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This paper deals with the identification of a single crack in a vibrating rod based on the
knowledge of the damage-induced shifts in a pair of natural frequencies. The crack is
simulated by an equivalent linear spring connecting the two segments of the bar. The
analysis is based on an explicit expression of the frequency sensitivity to damage and enables
non-uniform bars under general boundary conditions to be considered. The inverse problem
is generally “ill-posed”, because even if the system is not symmetrical, cracks in different
locations can still produce identical changes in a pair of natural frequencies. In spite of this,
it is found that there are certain situations concerning uniform rods in which the
effects of the non-uniqueness of the solution may be considerably reduced by means of
a careful choice of the data. The theoretical results are confirmed by a comparison with
dynamic measurements on steel rods with a crack. Some of the results are also valid for
cracked beams in bending. © 2001 Academic Press

1. INTRODUCTION

This paper focuses on detecting a single crack in a vibrating rod from the knowledge of
damage-induced shifts in a pair of natural frequencies.

In most of the studies of dynamic methods for damage identification, researchers have
resorted to the changes in natural frequency as the diagnostic tool. Frequencies can be
measured more easily than mode shapes, and as a rule they are less seriously affected by
experimental errors. In damage-detection problems, two objectives have to be attained: the
location of the damage, and its magnitude or severity. It is known that in beam-like
structures the change in a natural frequency produced by a small single crack may be
represented as the product of two terms, of which the first is proportional to the severity and
the second depends solely on the location of the damage (see equations (11) and (51) for
arod and a beam respectively). This results in an important consequence: the ratios of the
change in different natural frequencies depend only on the damage location, not on its
severity, see Adams et al. [1], Gudmundson [2] and Morassi [3]. Hearn and Testa [4] and
Liang et al. [5] have used this property for a damage localization analysis in beam-like
structures.

Two inverse problems related to damage detection may be posed: (1) determine the
location of a crack from the ratios of the changes in the natural frequencies; and (2)
determine the location and the severity of a crack from the changes in natural frequencies.
In particular, if the undamaged system is completely defined and if the damage is simulated
by a linear spring, only two parameters need to be determined, namely the stiffness K of the
spring and the abscissa s of the cracked cross-section. Such a peculiarity in damage
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detection has been noted more or less explicitly elsewhere in the literature and has been
recently emphasized by Vestroni and Capecchi [6] and Vestroni et al. [ 7]. Therefore, it is
reasonable to investigate the extent to which the measurement of the crack-induced changes
in a pair of natural frequencies can be useful for identifying the damage. By using this set of
data, both problems (1) and (2) are generally poorly defined: if the system is symmetrical,
then a crack located at any one of a set of symmetrically placed points will produce identical
changes in natural frequencies. Even if the system is not symmetrical, cracks in different
locations can still produce identical changes to a pair of natural frequencies. In spite of this
poor definition of the diagnostic problem, there are certain situations in which the effects of
the non-uniqueness of the solution may be considerably reduced thanks to a careful choice
of the data. In a recent paper [8], Narkis has shown that if the damaged system is
a perturbation of the virgin system, namely whenever the crack is very small, the only
information required for accurate crack localization is the variation of the first two natural
frequencies caused by the crack. The results were shown for uniform free-free vibrating rods
and for uniform simply supported beams in bending. Narkis has defined a closed-form
solution for the crack location. Adams et al. [1] have come to the same conclusions for
uniform free-free rods but have not obtained an explicit relation for the crack location.

The present work develops the results presented in reference [8] in different directions. It
is found that for uniform free-free beams under axial vibration, knowledge of the ratio
between the variations of the 2mth and mth frequencies uniquely determines the position
variable S = cos2mn s/L, where s stands for the abscissa of the cracked cross-section and
L is the length of the rod. Thus, the ensuing particular case equal to m = 1 agrees with the
result achieved by Narkis [8]. Furthermore, the variations of the 2mth and mth frequencies
also allows the stiffness K of the damage-simulating elastic spring to be uniquely
determined. In both cases, simple closed-form expressions are deduced for S and for K. As
for cantilevers or beams with fixed ends it is borne out that by simultaneously employing
axial frequencies related to different boundary conditions it is still possible to determine
uniquely the damage parameters S and K. The explicit expression for the damage sensitivity
of natural frequencies given in reference [3] plays a crucial role in this analysis. In fact, the
methodology that has been employed does not call for the explicit solution of the eigenvalue
problem for the damaged system, as it focuses only on the knowledge of the eigensolutions
corresponding to the integral configuration. Such a method is substantially different from
Narkis’ [8] and, as a result, the procedure that has been proposed can be also extended to
the analysis of initially non-uniform cracked beams in axial vibration.

The dynamic tests performed on cracked steel rods supported the proposed method for
the solution of the diagnostic problem. Analytical results agree well with experimental tests.
Finally, part of the results above are also valid for cracked beams in bending under simply
supported or sliding-sliding boundary conditions.

2. THEORETICAL RESULTS FOR GENERAL RODS WITH A CRACK

It is assumed that the spatial variation of the free vibration of an undamaged straight rod
of length L is governed by the differential equation

(@()u'(x)) + o?p(x)u(x) =0, x e (0, L), (1)
where u(x) describes the mode and w is the associated natural frequency. The rod is assumed

to have no material damping, since its effect on the natural frequencies is known to be
negligible. The quantities a(x) = EA(x) and p(x) denote the axial stiffness and the
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linear-mass density of the rod. E is the Young’s modulus of the material and A(x) the
cross-section area of the rod. This analysis is concerned with rods for which a(x) is strictly
positive and continuously differentiable function of x; p(x) will be assumed to be continuous
and strictly positive function. The end conditions are taken as

a(0)u'(0) — hu(0) =0,  a(L)u/(L) + Hu(L) = 0, (2, 3)

where h and H are the stiffnesses of the elastic end supports. Three important cases can be
distinguished:

Supported (S): h= o = H, u(0)=0=u(L), 4)
Free (F): h=0=H, u'(0)=0=u'(L), (5)
Cantilever (C): h= oo, H=0, u(0)=0=u'(L). (6)

Modes and frequencies are the eigensolutions of the boundary value problem (1)—(3), and
the mth eigenpair of the undamaged rod, m > 0, is denoted by (u,,(x), v,, = w2). It is well
known that for such a(x) and p(x), and end conditions (2) and (3), there is an infinite
sequence {v,}m=o such that 0 <vg<vy < --- with lim,_ v, = oo. It is decided to
designate the elements v, and uy(x) of the Oth eigenpair, respectively, fundamental eigenvalue
and fundamental vibrating mode.

Suppose that a crack appears at the cross-section of abscissa s € (0, L). Assuming that the
crack remains always open during the longitudinal vibration, by modelling it as a massless
translational spring, at x = s, see references [9, 10], the eigenvalue problem for the damaged
rod is the following:

(a(x)w'(x)) + wZp(x)w(x) =0, xe(0,s)u(s, L), (7)

where, in addition to the boundary conditions (2) and (3) it is necessary to consider the jump
conditions

W] =0,  K[w(s)] = als)w'(s) 8.9)

that are to hold at the cross-section where the crack occurs. In equations (8) and (9)
[¢(5)] = (¢(s¥) — ¢(s 7)) denotes the jump of the function ¢(s) at x = s. The expression K is
the spring stiffness and can be related to the crack geometry as suggested, for example, by
Freund and Herrmann [9] or by Dimarogonas and Paipetis [ 10]. The undamaged system
corresponds to K — o0 or e =1/K - 0.

If the crack is small, namely ¢ is small enough, then the first order variation of the natural
frequencies with ¢ may be found as shown in reference [3]. By taking

Vgm = U + €(Avp,), (10)
the first variation of the mth eigenvalue is given by

Ovy = e(Avy,) = — W (11)

where the normalizing condition [§ p(x)us(x)dx = 1 has been taken into account. That is,
the change in a natural frequency produced by a single notch may be expressed as the
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product of two terms, the first of which is proportional to the severity and the second
depends only on the location of the damage. In particular, this second term is the square of
the axial force

Nyu(s) = a(s)u(s) (12)

in the mth mode shape of the undamaged rod evaluated at the cracked cross-section.
Equation (11) has an important consequence; the ratios of the change in two different
natural frequencies depend only on the damage location, not on its severity. That is

ov, _ (Na(s)\* _
50, <Nm(s)> =f(s), (13)

where s € (0, L) and dv,, < 0 (if dv,, = 0, the possible crack locations coincide in the node
points of the axial force N,,(x) resulting from the mth vibrating mode of the integral rod). It
is to be noted that the methodology pursued by Narkis [8] (section 4) has likewise led to
a relation similar to equation (13) (see equation (18), (18a) and (18b) in the paper in
question). The relation above has been achieved in reference [8] by considering
a linearization of the characteristic polynomial explicitly referred to the cracked rod, in case
the damaged system should be a perturbation of the undamaged one. Adapting such
a method to the analysis of non-uniform beams is likely to be difficult, while the use of
expression (13) makes it possible to overcome such hindrance.

The problem related to the crack location lies in determining the solutions of equation
(13) for a fixed (measured) value of the ratio ov,/dv,,. It follows from equation (13) that all,
and the only possible, locations of the crack are the abscissas of the points of the
f(x) = (N,(x)/N,(x))? diagram intersecting with the horizontal straight line drawn parallel
to the abscissa axis at a distance equal to the ratio dév,/dv,,. On a practical level, once the free
vibration problem related to the integral rod is solved, the behaviour of f(x) is known and
therefore it is possible, via numerical methods for example, to determine the solutions of
equation (13).

In order to infer some qualitative properties of the damage location problem, in the
remainder of this section the behaviour of the function f(x) will be investigated. In order to
simplify the analysis it is decided to investigate in detail the case of a free rod (F) under the
assumption that p(x) = yA(x) in the axial motion equation (1), where y is the (uniform)
volume mass density. The method to be accounted for can be easily extended in such a way
as to take general boundary conditions.

Firstly, the case m = 1 and n > 2 is considered, which means the variations in the first and
in the nth frequencies are taken as data. In the following, it is worth pointing out that if
(u(x), ®?) is an eigenpair of the eigenvalue problem (1)-(5) for the undamaged rod, then
(N(x) = au/(x), @* = w*y/E) is an eigenpair of Dirichlet’s eigenvalue problem

(@(xX)N'(x)) + &*@(x)N(x) =0, xe(0, L),
N©)=0=N(L), (14)

wherein d(x) = 1/a(x). Through dividing by a(x) = EA(x) and subsequently differentiating
equation (1) once the result obtained is

<1 N’(x)>’ + w? 7 u'(x) =0.

a(x)
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Multiplying and dividing the term with u'(x) by a(x) gives the expression we have in
equation (14);. The boundary conditions (14), directly derived from the conditions for u(x)
for the free—free bar. By virtue of well-known properties of the solutions of the
Sturm-Liouville operator (14);, N,(x) has (n — 1) simple zeroes {x{"}/Z{ in the interval
(0, L), say x" < x{? < --- < x{"" Y. Inaddition, x{” = 0, x!" = L. Clearly, f(x) > 0in (0, L)
and f(x9) =0,i=1,n— 1.

It can now be shown that f(x) is a well-defined function in the interval [0, L]. For this
purpose it is sufficient to note that N(x) # 0 in (0, L) and the following limits prove to be
finite: lim,_ ¢+ f(x), lim,_ - f(x). Consider as an example the limit lim,.q+ f(x) which
in terms of its being determined is exactly like the other limit. By applying twice the
de 'Hospital’s rule it is determined that

m N (x)? + N,(x)N;(x)
R (N1(x)* + Ny (x)N{(x)

11m  f(x) = (15)

As a result, the indeterminate form has been solved. By using the differential equation (1) to
determine N, (x), N'i(x), while bearing in mind that by virtue of one eigensolutions property
of (1)-(5) u,(0) # 0 for each n, it follows that

lim /(x) = <21> <Zlg> (16)

lim f(x) = (Zl> <Zl((i))> . (17)

At this stage it can be asserted that: (4) f(x) is strictly decreasing in the interval (x{, x{V);
f(x) has a single relative maximum point in each interval (x{, x{* 1), i = 1, n — 2, which can be
designated as EP, and f(EY) = (0?/01)? (u,(ED)/uy(EP))?; f(x) is strictly increasing in the
interval (x"~ 1, xM).

The existence and the number of solutions of equation (13) rely naturally on ov,/dv, as
well as on the values that f(x) takes at the local maximum points. The former assertion (A),
which shall be demonstrated hereinafter, allows some qualitative properties of the solutions

to be proved. In fact, from the hypothesis that dv, < 0,

Likewise

O x{V) which corresponds

(1) there is exactly one crack location, if there exists one, in (x;,
to the ascribed ratio dv,/ovq;

(2) there are exactly two crack locations, if they exist, in (x?, x ") (which may coincide
if f(£9) = 6v,/0v,), i = 1, n — 2, corresponding to the ascribed ratio dv,/dv;;

(3) the property stated in (1) is thus valid for the interval (x!" ", x{).

It is to be noted that the assertion (A) directly results in an a priori estimate of dv,/dv;,
that is

O < max {fE), = 1n 2 fO) L), 19

the variation in the nth frequency cannot be on some accounts much greater than the
variation in the first frequency. Owing to the uniqueness of the solution of equation (13) the



582 A. MORASSI

most “unfavourable” situation coincides when 6v,/0v; < min{ f(&Y),i = 1,n — 2;£(0);f(L)}:
in fact, in this case there are (n — 2)2 + 2 = 2n — 2 possible locations for the crack and they
all exactly lead to the same ratio ov,/0v,. What is described above explains why as a rule the
employment of a pair of high frequencies increases the number of possible solutions of the
damage location problem. In detail, it has been shown that the number of the possible
damage locations corresponding to the same ratio év,/0v, between the variations in the pair
of frequencies goes on increasing the number of the points of zero-sensitivity to the damage
for the nth frequency. Such points coincide with the nodes of the axial force N,(x) and this
way their number increases as the mode order increases. It is to be noted that if n = 2, and
on condition that the beam is symmetrical, the crack location can be uniquely determined
(except for symmetrical positions), as it can be read in the next section dealing with the
perticular case of the uniform beam.

The present analysis is completed by demonstrating the assertion (A). Without affecting
the character of generality it can be assumed that N;(x) >0 in (0, L) and N,(x) > 0 in
(x{?, x{V). In order to prove the monotonicity of f(x) in (x, x{"), f'(x) is calculated and it is
thus demonstrated that f'(x) < O within this interval. Accordingly, it follows that

, 2N1(x) Na(x)
109 =Nty &0 (19)
wherein g(x) is given by the expression
g(x) = (N1(aN,) — N,(@Ny))(x). (20)

Taking into consideration equation (14), it is determined that

g(x) = (07 — ) aAX)N,(X)N,(x). (21)

On considering that N;(x)N,(x) > 0 in (x!?, x{") and & < &; it is verified at once that
g(x) < 0in (x{?, x(M). But g(x{*) = 0 and then g(x) < 0 in the entire interval (x{, x{V). It
emerges that f’ ( ) < 0 in (x!?, x{), which was to be demonstrated.

At this point the attention must be diverted to the subsequent interval (x{", x{?). A direct
calculation shows that g(x") = aN,N,(x{") < 0 and g(x{*) = dN,N,(x{*) > 0. Bearing in
mind that N;(x)N,(x) <0 in (x!V, (2)) then g'(x) > 0 in the interval in question. As
a consequence exactly one single point of (x", x{*)) wherein g(x) vanishes can be found,
which can be designated as £("). It is therefore possible to draw the conclusion that f'(x) > 0
in (x{, EM), 7(EM) = 0 and f/(x) < 0 in (Y, x(2), which is the thesis to be demonstrated
solely for the second interval.

It suffices to repeat the steps of the procedure described above to deal with the remaining
intervals. Finally, taking into consideration that g(£{’) = 0 and bearing in mind definition
(12) of the axial force N, it can be shown that (&) = (wZ/w?)? (u(ED)/u;(EP))?, which
establishes assertion (A).

For reasons of completeness, the case in which the data are represented by the variations
in the m and nth frequencies, wherein n > m > 1, is briefly discussed. Without affecting the
character of generality, consider m =2 and assume that Jv, < 0. The only relevant
difference from the former case in which m = 1 is due to the fact that the second vibrating
mode in the integral rod turns out to have a point of zero-sensitivity to the crack, e.g.,
N,(x$") =0 for x4 € (0, L). It is easy to verify that the former procedure can also be
adapted for this situation, provided there should be a distinction between the first case
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wherein x5 does not coincide with any node point of N,(x) (which occurs, for instance,
when n = 3), and the second case where x4 = x for a certain value of i. Leaving aside the

details of the demonstration, it follows from the first case that:

(1)’ There are always two crack locations in the interval whose ends coincide with the
nodes of N,(x) which are adjacent to x5".

(2) The other intervals (x{, x{*1), 1 <i<n — 2, have exactly two locations of the
crack, if they exist, which correspond to the ascribed ratio Jv,/dv, (Which may
coincide if f(£") = 6v,/dv,).

(3) As for the intervals at the ends of the bar (x{”, x!") and (x!"~V, x{") what was
specified in (1) and (3) can be applied.

It follows from the second case that:

(1)" Two locations of the crack, if they exist (which may coincide if f(£{’) = dv,/0v,)
belong to the interval (x§~ Y, xi* 1),

(2)" As for the other intervals, including those at the ends, what was stated in (1) and (2)’
can be applied.

Itis worth noticing that, since the second mode has a point of zero sensitivity to damage, the
ensuing consequence is a lack of control over év,/dv, as exemplified in equation (18).

3. THEORETICAL RESULTS FOR UNIFORM RODS WITH A CRACK

In section 2, it was shown that the problem of locating a crack in a vibrating rod from
knowledge of the damage-induced shifts in a pair of natural frequencies is generally poorly
defined: if the system is symmetrical, then a crack at any one of the set of symmetrically
placed points will produce identical changes in natural frequencies. Even if the system is not
symmetrical, cracks in different locations can still produce identical changes in a pair of
natural frequencies. In spite of this, it will be shown that there are certain situations in which
the effects of the non-uniqueness of the solution may be considerably reduced by means of
a careful choice of the data.

The simple but very common case of uniform rods, e.g., rods for which a = a(x) and
p = p(x) are constants on the interval (0, L) will be considered here. The most exhaustive
results concern free vibrating rods (F). Ck is denoted by

Sof
CF — _ Om 2
m B’ (22)

where m is a positive integer and B is the constant

2 7\?
B=<a\/p:Lz>. (23)

It can be proved that, if Ch, > 0, the measurement of the pair {Ch, C5,}, m > 1, uniquely
determines the severity of the damage, e.g., the spring stiffness K, and the variable
S = cos2mmn s/L of the damage location s.

The eigenpairs of a free uniform rod (F) are given by

2
2
oF = a <nzt> . ub(x) = 1 cos mn x/L, (24)
p VP
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m =0, 1,2,.... The rigid mode u{(x) obviously is always insensitive to damage. Putting the
expressions of v} and uf(x) for m > 1 into equation (11) gives

1
Ch = sin? mn% (25)

and, using standard trigonometric identities, gives
K@A4CE — C%,) = 4K*(C)% (26)
Since C¥ > 0, from the identity above it follows that
4cf —C5 >0, (27)
and
if Cf, >0 then 4C}, — C5,, >0, m=>2. (28)

Inequalities (27) and (28) represent a particular case of inequality (18) in uniform free—free
rods. Let it be assumed that C); > 0. Equation (26) can be solved for the damage severity:

1 — C%,/4C)

K = i

(29)

Note that conditions (27) and (28) guarantee that K takes positive values. By inserting
expression (29) of K into equation (25) the damage can be localized:

F
C2m

§=_2m_
2CF

1, (30)

where S € [ — 1, 1) because of the inequalities (27) and (28). Note that the ratio of the first
two natural frequency changes is sufficient to localize the damage (except for symmetrical
positions). Finally, if C}; = 0 for a certain m > 2, then from equation (25) it follows that
S = 1; that is the crack is located in one of the points of zero-sensitivity of the mth mode, and
K remains undetermined. This establishes the assertion.

The preceding result improves existing results about crack localization in different
directions. One of the results by Narkis [8] is a particular case concerning the unique
localization of the damage based on knowledge of the first two frequencies of a free—free
vibrating rod (see equation (26) in reference [8]). However, it is to be noted that the
existence condition on S for m = 1, which corresponds to inequality (27) in the present
paper, is not explicitly acknowledged in the work by Narkis (e.g., our condition (27) is
equivalent to the inequality R 4,; < 4, where R4, is defined by equation (24) in reference
[81).

Expressions (29) and (30) for the damage parameters indicate that the pair of natural
frequencies mth and 2mth plays a crucial role when localizing the damage. In fact, provided
that the mth frequency proves to be sensitive to damage, that is C), > 0, the pair {Ck, C%,,}
uniquely determines the damage severity, namely the stiffness K. Quite surprisingly the
expression for K turns out to be the same for all pairs of values {C}, C5,,}. Finally, it is
shown that the number of the possible crack locations, corresponding to the same ratio
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C5,/CE., increases as the order m of the modes assessed increases, which accounts for the
recourse to “low” frequencies for the problem of damage localization.

The preceding result does not consider the problem that occurs when a pair of values
such as {Cf, Cf} with [ # 2k is chosen as data. It can be shown that in these cases the
solution of the inverse problem is generally non-unique (even by leaving symmetrical
positions aside). Attention is focused on the crack localization problem and, as an example,
the values of the pairs {C}, C5} and {Cf, C}} are regarded as data.

Case 1. Initially uniform rod (F) with data {C%, C%}. Equation (25) can be rewritten in
function of the variable y = cos 2ns/L for m = 1, 3. Then one has the following non-linear
system:

1 —y=2KC{, 1—4y’+3y=2KCE, (31)

to be solved with respect to K >0 and ye [— 1, 1) for given data {C{, C}}. A direct
calculation shows that

9ct — i >o. (32)
In fact, equation (31) yields

2KOCT — C3) =4y — D*(y +2)

and the right-hand side of the expression above is always strictly greater than zero for
y e[ — 1, 1). Denoting by 5 the ratio

&
=—, (33)
n cr
the damage location problem consists of solving the polynomial equation
Qy+1)7?=ny (34)

in the interval [ —1, 1) for a given 5 € [0, 9). For reasons of symmetry, consider only the
damage location s in the interval (0, L/2]. If 5 € (1, 9) there is one single solution y; € (0, 1)
of equation (34), which corresponds to s; € (0, L/4). If 1 € (0, 1] there are two distinct
solutions y; € [— 1, — 1/2), y, € (— 1/2, 0], which, respectively, correspond to s; € (L/3, L/2]
and s, € [L/4, L/3). Finally, if n =0 it follows that y; =y, = — 1/2 and s; = s, = L/3.
Therefore, should the crack be located within the first quarter of the beam adjacent to the
free end, the measure of the first and third frequencies determines uniquely the location of
the damaged cross-section; should the crack be located within the quarter of the beam
(L/4, L/2) and s # L/3, there are two different locations corresponding to the same ratio #.

Case 2. Initially uniform rod (F) with data {Ct, C}}. Following the same procedure used
for Case 1 and adopting the same notation, the solutions of the polynomial equation are

r(y) =8y*(y+1)=n, (35)

where 5= C4/CY <16 and ye[—1,1). r(y) has a local maximum at y,..= — 2/3
(r(Vmax) = 32/27) and a local minimum at y,,;, =0 (*(yui.) = 0). Focusing attention on
one-half of the beam for reasons of symmetry, if # proves to be “adequately sized”,
n > 32/27, the measurement of the first and fourth frequencies localize the crack in a unique
manner; if 0 < n < 32/27 there are three different locations of the crack that correspond to
the same ratio #; finally, if # = 32/27 and if # = O there are two distinct possible locations.
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The analysis has hitherto been related to uniform beams under axial vibration with free
ends and it has been borne out that the first two frequencies allow the crack (except for
symmetrical positions) to be uniquely identified. Such a result does not prove true if
different boundary conditions, for example (C) or (S), are being considered. For instance, in
case (C), when the crack is located in the half of the rod adjacent to the fixed end, there are
two distinct locations corresponding to the same ratio between the variations in the first
two frequencies, as already asserted by Narkis [8] (section 4.2, equation (25)). Within these
situations it is possible to apply the same procedure used for analyzing Cases 1 and 2.

An alternative method of proceeding lies in resorting at the same time to frequency
measurements on the cracked rod which derive from different boundary conditions. This
way it is entirely feasible to recover the character of uniqueness for the solution of the
diagnostic problem.

Attention is again concentrated on initially uniform rods and the data resulting from
boundary conditions of the types (S) and (F) are first considered. There emerges that: the
measurement of the (m + 1)th frequency in the cracked rod under boundary conditions of the
type (F) and of the mth frequency under boundary conditions of type (S), for m = 0, determines
uniquely the severity of the crack and the location variable S’ = cos2(m + 1)ws/L, where
s stands for the abscissa of the cracked cross-section.

The eigenpairs of a supported uniform rod (S) are given by

s _ 4 M ’ S(y) — i
vm—p< 7 >, um(x)—\/;sm(erl)nx/L, (36)

m=0,1,2,... Define C3 = — év3/B(m + 1)*. By using a standard trigonometric identity in
the system

1 1
Chi1= z sin’(m + )ns/L, C5= gcosz(m + 1)ms/L, (37)

it follows that

1

K= .
Chii+Co

(38)

Taking into consideration the expression of K if, for example, C5 > 0, then

2
S=—14—7F=-. 39
RN %9
Otherwise, if Cj = 0 then S’ = — 1. It turns out that the damage is uniquely determined

(except for symmetrical positions) by the measurement of the pair {C3, C{}. The same result
is valid when the pair {C5, C5,.+1)}, m = 0, s considered as data. In this case, if Cj, > 0 then
4Cy — C¥im+1) > 0 and one has the following expressions for the damage parameters:

_ 1= Clm+1)/4Ch

CF
K = S =1—2ntD (40,41)

cs ’ 2C3

A similar result holds true also when frequency measurements are derived from (F) and
(C) boundary conditions. In this case: from the knowledge of the mth frequency in the cracked
rod under boundary conditions (C) and of the (1 + 2m)th frequency under boundary conditions
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(F) it is possible to uniquely determine the stiffness K and the position variable
S" =cos(1 + 2m)ns/L,m=0,1,2,....
Indeed, bearing in mind that the eigenpairs in case (C) are given by

1+2 2 2
b€ = & (LA2mmN e = 2 in(t + 2mynx/2L, 42)
0 2L oL
m=0,1,2,..., the system corresponding to equation (37) is as follows:
F 1 N2 C 1 2
Ciiom= % Sin (1 4+ 2m)ns/L, C, = % 08 (1 + 2m)ms/2L, (43)
ovs,

where C§ = — . By proceeding as exemplified above, it follows that

B((1 + 2m)/2)2
K(4Cy, — Cl 1) = 4K*(Cy)*. (44)
If CS > 0 then 4C5, — CT . ,,, > 0, thus obtaining

_ 1— Cf+2m/4cr(r:: S"=1— Cf+2m
Ch ’ 2C5

K (45,46)

4. EXPERIMENTS

The preceding sections have shown how to employ the measurement of a pair of axial
frequencies of a cracked rod so as to assess the location as well as the severity of the damage.
Aiming to account for the prospective practical use of the results above within the analysis
of real cases, the present section is devoted to outlining some applications of experimental
character.

Before bringing forward the results it is appropriate to make some remarks. The
conclusions drawn in the preceding sections, and the respective identification technique,
have been inferred from qualitative and quantitative properties underlying the analytical
model ruled by equations (7)—(9) for the cracked rod in the case of minor damage. At this
point, it is known that as a rule the mono-dimensional analytical model, which is based on
the classical theory regarding beams under axial vibration and on the macroscopic
description of the notch, provides an efficient assessing of the frequencies in the lower
section of the spectrum, whereas it gradually lacks accuracy on increasing of the order of
vibrating modes. Such a feature suggests that the employment of lower frequencies in the
application, for example, of formulae (29) and (30) should guarantee a more accurate
assessing of the damage parameters. From this point of view, choosing the first pair of
frequencies turns out to be optimal, even though, as shall be highlighted within the second
experiment, under certain circumstances one of the frequencies in question may be subject
to serious modelling errors. If such is the case, it is safer to resort to frequency pairs of higher
order also.

The second aspect concerns the perturbative character of the present analysis. The work
hypothesis, as stated beforehand in section 2, is that the crack should be small, namely the
cracked configuration should be a perturbation of the undamaged one. Such a hypothesis is
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reasonable from the practical point of view, in that it is crucial to be in a position to identify
correctly the damage as it arises, whilst on the other hand the crack-induced variations in
the frequencies prove to be small only in the case of low vibrating modes. In fact, it can be
noted in expression (11) that the frequency variation caused by the crack increases as the
order of the mode increases. Such a mutual relation is in agreement with a general property
proved in reference [ 11] according to which the high-frequency spectrum of the cracked rod
splits into two branches corresponding to the asymptotic course of the spectrum of the two
rod segments adjacent to the cracked cross-section (under adequate boundary conditions).
The asymptotic separation of the spectrum is more heavily marked in the case of severe
damage. Also, the latter aspect suggests the use of lower frequencies for the damage
identification.

Summing up, the technique when applied to real cases is expected to yield the more
reliable results when the damage is less severe and the lower the order of the frequencies
considered. Furthermore, it is worth noting that a relevant factor is represented by possible
measurement and modelling errors to which the technique, as shall be seen, seems to be
sensitive. Some applications to axially vibrating bars shall be considered here. All the
experimental models consisted of steel bars under free—free (F) boundary conditions. Every
specimen was damaged by saw-cutting the transversal cross-section. The width of each
notch was equal to 1-5 mm and, because of the small level of the excitation, during the
dynamic tests each notch remains always open.

The first model (rod 1), in Figure 1(a), is a steel rod of square solid cross-section. By using
an impulsive dynamic technique, the first 30 natural frequencies of the undamaged bar and
of the bar under a series of three damage configurations (D1, D2 and D4) were determined.
The rod was suspended by two steel wire ropes to simulate free-free boundary conditions.
The excitation was introduced at one end by means of an impulse force hammer, while the
axial response was measured by a piezoelectric accelerometer fixed in the centre of an end
cross-section of the rod. Vibration signals were acquired by a dynamic analyser and then
determined in the frequency domain to measure the relevant frequency response term
(inertance). The well-separated vibration modes and the very small damping allowed
indentification of the natural frequencies by means of the single mode technique; see
reference [11] (section 5, second experiment) for a complete account of the experiment. The
damage configurations were obtained by introducing a notch of increasing depth at
s = 1-00 m from one end. Table 1 compares the experimental natural frequencies and their
corresponding analytical estimates for the undamaged and damaged rod. For the definition
of the analytical model for the damaged rod, the theoretical value of the stiffness K, for each
damage configuration, was obtained by assuming that the position s of the damage is
known and by taking the measured value for the fundamental elastic frequency of the
damaged rod. The analytical model turns out to be extremely accurate for all the
configurations under investigation and the percentage discrepancy between the measured
and the analytical values of the natural frequencies is lower than 1% within the 30th
vibrating mode. The severity and the location of the damage have been achieved by
applying the formulae (29) and (30). The results of the identification are summed up in
Tables 2 and 3. With reference to the localization of the notched cross-section the accuracy
of the method proves to be satisfactory, even though the discrepancy between assessed
damage location and actual damage location becomes more relevant when experimental
data are resorted to (see Table 2). It is pointed out that the inaccuracy resulting from the
pair {C5, C§} is due to the location of the notch in proximity to a zero-sensitivity point of
the third vibrating mode (and, as a result, of all the vibrating modes with an order which is
a multiple of three). This aspect also prejudices the reliability in assessment of the constant
K whenever it is used for the identification of a frequency that is associated with a vibrating
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TaBLE 1
Experimental and analytical frequencies f, of rod 1 (data from Morassi [11]). Abscissa of the
cracked cross-section: s = 1:000 m. (1) EA = 99491 x 10’ N, p = 3735 kg/m, L = 2925 m
(K= 0). (2) Kaa=309119x10°N/m. (3) K = 784984 x 10° N/m. (4) Kapu =
4-37183 x 10® N/m. Frequency values in Hz.

n Undamaged Damage D1 Damage D2 Damage D4

Exper. Model (1) Exper. Model (2) Exper. Model (3) Exper. Model (4)

882-25 88225 8815 881-5 879-3 879-3 8310 8310
1764-6 1764-5 1763-3 17631 1759-0 1759-2 1679-5 1680-1
2645-8 2646-8 26440 26467 26470 26467 26465 26454
3530-3 3529-0 3526-8 35257 35165 35162 33060 33086
44119 4411-3 4408-8 44082 4400-0 4399-5 42500 4251-1
52939 52935 5294-3 5293-3 5295-3 52929 5287-8 5282-3
61754 6175-8 6168-8 6169-7 6150-3 6151-8 5808-5 5802-5
70567 7058-0 7052-0 70537 7039-5 7041-6 68643 6867-7
79379 7940-3 7937-5 7939-7 79380 79382 7909-5 7901-4
10 88199 88225 8809-8 88134 8782-0 87865 8340-0 83411
11 9702-7 9704-8 96973 9699-8 9682-8 96857 9503-3 9509-8
12 10583-8  10587-0 10582-8 105859 10581-3 10582-3 10514-8 10497-8
13 11464-3  11469-3 11449-0 11457-0 11410-5 114209 10933-5 10928-6
14 123452  12351-5 12339-5 12346:3 Not 12331-5 12158 12166

available
15 132244 13233-8 13222-8 13231-5 133220 13224-8 13098 13077
16 14104 14116 14087 14101 14039 14056 13543 13554
17 14985 14998 14979 14993 14964 14979 14811 14829
18 15862 15881 15860 15877 15850 15865 15676 15648
19 16740 16763 16721 16744 16662 16691 16177 16201
20 17620 17 645 17616 17640 17596 17628 17464 17497
21 18496 18527 18488 18521 18478 18 504 18237 18216
22 19372 19410 19351 19388 19283 19328 18820 18860
23 20248 20292 20245 20288 20227 20277 20111 20168
24 21124 21174 21121 21166 21102 21139 20801 20786
25 21999 22056 21978 22033 21906 21966 21441 21527
26 22870 22939 22863 22936 22872 22927 22815 22841
27 23744 23821 23741 23809 23724 23773 23357 23356
28 24621 24703 24599 24677 24532 24606 24137 24197
29 25495 25585 25498 25583 25512 25578 Not 25514
available
30 26372 26468 26367 26452 26344 26405 25919 25929

O 001N WL B W=

mode with a multiple-of-three order (see Table 3). Moreover, in this case the accuracy of the
estimate for K generally becomes worse when the identification is based on experimental
data. Finally, the expectations are further confirmed, as the assessment of K proves
un-reliable when the crack is very severe, and such is the case in the configuration D, (see
Table 3, columns 6 and 7). In this case, the discrepancies could also be caused by the fact
that bending vibrations are also excited.

In the second experiment, the steel rod of series HE100B (rod 2) shown in Figure 1(b) was
considered. By adopting an experimental technique similar to that used for rod 1, the
undamaged bar and two damaged configurations obtained by introducing a notch of
increasing severity at the cross-section 0-7 m far from one end were studied (see reference
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Figure 1. (a)-(c). Experimental models and damage configurations: (a) rod 1; (b) rod 2; (c) rod 3. Length in mm.

[12] for more detail on the experiments). Table 4 shows the measured and analytical values
for the first 16 modes. The analytical model for the damaged rod was obtained in the same
way as before assuming that the damage location is known and determining K by taking the
measured value for the analytical fundamental elastic frequency. The analytical model
generally fits well with the real case of the notched rod, even if the percentage errors are
more relevant than those of the first experiment. Note that the second and ninth frequencies
for D and the seventh frequency for D, are affected by relatively large errors. The results of
the damage localization are reported in Table 5. It can be noted that the employment of the
second frequency, which is more affected by modelling errors, prejudices the reliability of
the identification based on the experimental data. In such cases, it is quite advisable to
resort to pairs of higher frequency, such as the pair {C, C¢}, and subsequently intersect the
results to identify the beam section which is damaged. Also, the estimates obtained for
K confirm this aspect (see Table 6). Moreover, as expected, the estimates for K are already
quite rough for damage configuration D, even if low frequencies are used in identification.
This is because the rod provides an example for which the damage is rather severe from the
beginning.

The third experimental model (rod 3), shown in Figure 1(c), has the same cross-section as
the rod assessed in the former experiment (see reference [11] for further details). The
damage is a notch of increasing severity in the cross-section located 1:125 m from one end.
Table 7 compares the first eight measured frequencies for all test configurations with their
analytical estimates. The analytical model of the damaged rod is as before. The results of the
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TABLE 2

Determination of the crack location in rod 1 by using the pair {C}, C%,}, m = 1-3, as data in

Sformula (30). Analytical (Suua) and experimental (Soxpe,) estimates of the crack location in the

interval (0, L/2). Actual crack location s = 1-0 m. The symbol (*) means: estimate s¢(0, L/2).
Length in meters

Damage D1 Damage D2 Damage D4
m Sanal Sexper Sanal Sexper Sanal Sexper
1 0-993 1-012 1-003 0-989 1-023 1-021
2 0-464 0-443 0-460 0-457 0-449 0-448
0998 1-019 1-002 1-005 1-013 1-015
3 0-325 (*) 0-163 0366 0-089 (*)
0.650 (*) 0-812 0-609 0966 *)
1-300 (*) 1-138 1-341 0984 (*)
TABLE 3

Determination of the spring stiffness K in rod 1 by using the pair {Cp, C5,,}, m = 1-15, as data
in formula (29). Analytical (K 4,4) and experimental (K,,.,) estimates of the spring stiffness.
The symbol (¥) means: K < 0. Stiffness values in N/m

Damage D, Damage D, Damage D,
m Kanar X 101%  Koper x 101° K x 10° K oxper X 10° Kanar X 108 K, pper X 108
1 3.06884 3.13548 7.90078 7.77130 4.78262 4.77243
2 3.02513 3.06369 791843 7.42762 4.92504 4.86351
3 67.52010 5.14409 225.10450 (*) 5.22612 (*)
4 3.04629 2.85448 7.88915 7.35445 5.00392 492191
5 3.06546 2.87083 7.88033 7.60444 5.98934 5.97505
6 28.13585 (*) 6.30075 (*) 1.22442 1.89584
7 3.07808 2.84088 7.85500  Not available 5.43360 5.51616
8 3.15008 2.80207 6.06778 7.38615 8.09784 8.07323
9 7.50478 25.36635 6.16743 *) 17.74320 17.66690
10 3.07268 2.82662 7.85898 7.30876 6.15636 6.16281
11 2.97266 3.14878 8.02601 7.35128 11.09590 10.97391
12 2.98030 28.54265 5.34237 (*) 18.60771 21.92602
13 3.07655 2.40688 7.82641 7.30516 7.21803 7.42754
14 3.03196 3.82819 8.29258 Not available 15.06012 15.35033
15 25.56355 17.18915 6.29049 *) 16.52263 19.87444
Actual value 3.09119 7.84984 4.37183

damage identification are summarized in Tables 8 and 9, and they essentially confirm those
obtained for the previous case.

5. A BENDING VIBRATION CASE

In the previous sections, the inverse problem of identifying a crack in an axially vibrating
beam from frequency measurements has been discussed. Here a cracked beam in bending
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TABLE 4

Experimental and analytical frequencies f, of rod 2 (data from Biscontin et al. [ 12]). Abscissa of

the cracked cross-section: s = 0-700 m. (1) EA = 555078 x 10° N, p = 20-775 kg/m, L = 40 m

(K = ). (2) Kapar = 276462 x 10° N/m. (3) K gpar = 9-59952 x 10° N/m. Frequency values in
Hz.Af, % = ( f,(model) — f,(exp.))/f,(exp) x 100

Undamaged Damage D1 Damage D2

n Exper.  Model (1) 4,% Exper.  Model (2) 4,% Exper.  Model (3) 4,%

1 646-125 646:125 000  637-000 637-000  0-00 618-500 618-:500  0-00
2 1290-875 1292250  O-11 1202-375 1239355  3-:08 1142125 1144008  0-16
3 1935125 1938375 017 1846:000 1851259 028 1744750 1745710  0-06
4 2579-875 2584500  0-18 2495500 2517-129  0-87 2450-875 2452-138 005
5 3220250  3230-625 032 3199-625 3210806 035 3180-875 3188100 023
6 3844-625 3876750  0-84 3834000 3871-494 098 3817375 3858:825 1-09
7 4544-500  4522-875 —0-48 4407-375 4398909 —0-19 4054-875 4170-535 2-85
8 5169875 5169000 —0-02 4904-500 4945986  0-85 4801125 4789760 —0-24
9 5809250 5815125 010 5711375 5632423 —1-38 5541750  5544-809  0-06
10 6445875 6461250 024 6379250 6363-861 —0-24 6305000 6312:691 0-12
11 7081125  7107:375 037 7090-125 7092172  0-03  7057-000 7077-117  0-29
12 7713:625  7753-500 052 7694000 7701443 010 7538375 7579-852  0-55
13 8342-375  8399:625 069 8024-000 8099-616 094 7863750 7902-422  0-49
14 8969-000 9045750 086 8806250  8747-635 —0-67 8602:250 8659-362  0-66
15 9584500 9691-875 1-112 9441250  9491-577  0:53  9351:625 9434-566  0-89
16 10189-875 10338-000 1-45 10128-000 10247613 1-18 10079-875 10211-333 1-30
17 10777750 10984-125 1-91 10779-:500 10981-189 1-87 10779:500 10977-323 1-84

TABLE 5

Determination of the crack location in rod 2 by using the pair {Cy, C3,.}, m = 1-3, as data in

Sormula (30). Analytical (Suuq) and experimental (S,.p.r) estimates of the crack location in the

interval (0, L/2). Actual crack location s = 0-7 m. The symbol (¥) means: estimate s¢(0, L/2).
Length in meters

Damage D1 Damage D2
m Sanal Sexper Sanal Sexper
1 0-717 (*) 0-811 0-809
2 0-738 0-774 0-779 0-783
1-262 1226 1-221 1-217
3 0-629 0-614 0-620 0-609
0-704 0-719 0-713 0-725
1-963 1-948 1-953 1942

will be considered. The physical model, which will be investigated, is a simply supported
uniform Euler-Bernoulli beam with an open crack at the cross-section of abscissa s.
According to Freund and Herrmann [9] the crack is represented by the insertion of
a massless rotational elastic spring at the damaged cross-section. The stiffness Ky of the
spring may be related in a precise way to the geometry of the damage as suggested, for
example, by Dimarogonas and Paipetis [10]. Denoting the Young’s modulus of the
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TABLE 6

Determination of the spring stiffness K in rod 1 by using the pair {Ck, C3,}, m = 1-8, as data
in formula (29). Analytical (K1) and experimental (Kype,) estimates of the spring stiffness.
The symbol (*) means: K < 0. Stiffness values in N/m

Damage D1 Damage D2
m Kgpa X 10° Koxper X 10° Kapa x 108 Koxper X 108
1 2:82224 (*) 11-7369 11-69223
2 290583 1-84565 11-3523 11-37091
3 3-13432 3-04760 14-51221 14-60803
4 3-18127 2:63991 1796205 18-45092
5 881534 13-:05314 60-00963 63-73511
6 *) 39-28373 *) 3993151
7 3-59458 3-94386 15-94803 12:19434
8 311783 2:69218 18-78874 19-40381
Actual value 2:76462 9-59952
TABLE 7

Experimental and analytical frequencies f, of rod 3 (data from Morassi [11]). Abscissa of the

cracked cross-section: s =1125m. (1) EA = 54454 x10®* N, p =204 kg/m, L =30m

(K = ). (2) Kypar = 228783 x 10° N/m. (3) K gar = 9-43470 x 10° N/m. Frequency values in
Hz. Af, % = (f,(model) — f,(exp))/fu(exp) x 100

Undamaged Damage D1 Damage D2

S

Exper. Model (1) 4, %  Exper. Model (2) 4, %  Exper. Model (3) 4, %

8614 8611 0-00 805-7 8057 0-00 737-6 737-6 0-00
17222 17222 0-00 1664-5 1661-1  —0-20 1600-0 15974 —0-16
25829 2583-3 002 25419 25522 0-41 2505-3 2508-6 0-13
34342 3444-4 030 31622 3209-0 1-48 3016:0 3018-8 0-09
43536 43055 —1-10 43322 42626 —1:60 43102 42238 —2-00
51744 51666  —0-15 49611 4966-7 0-11 4812-6 48055 —0-15
6020-0 6027-7 0-13 5750-2 57473  —005 5616:0 5624-3 0-15
6870-5 6888-8 027  6860-2 6888-8 042 68513 6888-8 0-55
7726:4 77499 030 73023 73252 0-31 7095-8 71109 0-21

O 002NN W

material by E and the volume mass density by 7, the mth eigenpair (W,(X), V3, > = ©F,),
m=0,1,2,..., of the bending vibrations of the cracked beam satisfies the following
boundary value problem:

(EIw"(x))" = wZpAw(x), x€(0,s)u(s, L), 47

"

w=0=w" atx=0and x=1L, (48)

where the jump conditions
[w(s)] = [w"(s)] = [w"(s)] =0, (49)
EIw"(s) = K[w'(s)], (50)
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TABLE 8

Determination of the crack location in rod 3 by using the pair {C}, C%,}, m = 1-3, as data in
Sformula (30). Analytical (Suua) and experimental (Soxpe,) estimates of the crack location in the
interval (0, L/2). Actual crack location s = 1-125 m. The symbol (*) means: estimate s¢(0, L/2).
Length in meters

Damage D1 Damage D2
m Sanal Sexper Sanal Sexper
1 1-134 1-146 1-146 1-150
2 0-388 0-340 0-416 0-416
1-112 1-160 1-084 1-084
3 0-151 0-204 0-221 0227
0-849 0-796 0-779 0-773
1-151 1-204 1-221 1-227
TABLE 9

Determination of the spring stiffness K in rod 3 by using the pair {Cy,, C3,.}, m = 1-4, as data
in formula (29). Analytical (K 4,4) and experimental (K,,.,) estimates of the spring stiffness.
Stiffness values in N/m

Damage D1 Damage D2
m Kanal X 109 Kexper X 109 Kanal X 108 Kexper X 108
1 2:50717 2:51753 11-84541 11-88132
2 274212 2:34800 1520423 15-50771
3 3-14460 411534 26.00572 2626323
4 2-74983 2:38855 15-65690 15-86864
Actual value 2-28783 9-43470

hold at the cross-section where the crack occurs. In the equations above I and A represent
the moment of inertia and the area of the cross-section respectively.

If the crack is small, namely Kj is large enough, on proceeding as in reference [3] and
with the above notation, the first order variation of the mth eigenvalue with 1/Kj is given by

su5-5 — _ Mals)” (51)
K

where M,,,(s) = — Elu,,(s) is the bending moment at the cross-section of abscissa s in the mth
(normalized) bending mode of the undamaged beam.

At this stage the problem of identifying the position and severity of the crack from
knowledge of the changes in a pair of natural frequencies can be posed. In the
above-mentioned paper [8], it was shown that knowledge of the first two frequency changes
induced by the damage suffices to identify uniquely the crack location (except for
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symmetrical positions). Here an improvement of such result is presented. Denote by
C5~5 the quantity

ovS~S

Co S=——"—,
B(m + 1)*

(52)

where m > 0 is a non-negative integer and B is the constant

2 2\ 2
B=(EI [=(Z)). (53)
pL\L
It can be proved that, if Cy 5> 0, the measurement of the pair {Cp 5 C5,5}, m =0,
determines uniquely the severity of the damage, e.g., the spring stiffness Ky, and the variable

S = cos2(m + )ns/L of the damage location s. To show this, it suffices to observe that the
eigenpairs of the simply supported uniform beam in bending vibrations are

EI D \* 2
vy S = " <(m+L)n> , uy S(x) = /p—Lsm(m + l)n%, (54)
m=20,1,2,..., and then repeat the same procedure used for the free—free axial vibration

case to obtain expressions (29) and (30) for Kz and S respectively.

Finally, a result similar to that attained at the end of section 3 is valid for cracked beams
in bending also. If m is a non-negative integer, then the measurement of the mth frequency of
the cracked beam under simply supported boundary conditions (S-S) and of the (m + 1)th
frequency for sliding—sliding boundary conditions (SI-SI) (e.g., w'=w"" =0 at x =0 and
x = L) determines uniquely the stiffness Ky of the rotating spring and the position variable
S" = cos 2(m + 1)ms/L, wherein s is the abscissa of the cracked cross-section.

Defining C375' = — 6v35!/Bm* with m > 1, and keeping the conventional meaning of the
symbols stable and with m =0, 1,2 ..., it is possible to attain the following expressions for
the damage parameters:

1
beme ey °
S ——1+4 2 (56)
B 1+ CSS)csest
The latter expression is valid if C355 > 0. If C555 = 0 then S’ = — 1.

6. CONCLUSIONS

This paper has been focused on detecting a single crack from the knowledge of the
damage-induced shifts in a pair of natural frequencies of a vibrating rod. In spite of the
problem being ill-posed, it was found that there are certain situations concerning uniform
rods in which the non-uniqueness of the solution may be considerably reduced by means of
a careful choice of the data. The analysis is based on an explicit expression of the frequency
sensitivity to damage and allows non-uniform bars under general boundary conditions to
be considered. Analytical results agree well with experimental tests on cracked steel rods.
Some of the results are also valid for cracked beams in bending.
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