the three-dimensional mode shapes of
a rotating thick cylinder has been carried out; hence, no studies on the effect of rotation on
its different modes have been performed.

In order to overcome this drawback, this paper will study for the first time the effect of
rotation on different three-dimensional modes of a thick cylndrical shell with F-F boundary
condition using moderately thick shell theory. A nine-node superparametric finite element
is used. This paper has deduced the finite element form of rotating cylindrical shells. The
non-linear plate-shell theory for large deflection is used to handle the cylindrical shell before
it reaches the equilibrium state by centrifugal force, and then a linear approximation is
employed. Not only the effect of Coriolis acceleration, centrifugal force, and initial tension,
but also the geometric non-linearity due to large deformation is considered in this model.
To examine the accuracy of the present analysis, comparisons are made with the results in
the open literature for non-rotating and rotating cylindrical shells.

2. THEORETICAL FORMULATION

The nine-node curvilinear finite element method is used in this paper. The following
assumptions are made:
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o “Normals” to the middle surface remain straight after deformation.
e The stress component normal to the shell mid-surface is constrained to be zero.

Each node point has five degrees of freedom: u, v and w are three displacement components;
a and f are two rotational angles in ¥, and V, directions. The detailed forms of element
description and derivation of the element stiffness matrix are available in the literature [26].
Only a brief presentation of finite element formulation for free vibration analysis is
presented in the following.

The co-ordinates of a point within the element are obtained by applying the element
shape functions to the nodal co-ordinates,

x n Xk n

y :ZNk Vi +2Nk
k=1

z

Zy midsurface

gV3k’ (1)

where n is the number of nodes per element: N, = N, (&, ) (k = 1, n) are the element shape
functions corresponding to the surface ¢ = constant; i is the shell thickness at node k; &, 1, ¢
are the curvilinear co-ordinates of the point.

The element displacements can be expressed by
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Equation (2) can be simply written as
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N is the shape function matrix of the nine-node superparametric shell element
N =[N;--Nj---Ny], where
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According to the perturbation theory, we assume that the cylindrical shell’s vibration is
small around the equilibrium position. The non-linear plate-shell theory [26] for large
deflection is used to handle the cylindrical shell before it reaches the equilibrium state by

centrifugal forces. The strain-displacement relation in local co-ordinate x, y, z is
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The differential representation of equation (7) is
dé, =3dSR + 3SdR = STda = B, da. (12)
The matrix of strain-displacement relationship is taken in the form
B =B+ B,. (13)

The elements of the matrix B are not constant for non-linear shells with large deformation.
From equations (12), (13) and (6), we obtain

B, = ST. (14)

The tangential stiffness matrix in geometric non-linear problem has the expression

Kd&z[Ko+Ka]dd=dP=J BTdédV+f dBTadV, (15)
14 14
because
¢ = Dé = DBa. (16)
We have
K, =f B'DBdY, (17)
14
K,da = J dBT6¢dV = j dBfédv. (18)
14 14

Substituting equation (14) into equation (18) gives
Kaddzf TTdSTGav. (19)
14

From equations (8) and (9), we have
dSTé = [¢] T da, (20)
where

Oxxl Tyl Tyl
o=|1.] ou,l 1.1 | (21)

Tod Tl 051

Substituting equation (20) into equation (19), we obtain

K, = J T[] T dV. (22)
14
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We assume that the cylindrical shell’s vibration is small around the new equilibrium
position. The shell is assumed to be rotating at a constant angular velocity Q about its
center axis which gets across a reference point O. A location vector can be defined as 7o from
point Q of the shell to the fixed reference point O, the corresponding elasticity deformation
vector is d(ro, t), the velocity vector of deformation is &, the total displacement of the

point Q is
F=io+0
and the corresponding velocity is
T=0Qx7F+39,

where

Fox u Q.

Fo = Toy (> 5_: v, ‘é: QY’
Foz w Qz

Q,,Q, and Q, are the components Q in global co-ordinate x, y and x respectively.

The kinetic energy of this point is
1 — - . | Ears
AT = EAm(er)x(er) + Am(2 x 7)o +§Am55.
For the whole element the kinetic energy can be written as follows:

1 I - — — — - —
T = 2J (676 + 267 Q5 + 57QTQ5 + 27 Q"5 + 274 Q7 Q5) dm,
14

where
0 -Q, Q
Q = Qz 0 - Qx
-Q, Q, 0

By substituting equation (3) into equation (27), we obtain

1., . 1. 1 . .
T = 3 a"Ma + 5dGa + EczTKCd +a'l +a"4 + a'Ja,

where

szNTNdm, G=2J
v

|4

N'QNdm, K, = f NTQTQN dm.
14

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

K, is the matrix due to the rotation of particular element and G is the matrix due to Coriolis
acceleration. The expressions of I, A and J will not be given in this paper because they do

not appear in the motion equation.
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The element potential energy is

V=4%1a"Ka (31)

(ST

From equations (29) and (31), using Hamilton’s principle, the perturbation motion equation
of shells about their equilibrium position is obtained

Md+ Ga + (K — K,.)a =0, (32)

where K = [K, + K,] can be obtained from equations (17) and (22).

3. RESULTS AND DISCUSSION

The shell discussed in this paper is a thick cylindrical shell rotating about its center
axis. The boundary conditions are free at both ends (Figure 1). The cylindrical shell has
the following geometric properties and material properties, which are the same as that
used in reference [25]. The only difference is that this is a rotating cylindrical
shell now: [=0254m, r=009525m,t=00381m, E=207x10N/m? v =028,
p =786 x 103 kg/m>.

3.1. COMPARISON WITH WANG’S RESULTS [25] FOR A NON-ROTATING CYLINDRICAL SHELL

In order to verify the program, we have calculated the stationary cylinder to compare
with the results of Wang [25]. The comparison results are presented in Table 1.

From Table 1, it is observed that a good agreement between the present calculated results
and the results of literature [25] has been obtained.

3.2. THREE-DIMENSIONAL MODE SHAPES AND FREQUENCIES OF ROTATING
CYLINDRICAL SHELL

The modes of stationary thick cylinders were classified into eight categories by Wang and
Williams [25]. However, no work on the three-dimensional mode shapes of a thick rotating
cylinder has been carried out.

Figure 1. Geometry of a thick rotating cylindrical shell.
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TaBLE 1

The frequencies and vibrational modes of thick cylinder

Frequency (Hz) Mode description
Mode f;)resent f;'eference [25] EI'I"OI'%T n m Mode type
1 2573 2570 012 2 0 Pure radial
2 2950 2962 — 041 2 1 Radial shearing
3 6239 6286 — 075 1 1 Axial bending
4 6320 6291 — 097 0 1 Torsion
5 7134 7104 0-42 1 2 Global bending
6 8096 8149 —0-65 0 0 Extensional
7 11266 11536 —034 0 0 Longitudinal
8 12653 12616 0-29 1 1 Circumferential

f error = 100 X (fpre _freference (25])/freference [25]-

A simple equation for the rotating circular ring has been derived by Endo et al. [9] with
an assumption of inextensional deformation. This equation is reproduced here as

1) 2n Q _ < n?m* —1)72 Q )1/2

* =
@ n? + 12 g

(33)

o n2 + 1(1)0 o

where o is the frequency of the shell rotating at a speed @, w, is the frequency of the shell
when Q = 0, and n is the circumferential wave number, Equation (33) is quoted by many
authors, and its results are in good agreement with the experimental results when the
rotating speed is not too high. Another assumption applied in deriving equation (33) is that
the vibrational displacement itself is much smaller than the thickness of the ring but the
product terms of the initial tension due to rotation and vibrational strains should not be
neglected. This assumption is valid for shells rotating at low speed.

Table 2 shows the results of shell rotating with speed @ = 50 Hz. The frequencies
obtained by equation (33) are also shown in the table. It is observed that the percentage
errors between the present results and the results from equation (33) are small.

In Table 2, n is half the number of circumferential nodes, and m is the number of
longitudinal nodes. The u,, u; and u, are average displacements that correspond to the
radial, tangential and longitudinal directions of node, respectively. They are defined as

follows:
1y, LE LY
u;=100x =S ui /(Y =Y ui ), j=rtz 34)
ki:1 Jj ki:l

where k is the whole number of finite element nodes of cylindrical shell. uj; is the
displacement of node i corresponding to the j direction. It can be seen from Table 2 that
several combinations of the same n and m exist in the frequency range such as modes 11, 12,
14 and 15. It is clearly impossible for stationary shell. But for the cylindrical shell rotating
about its center axis, two different frequencies named, respectively, the backward wave and
the forward wave frequencies have the same n and m due to rotation. It is difficult to identify
which is a pair among modes 11, 12, 14, 15. Using the method presented by Wang and
Williams [ 257, we calculated the displacement ratio of each mode. Then modes 11, 12, 14, 15
can be classified into two pairs, mode 11 and 12, modes 14 and 15. In n and m columns of
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TABLE 2

The frequencies and vibrational modes of thick cylinder rotating around the center axis with
speed 2 = 50 Hz

Frequency (Hz) Mode description Displacement ratio
Mode fpresent f;quation [25] EI'I'OI'%T n m Mode type Uy Up D Uz (present)
1 2477 2488 — 044 2 0 Pure radial 52:26:0
2 2580 2568 047 2 0 Pure radial 50:25:0
3 2866 2872 —021 2 1 Radial shearing 35:19:13
4 2958 2951 0-24 2 1 Radial shearing 34:18:12
5 6202 6177 0-40 1 1(0) Axial bending 24:12:27
6 6253 6277 —038 1 1(0) Axial bending 24:12:26
7 6315 6316 0-00 0 1 Torsion 0:36:0
8 6991 6983 011 1 2 Global bending 12:6:4
9 7075 7083 —0-11 1 2 Global bending 12:6:4
10 8759 8759 0-00 0 2 Extensional 13:0:1
11 9502 9473 0-31 2 3(0) Axial bending 12:6:19
12 9526 9553 —028 2 3(0) Axial bending 12:6:19
13 11,216 11,216 0-00 0 (0) 2(0)  Longitudinal 16:0:30
14 11,726 11,702 0-21 2 3 Radial shearing 9:2:4
15 11,759 11,782 0-20 2 3 Radial shearing 9:2:4
16 12,474 12,475 0-00 1 1 Circumferential 6:8:3
17 12,578 12,575 0-00 1 1 Circumferential 6:8:3

f error = 100 x (fprcscnl _fcqualion (33))/];:quali0n (33)-

Table 2, the number in the parenthesis is the description method of three-dimensional mode
quoted from the literature [25], where it has different meanings for different modes.

Figure 2 shows eight categories for the mode of a rotating cylindrical shell. It is concluded
that the method presented by Wang and Williams [25] is suitable to identify the
three-dimensional modes of rotating thick cylindrical shells. In addition, several points can
be obtained:

u, of pure radial mode approaches zero.

u, and u, of torsion mode approach zero.

u, of extensional and longitudinal modes approaches zero.

u, of axial bending and longitudinal modes is the greatest among u, u, u, .
u, of pure radial and radial shearing modes is the greatest among u, u, u..
u, of torsion and circumferential modes is the greatest among u, u, u,.

AN o e

3.3. THE EFFECT OF ROTATIONAL SPEED ON FREQUENCY CHARACTERISTICS
OF THE ROTATING CYLINDRICAL SHELL FOR DIFFERENT MODES

In this section, studies focus on the variations of frequency at various three-dimensional
modes of free vibration and rotating speed of the F-F thick cylindrical shell. The present
results are shown in Figures 3-9. The ordinate and the abscissa, respectively, show the
normalized natural frequency, w*(= w/wy) and normalized rotating speed, Q*(= Q/w,).
The effects of rotation on frequencies for pure radial and radial shearing modes are shown
in Figures 3-5. The effects of rotation on frequencies for circumferential, global bending and
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Figure 2. Eight categories for the mode of a rotating cylindrical shell with rotating speed Q = 50 Hz. (a) pure
radial mode m =0,n=3; (b) radial shearing mode m =2,n=3; (c) extensional mode m =3,n=0;
(d) circumferential mode m = 1, n = 1; (e) axial bending mode m = 0, n = 2; (f) global bending mode m = 3,n = 1;
(g) torsion mode m = 1, n = 0; (h) longitudinal mode m = 0,n = 0.

axial bending modes are shown in Figures 6, 7 and 8, respectively. The effects of rotation of
frequencies for extensional, longitudinal and torsion modes are shown in Figure 9. Curves
of five kinds of modes (pure radial, radial shearing, circumferential, global bending and
axial bending modes) are presented in Figures 10 and 11 in order to compare on with the
others.

Figure 3 illustrates the influence of the rotating speed on frequency characteristics of
a rotating shell for pure radial (m = 0, n = 2) and radial shearing modes (m = 1, n = 2) and
(m =2,n =2). We can see from equation (33) that the result of w* is not affected by the
number of longitudinal nodes m. This is because Equation (33) was derived on the
assumption of a rotating ring. From Figure 3, it can be seen that there is very little difference
between the natural frequencies of three modes at low rotational speed. However, this
difference increases when the rotational speed increases. The curves of frequency for pure
radial mode (m = 0, n = 2) lie out of other modes’ curves, curves of radial shearing mode
(m=1,n=2) lie between the pure radial (m =0,n=2) and the radial shearing
(m =2, n = 2) modes and curves of radial shearing mode (m = 2, n = 2) lie innermost.
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Figure 2. Continued

Figure 4 illustrates the influence of the rotating speed on frequency characteristics of
a rotating shell for pure radial (m = 0, n = 3) and radial shearing modes (m = 1, n = 3) and
(m = 2,n = 3). Figure 5 illustrates the results for pure radial (m = 0,n = 4) and radial
shearing (m = 1, n = 4) modes. The conclusion of Figure 3 can also be derived from Figures
4 and 5. From Figures 3-5, the trend of curves in good agreement with the result obtained
earlier in references [9, 22, 23] its shows, and it is observed that the deviation of curves of
different modes with large circumferential wave number n is less than that with small
circumferential wave number n. So it is concluded that the normalized frequency of the
rotating thick cylindrical shell for pure radial and radial shearing modes with large
circumferential wave number n can be expressed as the normalized rotational speed.
Another conclusion from Figures 3-5 is that the curves corresponding to larger m lie out of
the curves of smaller m for the same n.

Figure 6 shows the relation between the natural frequency and the rotational speed for
circumferential mode (m = 1, n = 1) and (m = 0, n = 1). The curve for this kind of mode has
not been investigated before, because it is difficult to identify the circumferential mode by
the usual method. The natural frequencies associated with the backward waves are found to
increase monotonically with the rotational speed, and for forward waves, the natural
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Figure 3. Natural frequency w*(Hz) as a function of the rotating angular velocity Q*(Hz) at different modes
(m =0, n = 2) for pure radial mode; m = 1,n = 2 and m = 2, n = 2 for radial shearing mode) for an F-F rotating
thick cylindrical shell: —e—, m = 0, n = 2, pure radial mode; —0—, m = 1, n = 2, radial shearing mode; —m—,
m =2, n =2, radial shearing mode.

frequencies decrease gradually with the rotational speed. The curves of frequency for mode
(m =0,n = 1) lie out of that of mode (m = 1,n = 1).

Figure 7 shows the results of global bending mode (m =2, n = 1)and (m = 3, n = 1). It is
observed that the curves of the backward and forward waves are basically linear when Q* is
not too high. The same result can be obtained from equation (33). But when Q* > 0-3, the
curves of backward wave are non-linear, and it is observed that m has no influence on the
normalized natural frequency from equation (33), while there is an obvious effect of m on the
forward and backward waves along with the increase or rotating speed in the present result.
This is because the inextensional assumption adopted by equation (33) is not suitable for
a thick cylinder. From Figure 7, it can be found that the curves of frequency for mode
(m=2,n=1) lie out of that for mode (m = 3,n = 1).

The results of axial bending mode (n =0,n=1), m=0,n =2) and (m = 1, n = 0) are
shown in Figure 8. The mode description method of Reference [25] is used here. When
using the past mode description method, they are (m=1,n=1), (m=3,n=2) and
(m =2,n =1) respectively. Due to the difficulty in identifying the mode, the effects of
rotation on frequency for this kind of mode have not been investigated so far. The natural
frequencies associated with the backward wave are all found to increase monotonically with
the rotational speed, and the values of the natural frequency for (m =0,n=1) and
(m =0, n = 2) increase more quickly than that for (im = 1, n = 1). For forward waves, the
natural frequencies of (m = 1,n = 1) decrease with the rotational speed, and those of
(m=0,n=1) and (m = 0, n = 2) decrease first and then almost remain unchanged. It is
concluded that the influences of both m and n on forward and backward waves are obvious.
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Figure 4. Natural frequency w*(Hz) as a function of the rotating angular velocity Q*(Hz) at different modes
(m = 0, n = 3) for pure radial mode; m = 1,n =2 and m = 2, n = 3 for radial shearing mode) for an F-F rotating
thick cylindrical shell: —e—, m = 0, n = 3, pure radial mode; —0—, m = 1, n = 3, radial shearing mode; —m—,
m = 2, n = 3, radial shearing mode.

Two points of intersection can be found in Figure 8, which are the only ones occurring for
all the computed results. It is easy to understand the upper point because it is the curve of
(m = 3, n = 2) intersecting that of (m = 2, n = 1) (from the old mode description method).
But further study is needed to explain the intersection point of curve (m = 1,n = 1) and
curve (m = 2, n = 1) (from that old mode description method).

Figure 9 shows the variation of the natural frequency with the rotational speed for
extensional (m = 3, n = 0), longitudinal (m = 0, n = 0) and torsion modes (m = 1, n = 0). It
is observed that only one curve for each mode existed when n = 0. From equation (33) one
can see that when n = 0 there is no change for the frequency parameter w* with Q*. But the
present results show that: for extensional mode (m = 3, n = 0), there is a slight difference in
the frequency when the rotating speed increases; for longitudinal mode (m = 0, n = 0), the
natural frequencies increase gradually with the rotating speed; for torsion mode
(m = 1, n = 0), the natural frequencies decrease with the rotating speed. From equation (17),
(22) and (32), one can see that the stiffness matrix K of the rotating cylindrical shell includes
three components: K, the stiffness matrix due to geometric shape and material properties
of the cylindrical shell: K,, the stiffness matrix due to pre-stress when rotating, which
increases the total stiffness; K., the stiffness matrix due to variation of centrifugal force,
which reduces the stiffness. One cannot decide whether the frequencies of one mode are
higher or lower with rotating speed unless calculation is done.

Curves of five kinds of modes (pure radial, radial shearing, circumferential, global
bending and axial bending modes) are shown in Figure 10 for backward wave and Figure 11
for forward wave. From Figures 10 and 11, one can see that the frequency differences are
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Figure 5. Natural frequency w*(Hz) as a function of the rotating angular velocity Q*(Hz) at different modes
(m =0, n = 4) for pure radial mode; m = 1, n = 4 for radial shearing mode) for an F-F rotating thick cylindrical
shell: —e—, m = 0, n = 4, pure radial mode; —O—, m = 1, n = 4, radial shearing mode.
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Figure 6. Natural frequency w*(Hz) as a function of the rotating angular velocity Q*(Hz) at different modes
m=1,n=1and m=0,n=1 for circumferential mode) for an F-F rotating thick cylindrical shell: —e—,
m = 1, n = 1, circumferencial mode; —0—, m = 0, n = 1, circumferential mode.
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Figure 7. Natural frequency w*(Hz) as a function of the rotating angular velocity Q*(Hz) at different modes
m=2,n=1and m=3,n=1 for global bending mode) for an F-F rotating thick cylindrical shell: —e—,
m =2,n =1, global bending mode; —0—, m = 3, n = 1, global bending mode.
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Figure 8. Natural frequency w*(Hz) as a function of the rotating angular velocity Q*(Hz) at different modes
(m=0,n=1andm =0,n=2andm = 1, n = 1 for axial bending mode) for an F-F rotating thick cylindrical shell:
—e—, m=0,n =1, axial bending mode; —0—, m = 0, n = 2, axial bending mode; —m—, m = 1, n = 1, axial
bending mode.
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Figure 9. Nature frequency w*(Hz) as a function of the rotating angular velocity Q*(Hz) at different modes
(m = 3, n = 0 for extensional mode; m = 0, n = 0 for longitudinal mode; m = 1, n = 0 for torsion mode) for an F-F
rotating thick cylindrical shell: —e—, m = 3, n = 0, extensional mode; —0—, m = 0, n = 0, longitudinal mode;
—m— m = 1, n = 0, torsion mode.
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Figure 11. Nature frequency w*(Hz) as a function of the rotating angular velocity Q*(Hz) at five kinds of modes
for forward wave: —e@—, m =0, n = 2, pure radial mode; —O—, m = 1, n = 3, radial shearing mode; —m—,
m =0, n = 1, circumferencial mode; —00—, m = 2, n = 1, global bending mode; —a—, m = 0, n = 1, axial bending
mode.

small for different modes when the rotating velocity is small, but these differences increase
with the increase of the rotating velocity. So the frequency differences especially at high
rotating speed are often the focus of many investigators.

4. CONCLUSIONS

Rotating thick cylindrical shells have been analyzed by using the nine-node
superparametric finite element method. The finite element form of rotating cylindrical shells
has been deduced. The shear and axial deformation and rotatory inertia have been
considered in the finite element model. The effects of Coriolis acceleration, centrifugal force,
initial tension and geometric non-linearity due to large deformation have been included in
the physical model. The non-linear plate-shell theory for large deflection is used to handle
the cylindrical shell before it reaches the equilibrium state by centrifugal force, and then
a linear approximation is employed.

For a thick cylindrical shell with F-F boundary condition the effect of rotation on
different three-dimensional modes is investigated. Fight categories of the mode for

P
|

Figure 10. Nature frequency w*(Hz) as a function of the rotating angular velocity Q*(Hz) at five kinds of modes
for backward wave: —e—, m = 0, n = 2, pure radial mode; —O—, m = 1, n = 3, radial shearing mode; —m—,
m = 0, n = 1, circumferencial mode; —0—, m = 2, n = 1, global bending mode; —A—, m = 0, n = 1, axial bending
mode.
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a

rotating thick cylindrical shell are presented in this paper. Based on the analysis, the

following conclusions can be drawn:

1.

There are cight categories of modes for a rotating thick cylindrical shell. They can be
identified by using half of the circumferential node number n, longitudinal node number
m and the displacement distribution.

For pure radial and radial shearing modes, the normalized frequency of the rotating
thick cylindrical shell with large circumferential wave number n can be expressed as the
normalized rotational speed, and the curves corresponding to larger m lie out of the
curves of smaller m for the same n.

For global bending mode, the curves of the backward and forward waves are basically
linear at low speed, but they are non-linear when the rotating speed is high. There is an
obvious effect of m on the curves of forward and backward waves along with the increase
of rotating speed.

For axial bending mode, the influences of both m and n on forward and backward wave
curves are obvious.

There are three kinds of modes when n =0. They are the extensional, the longi-
tudinal and the torsion modes. Only one value of the natural frequency for each
mode exists at one rotating speed when n =0. It cannot be decided whether the
frequencies of one mode increase or decrease with the rotating speed when n =0
unless calculation is done.

The frequency differences are small for different modes when the rotating velocity is
small, but these differences increase with the increase of the rotating velocity.
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