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This paper deals with the identi"cation of a single crack in a vibrating rod based on the
knowledge of the damage-induced shifts in a pair of natural frequencies. The crack is
simulated by an equivalent linear spring connecting the two segments of the bar. The
analysis is based on an explicit expression of the frequency sensitivity to damage and enables
non-uniform bars under general boundary conditions to be considered. The inverse problem
is generally &&ill-posed'', because even if the system is not symmetrical, cracks in di!erent
locations can still produce identical changes in a pair of natural frequencies. In spite of this,
it is found that there are certain situations concerning uniform rods in which the
e!ects of the non-uniqueness of the solution may be considerably reduced by means of
a careful choice of the data. The theoretical results are con"rmed by a comparison with
dynamic measurements on steel rods with a crack. Some of the results are also valid for
cracked beams in bending. ( 2001 Academic Press
1. INTRODUCTION

This paper focuses on detecting a single crack in a vibrating rod from the knowledge of
damage-induced shifts in a pair of natural frequencies.

In most of the studies of dynamic methods for damage identi"cation, researchers have
resorted to the changes in natural frequency as the diagnostic tool. Frequencies can be
measured more easily than mode shapes, and as a rule they are less seriously a!ected by
experimental errors. In damage-detection problems, two objectives have to be attained: the
location of the damage, and its magnitude or severity. It is known that in beam-like
structures the change in a natural frequency produced by a small single crack may be
represented as the product of two terms, of which the "rst is proportional to the severity and
the second depends solely on the location of the damage (see equations (11) and (51) for
a rod and a beam respectively). This results in an important consequence: the ratios of the
change in di!erent natural frequencies depend only on the damage location, not on its
severity, see Adams et al. [1], Gudmundson [2] and Morassi [3]. Hearn and Testa [4] and
Liang et al. [5] have used this property for a damage localization analysis in beam-like
structures.

Two inverse problems related to damage detection may be posed: (1) determine the
location of a crack from the ratios of the changes in the natural frequencies; and (2)
determine the location and the severity of a crack from the changes in natural frequencies.
In particular, if the undamaged system is completely de"ned and if the damage is simulated
by a linear spring, only two parameters need to be determined, namely the sti!ness K of the
spring and the abscissa s of the cracked cross-section. Such a peculiarity in damage
0022-460X/01/190577#20 $35.00/0 ( 2001 Academic Press
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detection has been noted more or less explicitly elsewhere in the literature and has been
recently emphasized by Vestroni and Capecchi [6] and Vestroni et al. [7]. Therefore, it is
reasonable to investigate the extent to which the measurement of the crack-induced changes
in a pair of natural frequencies can be useful for identifying the damage. By using this set of
data, both problems (1) and (2) are generally poorly de"ned: if the system is symmetrical,
then a crack located at any one of a set of symmetrically placed points will produce identical
changes in natural frequencies. Even if the system is not symmetrical, cracks in di!erent
locations can still produce identical changes to a pair of natural frequencies. In spite of this
poor de"nition of the diagnostic problem, there are certain situations in which the e!ects of
the non-uniqueness of the solution may be considerably reduced thanks to a careful choice
of the data. In a recent paper [8], Narkis has shown that if the damaged system is
a perturbation of the virgin system, namely whenever the crack is very small, the only
information required for accurate crack localization is the variation of the "rst two natural
frequencies caused by the crack. The results were shown for uniform free}free vibrating rods
and for uniform simply supported beams in bending. Narkis has de"ned a closed-form
solution for the crack location. Adams et al. [1] have come to the same conclusions for
uniform free}free rods but have not obtained an explicit relation for the crack location.

The present work develops the results presented in reference [8] in di!erent directions. It
is found that for uniform free}free beams under axial vibration, knowledge of the ratio
between the variations of the 2mth and mth frequencies uniquely determines the position
variable S"cos 2mn s/¸, where s stands for the abscissa of the cracked cross-section and
¸ is the length of the rod. Thus, the ensuing particular case equal to m"1 agrees with the
result achieved by Narkis [8]. Furthermore, the variations of the 2mth and mth frequencies
also allows the sti!ness K of the damage-simulating elastic spring to be uniquely
determined. In both cases, simple closed-form expressions are deduced for S and for K. As
for cantilevers or beams with "xed ends it is borne out that by simultaneously employing
axial frequencies related to di!erent boundary conditions it is still possible to determine
uniquely the damage parameters S and K. The explicit expression for the damage sensitivity
of natural frequencies given in reference [3] plays a crucial role in this analysis. In fact, the
methodology that has been employed does not call for the explicit solution of the eigenvalue
problem for the damaged system, as it focuses only on the knowledge of the eigensolutions
corresponding to the integral con"guration. Such a method is substantially di!erent from
Narkis' [8] and, as a result, the procedure that has been proposed can be also extended to
the analysis of initially non-uniform cracked beams in axial vibration.

The dynamic tests performed on cracked steel rods supported the proposed method for
the solution of the diagnostic problem. Analytical results agree well with experimental tests.
Finally, part of the results above are also valid for cracked beams in bending under simply
supported or sliding}sliding boundary conditions.

2. THEORETICAL RESULTS FOR GENERAL RODS WITH A CRACK

It is assumed that the spatial variation of the free vibration of an undamaged straight rod
of length ¸ is governed by the di!erential equation

(a(x)u@(x))@#u2o(x)u (x)"0, x3 (0, ¸), (1)

where u(x) describes the mode and u is the associated natural frequency. The rod is assumed
to have no material damping, since its e!ect on the natural frequencies is known to be
negligible. The quantities a(x)"EA(x) and o(x) denote the axial sti!ness and the
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linear-mass density of the rod. E is the Young's modulus of the material and A(x) the
cross-section area of the rod. This analysis is concerned with rods for which a(x) is strictly
positive and continuously di!erentiable function of x; o(x) will be assumed to be continuous
and strictly positive function. The end conditions are taken as

a (0)u@(0)!hu(0)"0, a(¸)u@(¸)#Hu(¸)"0, (2, 3)

where h and H are the sti!nesses of the elastic end supports. Three important cases can be
distinguished:

Supported (S): h"R"H, u (0)"0"u (¸), (4)

Free (F): h"0"H, u@(0)"0"u@(¸), (5)

Cantilever (C): h"R, H"0, u (0)"0"u@(¸). (6)

Modes and frequencies are the eigensolutions of the boundary value problem (1)}(3), and
the mth eigenpair of the undamaged rod, m*0, is denoted by (u

m
(x), v

m
,u2

m
). It is well

known that for such a (x) and o (x), and end conditions (2) and (3), there is an in"nite
sequence Mv

m
N=
m/0

such that 0)v
0
(v

1
(2 with lim

m?=
v
m
"R. It is decided to

designate the elements v
0
and u

0
(x) of the 0th eigenpair, respectively, fundamental eigenvalue

and fundamental vibrating mode.
Suppose that a crack appears at the cross-section of abscissa s3 (0, ¸). Assuming that the

crack remains always open during the longitudinal vibration, by modelling it as a massless
translational spring, at x"s, see references [9, 10], the eigenvalue problem for the damaged
rod is the following:

(a(x)w@(x))@#u2
d
o(x)w (x)"0, x3 (0, s)X (s, ¸), (7)

where, in addition to the boundary conditions (2) and (3) it is necessary to consider the jump
conditions

[w@(s)]"0, K[w(s)]"a (s)w@(s) (8, 9)

that are to hold at the cross-section where the crack occurs. In equations (8) and (9)
[/(s)],(/(s`)!/(s~)) denotes the jump of the function /(s) at x"s. The expression K is
the spring sti!ness and can be related to the crack geometry as suggested, for example, by
Freund and Herrmann [9] or by Dimarogonas and Paipetis [10]. The undamaged system
corresponds to KPR or e,1/KP0.

If the crack is small, namely e is small enough, then the "rst order variation of the natural
frequencies with e may be found as shown in reference [3]. By taking

v
dm
"v

m
#e (*v

m
), (10)

the "rst variation of the mth eigenvalue is given by

dv
m
,e (*v

m
)"!

(a(s)u@
m
(s))2

K
, (11)

where the normalizing condition :L
0

o(x)u2
m
(x) dx"1 has been taken into account. That is,

the change in a natural frequency produced by a single notch may be expressed as the
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product of two terms, the "rst of which is proportional to the severity and the second
depends only on the location of the damage. In particular, this second term is the square of
the axial force

N
m
(s),a(s)u@

m
(s) (12)

in the mth mode shape of the undamaged rod evaluated at the cracked cross-section.
Equation (11) has an important consequence; the ratios of the change in two di!erent

natural frequencies depend only on the damage location, not on its severity. That is

dv
n

dv
m

"A
N

n
(s)

N
m
(s)B

2
,f (s) , (13)

where s3 (0, ¸) and dv
m
(0 (if dv

m
"0, the possible crack locations coincide in the node

points of the axial force N
m
(x) resulting from the mth vibrating mode of the integral rod). It

is to be noted that the methodology pursued by Narkis [8] (section 4) has likewise led to
a relation similar to equation (13) (see equation (18), (18a) and (18b) in the paper in
question). The relation above has been achieved in reference [8] by considering
a linearization of the characteristic polynomial explicitly referred to the cracked rod, in case
the damaged system should be a perturbation of the undamaged one. Adapting such
a method to the analysis of non-uniform beams is likely to be di$cult, while the use of
expression (13) makes it possible to overcome such hindrance.

The problem related to the crack location lies in determining the solutions of equation
(13) for a "xed (measured) value of the ratio dv

n
/dv

m
. It follows from equation (13) that all,

and the only possible, locations of the crack are the abscissas of the points of the
f (x)"(N

n
(x)/N

m
(x))2 diagram intersecting with the horizontal straight line drawn parallel

to the abscissa axis at a distance equal to the ratio dv
n
/dv

m
. On a practical level, once the free

vibration problem related to the integral rod is solved, the behaviour of f (x) is known and
therefore it is possible, via numerical methods for example, to determine the solutions of
equation (13).

In order to infer some qualitative properties of the damage location problem, in the
remainder of this section the behaviour of the function f (x) will be investigated. In order to
simplify the analysis it is decided to investigate in detail the case of a free rod (F) under the
assumption that o(x),cA(x) in the axial motion equation (1), where c is the (uniform)
volume mass density. The method to be accounted for can be easily extended in such a way
as to take general boundary conditions.

Firstly, the case m"1 and n*2 is considered, which means the variations in the "rst and
in the nth frequencies are taken as data. In the following, it is worth pointing out that if
(u(x), u2) is an eigenpair of the eigenvalue problem (1)}(5) for the undamaged rod, then
(N(x)"au@(x), uJ 2,u2c/E) is an eigenpair of Dirichlet's eigenvalue problem

(aJ (x)N@(x))@#uJ 2aJ (x)N(x)"0, x3(0, ¸),

N(0)"0"N(¸), (14)

wherein aJ (x),1/a(x). Through dividing by a(x)"EA(x) and subsequently di!erentiating
equation (1) once the result obtained is

A
1

a(x)
N@(x)B

@
#u2

c
E

u@(x)"0.
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Multiplying and dividing the term with u@(x) by a(x) gives the expression we have in
equation (14)

1
. The boundary conditions (14)

2
directly derived from the conditions for u (x)

for the free}free bar. By virtue of well-known properties of the solutions of the
Sturm}Liouville operator (14)

1
, N

n
(x) has (n!1) simple zeroes Mx(i)

n
Nn~1
i/1

in the interval
(0, ¸), say x(1)

n
(x(2)

n
(2( x(n~1)

n
. In addition, x(0)

n
"0, x(n)

n
"¸. Clearly, f (x)*0 in (0, ¸)

and f (x(i)
n

)"0, i"1, n!1.
It can now be shown that f (x) is a well-de"ned function in the interval [0, ¸]. For this

purpose it is su$cient to note that N
1
(x)O0 in (0, ¸) and the following limits prove to be

"nite: lim
x?0` f (x), lim

x?L~ f (x). Consider as an example the limit lim
x?0` f (x) which

in terms of its being determined is exactly like the other limit. By applying twice the
de l'Ho( spital's rule it is determined that

lim
x?0`

f (x)" lim
x?0`

(N@
n
(x))2#N

n
(x)NA

n
(x)

(N@
1
(x))2#N

1
(x)NA

1
(x)

. (15)

As a result, the indeterminate form has been solved. By using the di!erential equation (1) to
determine N@

n
(x), N@

1
(x), while bearing in mind that by virtue of one eigensolutions property

of (1)}(5) u
n
(0)O0 for each n, it follows that

lim
x?0`

f (x)"A
u2

n
u2

1
B
2

A
u
n
(0)

u
1
(0)B

2
. (16)

Likewise

lim
x?L~

f (x)"A
u2

n
u2

1
B
2

A
u
n
(¸)

u
1
(¸)B

2
. (17)

At this stage it can be asserted that: (A) f (x) is strictly decreasing in the interval (x(0)
n

, x(1)
n

);
f (x) has a single relative maximum point in each interval (x(i)

n
, x(i`1)

n
), i"1, n!2, which can be

designated as m(i)
n
, and f (m(i)

n
)"(u2

n
/u2

1
)2 (u

n
(m(i)

n
)/u

1
(m(i)

n
))2 ; f (x) is strictly increasing in the

interval (x(n~1)
n

, x(n)
n

).
The existence and the number of solutions of equation (13) rely naturally on dv

n
/dv

1
as

well as on the values that f (x) takes at the local maximum points. The former assertion (A),
which shall be demonstrated hereinafter, allows some qualitative properties of the solutions
to be proved. In fact, from the hypothesis that dv

n
(0,

(1) there is exactly one crack location, if there exists one, in (x(0)
n

, x(1)
n

) which corresponds
to the ascribed ratio dv

n
/dv

1
;

(2) there are exactly two crack locations, if they exist, in (x(i)
n
, x(i`1)

n
) (which may coincide

if f (m(i)
n

)"dv
n
/dv

1
), i"1, n!2, corresponding to the ascribed ratio dv

n
/dv

1
;

(3) the property stated in (1) is thus valid for the interval (x(n~1)
n

, x(n)
n

).

It is to be noted that the assertion (A) directly results in an a priori estimate of dv
n
/dv

1
,

that is

dv
n

dv
1

)max M f (m(i)
n

), i"1, n!2; f (0); f (¸)N, (18)

the variation in the nth frequency cannot be on some accounts much greater than the
variation in the "rst frequency. Owing to the uniqueness of the solution of equation (13) the
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most &&unfavourable'' situation coincides when dv
n
/dv

1
(minM f (m(i)

n
), i"1, n!2; f (0); f (¸)N:

in fact, in this case there are (n!2)2#2"2n!2 possible locations for the crack and they
all exactly lead to the same ratio dv

n
/dv

1
. What is described above explains why as a rule the

employment of a pair of high frequencies increases the number of possible solutions of the
damage location problem. In detail, it has been shown that the number of the possible
damage locations corresponding to the same ratio dv

n
/dv

1
between the variations in the pair

of frequencies goes on increasing the number of the points of zero-sensitivity to the damage
for the nth frequency. Such points coincide with the nodes of the axial force N

n
(x) and this

way their number increases as the mode order increases. It is to be noted that if n"2, and
on condition that the beam is symmetrical, the crack location can be uniquely determined
(except for symmetrical positions), as it can be read in the next section dealing with the
perticular case of the uniform beam.

The present analysis is completed by demonstrating the assertion (A). Without a!ecting
the character of generality it can be assumed that N

1
(x)'0 in (0, ¸) and N

n
(x)'0 in

(x(0)
n

, x(1)
n

). In order to prove the monotonicity of f (x) in (x(0)
n

, x(1)
n

), f @(x) is calculated and it is
thus demonstrated that f @(x)(0 within this interval. Accordingly, it follows that

f @(x)"
2N

1
(x)N

n
(x)

aJ (x)N4
1
(x)

g(x), (19)

wherein g(x) is given by the expression

g(x),(N
1
(aJ N@

n
)!N

n
(aJ N@

1
)) (x). (20)

Taking into consideration equation (14)
1

it is determined that

g@(x)"(uJ 2
1
!uJ 2

n
)aJ (x)N

1
(x)N

n
(x) . (21)

On considering that N
1
(x)N

n
(x)'0 in (x(0)

n
, x(1)

n
) and uJ 2

1
(uJ 2

n
it is veri"ed at once that

g@(x)(0 in (x(0)
n

, x(1)
n

). But g(x(0)
n

)"0 and then g(x)(0 in the entire interval (x(0)
n

, x(1)
n

). It
emerges that f @(x)(0 in (x(0)

n
, x(1)

n
), which was to be demonstrated.

At this point the attention must be diverted to the subsequent interval (x(1)
n

, x(2)
n

). A direct
calculation shows that g(x(1)

n
)"aJ N

1
N@

n
(x(1)

n
)(0 and g(x(2)

n
)"aJ N

1
N@

n
(x(2)

n
)'0. Bearing in

mind that N
1
(x)N

n
(x)(0 in (x(1)

n
, x(2)

n
), then g@(x)'0 in the interval in question. As

a consequence exactly one single point of (x(1)
n

, x(2)
n

) wherein g(x) vanishes can be found,
which can be designated as m(1)

n
. It is therefore possible to draw the conclusion that f @(x)'0

in (x(1)
n

, m(1)
n

), f @(m(1)
n

)"0 and f @(x)(0 in (m(1)
n

, x(2)
n

), which is the thesis to be demonstrated
solely for the second interval.

It su$ces to repeat the steps of the procedure described above to deal with the remaining
intervals. Finally, taking into consideration that g(m(i)

n
)"0 and bearing in mind de"nition

(12) of the axial force N, it can be shown that f (m(i)
n

)"(u2
n
/u2

1
)2 (u

n
(m(i)

n
)/u

1
(m(i)

n
))2, which

establishes assertion (A).
For reasons of completeness, the case in which the data are represented by the variations

in the m and nth frequencies, wherein n'm'1, is brie#y discussed. Without a!ecting the
character of generality, consider m"2 and assume that dv

2
(0. The only relevant

di!erence from the former case in which m"1 is due to the fact that the second vibrating
mode in the integral rod turns out to have a point of zero-sensitivity to the crack, e.g.,
N

2
(x(1)

2
)"0 for x(1)

2
3 (0, ¸). It is easy to verify that the former procedure can also be

adapted for this situation, provided there should be a distinction between the "rst case
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wherein x(1)
2

does not coincide with any node point of N
n
(x) (which occurs, for instance,

when n"3), and the second case where x(1)
2
"x(i)

n
for a certain value of i. Leaving aside the

details of the demonstration, it follows from the "rst case that:

(1)@ There are always two crack locations in the interval whose ends coincide with the
nodes of N

n
(x) which are adjacent to x(1)

2
.

(2)@ The other intervals (x(i)
n
, x(i`1)

n
), 1)i)n!2, have exactly two locations of the

crack, if they exist, which correspond to the ascribed ratio dv
n
/dv

2
(which may

coincide if f (m(i)
n

)"dv
n
/dv

2
).

(3)@ As for the intervals at the ends of the bar (x(0)
n

, x(1)
n

) and (x(n~1)
n

, x(n)
n

) what was
speci"ed in (1) and (3) can be applied.

It follows from the second case that:

(1)A Two locations of the crack, if they exist (which may coincide if f (m(i)
n
)"dv

n
/dv

2
)

belong to the interval (x(i~1)
n

, x(i`1)
n

).
(2)A As for the other intervals, including those at the ends, what was stated in (1)@ and (2)@

can be applied.

It is worth noticing that, since the second mode has a point of zero sensitivity to damage, the
ensuing consequence is a lack of control over dv

n
/dv

2
as exempli"ed in equation (18).

3. THEORETICAL RESULTS FOR UNIFORM RODS WITH A CRACK

In section 2, it was shown that the problem of locating a crack in a vibrating rod from
knowledge of the damage-induced shifts in a pair of natural frequencies is generally poorly
de"ned: if the system is symmetrical, then a crack at any one of the set of symmetrically
placed points will produce identical changes in natural frequencies. Even if the system is not
symmetrical, cracks in di!erent locations can still produce identical changes in a pair of
natural frequencies. In spite of this, it will be shown that there are certain situations in which
the e!ects of the non-uniqueness of the solution may be considerably reduced by means of
a careful choice of the data.

The simple but very common case of uniform rods, e.g., rods for which a"a(x) and
o"o(x) are constants on the interval (0, ¸) will be considered here. The most exhaustive
results concern free vibrating rods (F). CF

m
is denoted by

CF
m
"!

dvF
m

Bm2
, (22)

where m is a positive integer and B is the constant

B"AaS
2

o¸
n
¸B

2
. (23)

It can be proved that, if CF
m
'0, the measurement of the pair MCF

m
, CF

2m
N, m*1, uniquely

determines the severity of the damage, e.g., the spring sti+ness K, and the variable
S"cos 2mn s/¸ of the damage location s.

The eigenpairs of a free uniform rod (F) are given by

vF
m
"

a

oA
mn
¸ B

2
, uF

m
(x)"S

2

o¸
cos mnx/¸, (24)
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m"0, 1, 2,2. The rigid mode uF
0
(x) obviously is always insensitive to damage. Putting the

expressions of vF
m

and uF
m
(x) for m*1 into equation (11) gives

CF
m
"

1

K
sin2 mn

s

¸

(25)

and, using standard trigonometric identities, gives

K(4CF
m
!CF

2m
)"4K2(CF

m
)2. (26)

Since CF
1
'0, from the identity above it follows that

4CF
1
!CF

2
'0, (27)

and

if CF
m
'0 then 4CF

m
!CF

2m
'0, m*2. (28)

Inequalities (27) and (28) represent a particular case of inequality (18) in uniform free}free
rods. Let it be assumed that CF

m
'0. Equation (26) can be solved for the damage severity:

K"

1!CF
2m

/4CF
m

CF
m

. (29)

Note that conditions (27) and (28) guarantee that K takes positive values. By inserting
expression (29) of K into equation (25) the damage can be localized:

S"
CF

2m
2CF

m

!1, (30)

where S3 [!1, 1) because of the inequalities (27) and (28). Note that the ratio of the "rst
two natural frequency changes is su$cient to localize the damage (except for symmetrical
positions). Finally, if CF

m
"0 for a certain m*2, then from equation (25) it follows that

S"1; that is the crack is located in one of the points of zero-sensitivity of the mth mode, and
K remains undetermined. This establishes the assertion.

The preceding result improves existing results about crack localization in di!erent
directions. One of the results by Narkis [8] is a particular case concerning the unique
localization of the damage based on knowledge of the "rst two frequencies of a free}free
vibrating rod (see equation (26) in reference [8]). However, it is to be noted that the
existence condition on S for m"1, which corresponds to inequality (27) in the present
paper, is not explicitly acknowledged in the work by Narkis (e.g., our condition (27) is
equivalent to the inequality R

A21
)4, where R

A21
is de"ned by equation (24) in reference

[8]).
Expressions (29) and (30) for the damage parameters indicate that the pair of natural

frequencies mth and 2mth plays a crucial role when localizing the damage. In fact, provided
that the mth frequency proves to be sensitive to damage, that is CF

m
'0, the pair MCF

m
, CF

2m
N

uniquely determines the damage severity, namely the sti!ness K. Quite surprisingly the
expression for K turns out to be the same for all pairs of values MCF

m
, CF

2m
N. Finally, it is

shown that the number of the possible crack locations, corresponding to the same ratio
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CF
2m

/CF
m
, increases as the order m of the modes assessed increases, which accounts for the

recourse to &&low'' frequencies for the problem of damage localization.
The preceding result does not consider the problem that occurs when a pair of values

such as MCF
k
, CF

l
N with lO2k is chosen as data. It can be shown that in these cases the

solution of the inverse problem is generally non-unique (even by leaving symmetrical
positions aside). Attention is focused on the crack localization problem and, as an example,
the values of the pairs MCF

1
, CF

3
N and MCF

1
, CF

4
N are regarded as data.

Case 1. Initially uniform rod (F) with data MCF
1
, CF

3
N. Equation (25) can be rewritten in

function of the variable y,cos 2n s/¸ for m"1, 3. Then one has the following non-linear
system:

1!y"2KCF
1
, 1!4y3#3y"2KCF

3
, (31)

to be solved with respect to K'0 and y3[!1, 1) for given data MCF
1
, CF

3
N. A direct

calculation shows that

9CF
1
!CF

3
'0. (32)

In fact, equation (31) yields

2K(9CF
1
!CF

3
)"4(y!1)2(y#2)

and the right-hand side of the expression above is always strictly greater than zero for
y3[!1, 1). Denoting by g the ratio

g,
CF

3
CF

1

, (33)

the damage location problem consists of solving the polynomial equation

(2y#1)2"g (34)

in the interval [!1, 1) for a given g3[0, 9). For reasons of symmetry, consider only the
damage location s in the interval (0, ¸/2]. If g3 (1, 9) there is one single solution yJ

1
3 (0, 1)

of equation (34), which corresponds to s
1
3 (0, ¸/4). If g3 (0, 1] there are two distinct

solutions y
1
3[!1,!1/2), y

2
3 (!1/2, 0], which, respectively, correspond to s

1
3 (¸/3, ¸/2]

and s
2
3[¸/4, ¸/3). Finally, if g"0 it follows that y

1
"y

2
"!1/2 and s

1
"s

2
"¸/3.

Therefore, should the crack be located within the "rst quarter of the beam adjacent to the
free end, the measure of the "rst and third frequencies determines uniquely the location of
the damaged cross-section; should the crack be located within the quarter of the beam
(¸/4, ¸/2) and sO¸/3, there are two di!erent locations corresponding to the same ratio g.

Case 2. Initially uniform rod (F) with data MCF
1
, CF

4
N. Following the same procedure used

for Case 1 and adopting the same notation, the solutions of the polynomial equation are

r (y),8y2(y#1)"g, (35)

where g,CF
4
/CF

1
(16 and y3[!1, 1). r(y) has a local maximum at y

max
"!2/3

(r(y
max

)"32/27) and a local minimum at y
min

"0 (r(y
min

)"0). Focusing attention on
one-half of the beam for reasons of symmetry, if g proves to be &&adequately sized'',
g'32/27, the measurement of the "rst and fourth frequencies localize the crack in a unique
manner; if 0(g(32/27 there are three di!erent locations of the crack that correspond to
the same ratio g; "nally, if g"32/27 and if g"0 there are two distinct possible locations.
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The analysis has hitherto been related to uniform beams under axial vibration with free
ends and it has been borne out that the "rst two frequencies allow the crack (except for
symmetrical positions) to be uniquely identi"ed. Such a result does not prove true if
di!erent boundary conditions, for example (C) or (S), are being considered. For instance, in
case (C), when the crack is located in the half of the rod adjacent to the "xed end, there are
two distinct locations corresponding to the same ratio between the variations in the "rst
two frequencies, as already asserted by Narkis [8] (section 4.2, equation (25)). Within these
situations it is possible to apply the same procedure used for analyzing Cases 1 and 2.

An alternative method of proceeding lies in resorting at the same time to frequency
measurements on the cracked rod which derive from di!erent boundary conditions. This
way it is entirely feasible to recover the character of uniqueness for the solution of the
diagnostic problem.

Attention is again concentrated on initially uniform rods and the data resulting from
boundary conditions of the types (S) and (F) are "rst considered. There emerges that: the
measurement of the (m#1)th frequency in the cracked rod under boundary conditions of the
type (F) and of the mth frequency under boundary conditions of type (S), for m*0, determines
uniquely the severity of the crack and the location variable S@"cos 2(m#1)n s/¸, where
s stands for the abscissa of the cracked cross-section.

The eigenpairs of a supported uniform rod (S) are given by

vS
m
"

a

o A
(m#1)n

¸ B
2
, uS

m
(x)"S

2

o¸
sin(m#1)nx/¸, (36)

m"0, 1, 2,2 De"ne CS
m
,!dvS

m
/B(m#1)2. By using a standard trigonometric identity in

the system

CF
m`1

"

1

K
sin2(m#1)n s/¸, CS

m
"

1

K
cos2 (m#1)n s/¸ , (37)

it follows that

K"

1

CF
m`1

#CS
m

. (38)

Taking into consideration the expression of K if, for example, CS
m
'0, then

S@"!1#
2

1#CF
m`1

/CS
m

. (39)

Otherwise, if CS
m
"0 then S @"!1. It turns out that the damage is uniquely determined

(except for symmetrical positions) by the measurement of the pair MCS
0
, CF

1
N. The same result

is valid when the pair MCS
m
, CF

2(m`1)
N, m*0, is considered as data. In this case, if CS

m
'0 then

4CS
m
!CF

2(m`1)
'0 and one has the following expressions for the damage parameters:

K"

1!CF
2(m`1)

/4CS
m

CS
m

, S @"1!
CF

2(m`1)
2CS

m

. (40, 41)

A similar result holds true also when frequency measurements are derived from (F) and
(C) boundary conditions. In this case: from the knowledge of the mth frequency in the cracked
rod under boundary conditions (C) and of the (1#2m)th frequency under boundary conditions
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(F) it is possible to uniquely determine the sti+ness K and the position variable
SA"cos(1#2m)ns/¸, m"0, 1, 2,2.

Indeed, bearing in mind that the eigenpairs in case (C) are given by

vC
m
"

a

o A
(1#2m)n

2¸ B
2
, uC

m
(x)"S

2

o¸
sin(1#2m)nx/2¸, (42)

m"0, 1, 2,2, the system corresponding to equation (37) is as follows:

CF
1`2m

"

1

K
sin2(1#2m)ns/¸, CC

m
"

1

K
cos2(1#2m)ns/2¸, (43)

where CC
m
,!

dvC
m

B ((1#2m)/2)2
. By proceeding as exempli"ed above, it follows that

K(4CC
m
!CF

1`2m
)"4K2(CC

m
)2. (44)

If CC
m
'0 then 4CC

m
!CF

1`2m
'0, thus obtaining

K"

1!CF
1`2m

/4CC
m

CC
m

, SA"1!
CF

1`2m
2CC

m

. (45, 46)

4. EXPERIMENTS

The preceding sections have shown how to employ the measurement of a pair of axial
frequencies of a cracked rod so as to assess the location as well as the severity of the damage.
Aiming to account for the prospective practical use of the results above within the analysis
of real cases, the present section is devoted to outlining some applications of experimental
character.

Before bringing forward the results it is appropriate to make some remarks. The
conclusions drawn in the preceding sections, and the respective identi"cation technique,
have been inferred from qualitative and quantitative properties underlying the analytical
model ruled by equations (7)}(9) for the cracked rod in the case of minor damage. At this
point, it is known that as a rule the mono-dimensional analytical model, which is based on
the classical theory regarding beams under axial vibration and on the macroscopic
description of the notch, provides an e$cient assessing of the frequencies in the lower
section of the spectrum, whereas it gradually lacks accuracy on increasing of the order of
vibrating modes. Such a feature suggests that the employment of lower frequencies in the
application, for example, of formulae (29) and (30) should guarantee a more accurate
assessing of the damage parameters. From this point of view, choosing the "rst pair of
frequencies turns out to be optimal, even though, as shall be highlighted within the second
experiment, under certain circumstances one of the frequencies in question may be subject
to serious modelling errors. If such is the case, it is safer to resort to frequency pairs of higher
order also.

The second aspect concerns the perturbative character of the present analysis. The work
hypothesis, as stated beforehand in section 2, is that the crack should be small, namely the
cracked con"guration should be a perturbation of the undamaged one. Such a hypothesis is
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reasonable from the practical point of view, in that it is crucial to be in a position to identify
correctly the damage as it arises, whilst on the other hand the crack-induced variations in
the frequencies prove to be small only in the case of low vibrating modes. In fact, it can be
noted in expression (11) that the frequency variation caused by the crack increases as the
order of the mode increases. Such a mutual relation is in agreement with a general property
proved in reference [11] according to which the high-frequency spectrum of the cracked rod
splits into two branches corresponding to the asymptotic course of the spectrum of the two
rod segments adjacent to the cracked cross-section (under adequate boundary conditions).
The asymptotic separation of the spectrum is more heavily marked in the case of severe
damage. Also, the latter aspect suggests the use of lower frequencies for the damage
identi"cation.

Summing up, the technique when applied to real cases is expected to yield the more
reliable results when the damage is less severe and the lower the order of the frequencies
considered. Furthermore, it is worth noting that a relevant factor is represented by possible
measurement and modelling errors to which the technique, as shall be seen, seems to be
sensitive. Some applications to axially vibrating bars shall be considered here. All the
experimental models consisted of steel bars under free}free (F) boundary conditions. Every
specimen was damaged by saw-cutting the transversal cross-section. The width of each
notch was equal to 1)5 mm and, because of the small level of the excitation, during the
dynamic tests each notch remains always open.

The "rst model (rod 1), in Figure 1(a), is a steel rod of square solid cross-section. By using
an impulsive dynamic technique, the "rst 30 natural frequencies of the undamaged bar and
of the bar under a series of three damage con"gurations (D1, D2 and D4) were determined.
The rod was suspended by two steel wire ropes to simulate free}free boundary conditions.
The excitation was introduced at one end by means of an impulse force hammer, while the
axial response was measured by a piezoelectric accelerometer "xed in the centre of an end
cross-section of the rod. Vibration signals were acquired by a dynamic analyser and then
determined in the frequency domain to measure the relevant frequency response term
(inertance). The well-separated vibration modes and the very small damping allowed
indenti"cation of the natural frequencies by means of the single mode technique; see
reference [11] (section 5, second experiment) for a complete account of the experiment. The
damage con"gurations were obtained by introducing a notch of increasing depth at
s"1)00 m from one end. Table 1 compares the experimental natural frequencies and their
corresponding analytical estimates for the undamaged and damaged rod. For the de"nition
of the analytical model for the damaged rod, the theoretical value of the sti!ness K, for each
damage con"guration, was obtained by assuming that the position s of the damage is
known and by taking the measured value for the fundamental elastic frequency of the
damaged rod. The analytical model turns out to be extremely accurate for all the
con"gurations under investigation and the percentage discrepancy between the measured
and the analytical values of the natural frequencies is lower than 1% within the 30th
vibrating mode. The severity and the location of the damage have been achieved by
applying the formulae (29) and (30). The results of the identi"cation are summed up in
Tables 2 and 3. With reference to the localization of the notched cross-section the accuracy
of the method proves to be satisfactory, even though the discrepancy between assessed
damage location and actual damage location becomes more relevant when experimental
data are resorted to (see Table 2). It is pointed out that the inaccuracy resulting from the
pair MCF

3
, CF

6
N is due to the location of the notch in proximity to a zero-sensitivity point of

the third vibrating mode (and, as a result, of all the vibrating modes with an order which is
a multiple of three). This aspect also prejudices the reliability in assessment of the constant
K whenever it is used for the identi"cation of a frequency that is associated with a vibrating



TABLE 1

Experimental and analytical frequencies f
n
of rod 1 (data from Morassi [11]). Abscissa of the

cracked cross-section: s"1)000 m. (1) EA"9)9491]107 N, o"3)735 kg/m, ¸"2)925 m
(K"R). (2) K

anal
"3)09119]1010 N/m. (3) K

anal
"7)84984]109 N/m. (4) K

anal
"

4)37183]108 N/m. Frequency values in Hz.

n ;ndamaged Damage D1 Damage D2 Damage D4

Exper. Model (1) Exper. Model (2) Exper. Model (3) Exper. Model (4)

1 882)25 882)25 881)5 881)5 879)3 879)3 831)0 831)0
2 1764)6 1764)5 1763)3 1763)1 1759)0 1759)2 1679)5 1680)1
3 2645)8 2646)8 2644)0 2646)7 2647)0 2646)7 2646)5 2645)4
4 3530)3 3529)0 3526)8 3525)7 3516)5 3516)2 3306)0 3308)6
5 4411)9 4411)3 4408)8 4408)2 4400)0 4399)5 4250)0 4251)1
6 5293)9 5293)5 5294)3 5293)3 5295)3 5292)9 5287)8 5282)3
7 6175)4 6175)8 6168)8 6169)7 6150)3 6151)8 5808)5 5802)5
8 7056)7 7058)0 7052)0 7053)7 7039)5 7041)6 6864)3 6867)7
9 7937)9 7940)3 7937)5 7939)7 7938)0 7938)2 7909)5 7901)4
10 8819)9 8822)5 8809)8 8813)4 8782)0 8786)5 8340)0 8341)1
11 9702)7 9704)8 9697)3 9699)8 9682)8 9685)7 9503)3 9509)8
12 10583)8 10587)0 10582)8 10585)9 10581)3 10582)3 10514)8 10497)8
13 11464)3 11469)3 11449)0 11457)0 11410)5 11420)9 10933)5 10928)6
14 12345)2 12351)5 12339)5 12346)3 Not

available
12331)5 12158 12166

15 13224)4 13233)8 13222)8 13231)5 13322)0 13224)8 13098 13077
16 14 104 14 116 14 087 14 101 14 039 14 056 13 543 13 554
17 14 985 14 998 14 979 14 993 14 964 14 979 14 811 14 829
18 15 862 15 881 15 860 15 877 15 850 15 865 15 676 15 648
19 16 740 16 763 16 721 16 744 16 662 16 691 16 177 16 201
20 17 620 17 645 17 616 17 640 17 596 17 628 17 464 17 497
21 18 496 18 527 18 488 18 521 18 478 18 504 18 237 18 216
22 19 372 19 410 19 351 19 388 19 283 19 328 18 820 18 860
23 20 248 20 292 20 245 20 288 20 227 20 277 20 111 20 168
24 21 124 21 174 21 121 21 166 21 102 21 139 20 801 20 786
25 21 999 22 056 21 978 22 033 21 906 21 966 21 441 21 527
26 22 870 22 939 22 863 22 936 22 872 22 927 22 815 22 841
27 23 744 23 821 23 741 23 809 23 724 23 773 23 357 23 356
28 24 621 24 703 24 599 24 677 24 532 24 606 24 137 24 197
29 25 495 25 585 25 498 25 583 25 512 25 578 Not

available
25514

30 26 372 26 468 26 367 26 452 26 344 26 405 25 919 25 929
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mode with a multiple-of-three order (see Table 3). Moreover, in this case the accuracy of the
estimate for K generally becomes worse when the identi"cation is based on experimental
data. Finally, the expectations are further con"rmed, as the assessment of K proves
un-reliable when the crack is very severe, and such is the case in the con"guration D

4
(see

Table 3, columns 6 and 7). In this case, the discrepancies could also be caused by the fact
that bending vibrations are also excited.

In the second experiment, the steel rod of series HE100B (rod 2) shown in Figure 1(b) was
considered. By adopting an experimental technique similar to that used for rod 1, the
undamaged bar and two damaged con"gurations obtained by introducing a notch of
increasing severity at the cross-section 0)7 m far from one end were studied (see reference



Figure 1. (a)}(c). Experimental models and damage con"gurations: (a) rod 1; (b) rod 2; (c) rod 3. Length in mm.
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[12] for more detail on the experiments). Table 4 shows the measured and analytical values
for the "rst 16 modes. The analytical model for the damaged rod was obtained in the same
way as before assuming that the damage location is known and determining K by taking the
measured value for the analytical fundamental elastic frequency. The analytical model
generally "ts well with the real case of the notched rod, even if the percentage errors are
more relevant than those of the "rst experiment. Note that the second and ninth frequencies
for D

1
and the seventh frequency for D

2
are a!ected by relatively large errors. The results of

the damage localization are reported in Table 5. It can be noted that the employment of the
second frequency, which is more a!ected by modelling errors, prejudices the reliability of
the identi"cation based on the experimental data. In such cases, it is quite advisable to
resort to pairs of higher frequency, such as the pair MCF

3
, CF

6
N, and subsequently intersect the

results to identify the beam section which is damaged. Also, the estimates obtained for
K con"rm this aspect (see Table 6). Moreover, as expected, the estimates for K are already
quite rough for damage con"guration D

2
even if low frequencies are used in identi"cation.

This is because the rod provides an example for which the damage is rather severe from the
beginning.

The third experimental model (rod 3), shown in Figure 1(c), has the same cross-section as
the rod assessed in the former experiment (see reference [11] for further details). The
damage is a notch of increasing severity in the cross-section located 1)125 m from one end.
Table 7 compares the "rst eight measured frequencies for all test con"gurations with their
analytical estimates. The analytical model of the damaged rod is as before. The results of the



TABLE 2

Determination of the crack location in rod 1 by using the pair MCF
m
, CF

2m
N, m"1}3, as data in

formula (30). Analytical (s
anal

) and experimental (s
exper

) estimates of the crack location in the
interval (0, ¸/2). Actual crack location s"1)0 m. ¹he symbol (*) means: estimate sN(0, ¸/2).

¸ength in meters

Damage D1 Damage D2 Damage D4

m s
anal

s
exper

s
anal

s
exper

s
anal

s
exper

1 0)993 1)012 1)003 0)989 1)023 1)021
2 0)464 0)443 0)460 0)457 0)449 0)448

0)998 1)019 1)002 1)005 1)013 1)015
3 0)325 (*) 0)163 0)366 0)089 (*)

0.650 (*) 0)812 0)609 0)966 (*)
1)300 (*) 1)138 1)341 0)984 (*)

TABLE 3

Determination of the spring sti+ness K in rod 1 by using the pair MCF
m
, CF

2m
N, m"1}15, as data

in formula (29). Analytical (K
anal

) and experimental (K
exper

) estimates of the spring sti+ness.
¹he symbol (*) means: K(0. Sti+ness values in N/m

Damage D
1

Damage D
2

Damage D
4

m K
anal

]1010 K
exper

]1010 K
anal

]109 K
exper

]109 K
anal

]108 K
exper

]108

1 3.06884 3.13548 7.90078 7.77130 4.78262 4.77243
2 3.02513 3.06369 7.91843 7.42762 4.92504 4.86351
3 67.52010 5.14409 225.10450 (*) 5.22612 (*)
4 3.04629 2.85448 7.88915 7.35445 5.00392 4.92191
5 3.06546 2.87083 7.88033 7.60444 5.98934 5.97505
6 28.13585 (*) 6.30075 (*) 1.22442 1.89584
7 3.07808 2.84088 7.85500 Not available 5.43360 5.51616
8 3.15008 2.80207 6.06778 7.38615 8.09784 8.07323
9 7.50478 25.36635 6.16743 (*) 17.74320 17.66690
10 3.07268 2.82662 7.85898 7.30876 6.15636 6.16281
11 2.97266 3.14878 8.02601 7.35128 11.09590 10.97391
12 2.98030 28.54265 5.34237 (*) 18.60771 21.92602
13 3.07655 2.40688 7.82641 7.30516 7.21803 7.42754
14 3.03196 3.82819 8.29258 Not available 15.06012 15.35033
15 25.56355 17.18915 6.29049 (*) 16.52263 19.87444

Actual value 3.09119 7.84984 4.37183
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damage identi"cation are summarized in Tables 8 and 9, and they essentially con"rm those
obtained for the previous case.

5. A BENDING VIBRATION CASE

In the previous sections, the inverse problem of identifying a crack in an axially vibrating
beam from frequency measurements has been discussed. Here a cracked beam in bending



TABLE 4

Experimental and analytical frequencies f
n
of rod 2 (data from Biscontin et al. [12]). Abscissa of

the cracked cross-section: s"0)700 m. (1) EA"5)55078]108 N, o"20)775 kg/m, ¸"4)0 m
(K"R). (2) K

anal
"2)76462]109 N/m. (3) K

anal
"9)59952]108 N/m. Frequency values in

Hz.Df
n
%"( f

n
(model)!f

n
(exp.))/f

n
(exp)]100

Undamaged Damage D1 Damage D2

n Exper. Model (1) D
n
% Exper. Model (2) D

n
% Exper. Model (3) D

n
%

1 646)125 646)125 0)00 637)000 637)000 0)00 618)500 618)500 0)00
2 1290)875 1292)250 0)11 1202)375 1239)355 3)08 1142)125 1144)008 0)16
3 1935)125 1938)375 0)17 1846)000 1851)259 0)28 1744)750 1745)710 0)06
4 2579)875 2584)500 0)18 2495)500 2517)129 0)87 2450)875 2452)138 0)05
5 3220)250 3230)625 0)32 3199)625 3210)806 0)35 3180)875 3188)100 0)23
6 3844)625 3876)750 0)84 3834)000 3871)494 0)98 3817)375 3858)825 1)09
7 4544)500 4522)875 !0)48 4407)375 4398)909 !0)19 4054)875 4170)535 2)85
8 5169)875 5169)000 !0)02 4904)500 4945)986 0)85 4801)125 4789)760 !0)24
9 5809)250 5815)125 0)10 5711)375 5632)423 !1)38 5541)750 5544)809 0)06

10 6445)875 6461)250 0)24 6379)250 6363)861 !0)24 6305)000 6312)691 0)12
11 7081)125 7107)375 0)37 7090)125 7092)172 0)03 7057)000 7077)117 0)29
12 7713)625 7753)500 0)52 7694)000 7701)443 0)10 7538)375 7579)852 0)55
13 8342)375 8399)625 0)69 8024)000 8099)616 0)94 7863)750 7902)422 0)49
14 8969)000 9045)750 0)86 8806)250 8747)635 !0)67 8602)250 8659)362 0)66
15 9584)500 9691)875 1)12 9441)250 9491)577 0)53 9351)625 9434)566 0)89
16 10189)875 10338)000 1)45 10128)000 10247)613 1)18 10079)875 10211)333 1)30
17 10777)750 10984)125 1)91 10779)500 10981)189 1)87 10779)500 10977)323 1)84

TABLE 5

Determination of the crack location in rod 2 by using the pair MCF
m
, CF

2m
N, m"1}3, as data in

formula (30). Analytical (s
anal

) and experimental (s
exper

) estimates of the crack location in the
interval (0, ¸/2). Actual crack location s"0)7 m. ¹he symbol (*) means: estimate sN(0, ¸/2).

¸ength in meters

Damage D1 Damage D2

m s
anal

s
exper

s
anal

s
exper

1 0)717 (*) 0)811 0)809
2 0)738 0)774 0)779 0)783

1)262 1)226 1)221 1)217
3 0)629 0)614 0)620 0)609

0)704 0)719 0)713 0)725
1)963 1)948 1)953 1)942

592 A. MORASSI
will be considered. The physical model, which will be investigated, is a simply supported
uniform Euler}Bernoulli beam with an open crack at the cross-section of abscissa s.
According to Freund and Herrmann [9] the crack is represented by the insertion of
a massless rotational elastic spring at the damaged cross-section. The sti!ness K

B
of the

spring may be related in a precise way to the geometry of the damage as suggested, for
example, by Dimarogonas and Paipetis [10]. Denoting the Young's modulus of the



TABLE 6

Determination of the spring sti+ness K in rod 1 by using the pair MCF
m
, CF

2m
N, m"1}8, as data

in formula (29). Analytical (K
anal

) and experimental (K
exper

) estimates of the spring sti+ness.
¹he symbol (*) means: K(0. Sti+ness values in N/m

Damage D1 Damage D2

m K
anal

]109 K
exper

]109 K
anal

]108 K
exper

]108

1 2)82224 (*) 11)7369 11)69223
2 2)90583 1)84565 11)3523 11)37091
3 3)13432 3)04760 14)51221 14)60803
4 3)18127 2)63991 17)96205 18)45092
5 8)81534 13)05314 60)00963 63)73511
6 (*) 39)28373 (*) 39)93151
7 3)59458 3)94386 15)94803 12)19434
8 3)11783 2)69218 18)78874 19)40381
Actual value 2)76462 9)59952

TABLE 7

Experimental and analytical frequencies f
n
of rod 3 (data from Morassi [11]). Abscissa of the

cracked cross-section: s"1)125 m. (1) EA"5)4454]108 N, o"20)4 kg/m, ¸"3)0 m
(K"R). (2) K

anal
"2)28783]109 N/m. (3) K

anal
"9)43470]108 N/m. Frequency values in

Hz. D f
n

%"( f
n
(model)!f

n
(exp))/ f

n
(exp)]100

Undamaged Damage D1 Damage D2

n Exper. Model (1) D
/

% Exper. Model (2) D
n
% Exper. Model (3) D

n
%

1 861)4 861)1 0)00 805)7 805)7 0)00 737)6 737)6 0)00
2 1722)2 1722)2 0)00 1664)5 1661)1 !0)20 1600)0 1597)4 !0)16
3 2582)9 2583)3 0)02 2541)9 2552)2 0)41 2505)3 2508)6 0)13
4 3434)2 3444)4 0)30 3162)2 3209)0 1)48 3016)0 3018)8 0)09
5 4353)6 4305)5 !1)10 4332)2 4262)6 !1)60 4310)2 4223)8 !2)00
6 5174)4 5166)6 !0)15 4961)1 4966)7 0)11 4812)6 4805)5 !0)15
7 6020)0 6027)7 0)13 5750)2 5747)3 !0)05 5616)0 5624)3 0)15
8 6870)5 6888)8 0)27 6860)2 6888)8 0)42 6851)3 6888)8 0)55
9 7726)4 7749)9 0)30 7302)3 7325)2 0)31 7095)8 7110)9 0)21
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material by E and the volume mass density by c, the mth eigenpair (w
m
(x), vS~S

dm
,u2

dm
),

m"0, 1, 2,2, of the bending vibrations of the cracked beam satis"es the following
boundary value problem:

(EIwA(x))A"u2
dm

cAw(x), x3 (0, s)X(s, ¸), (47)

w"0"wA at x"0 and x"¸, (48)

where the jump conditions

[w(s)]"[wA(s)]"[w@@@(s)]"0, (49)

EIwA(s)"K
B
[w@(s)], (50)



TABLE 8

Determination of the crack location in rod 3 by using the pair MCF
m
, CF

2m
N, m"1}3, as data in

formula (30). Analytical (s
anal

) and experimental (s
exper

) estimates of the crack location in the
interval (0, ¸/2). Actual crack location s"1)125 m. ¹he symbol (*) means: estimate sN(0, ¸/2).
¸ength in meters

Damage D1 Damage D2

m s
anal

s
exper

s
anal

s
exper

1 1)134 1)146 1)146 1)150
2 0)388 0)340 0)416 0)416

1)112 1)160 1)084 1)084
3 0)151 0)204 0)221 0)227

0)849 0)796 0)779 0)773
1)151 1)204 1)221 1)227

TABLE 9

Determination of the spring sti+ness K in rod 3 by using the pair MCF
m
, CF

2m
N, m"1}4, as data

in formula (29). Analytical (K
anal

) and experimental (K
exper

) estimates of the spring sti+ness.
Sti+ness values in N/m

Damage D1 Damage D2

m K
anal

]109 K
exper

]109 K
anal

]108 K
exper

]108

1 2)50717 2)51753 11)84541 11)88132
2 2)74212 2)34800 15)20423 15)50771
3 3)14460 4)11534 26.00572 26)26323
4 2)74983 2)38855 15)65690 15)86864

Actual value 2)28783 9)43470

594 A. MORASSI
hold at the cross-section where the crack occurs. In the equations above I and A represent
the moment of inertia and the area of the cross-section respectively.

If the crack is small, namely K
B

is large enough, on proceeding as in reference [3] and
with the above notation, the "rst order variation of the mth eigenvalue with 1/K

B
is given by

dvS~S
m

"!

(M
m
(s))2

K
B

, (51)

where M
m
(s),!EIuA

m
(s) is the bending moment at the cross-section of abscissa s in the mth

(normalized) bending mode of the undamaged beam.
At this stage the problem of identifying the position and severity of the crack from

knowledge of the changes in a pair of natural frequencies can be posed. In the
above-mentioned paper [8], it was shown that knowledge of the "rst two frequency changes
induced by the damage su$ces to identify uniquely the crack location (except for
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symmetrical positions). Here an improvement of such result is presented. Denote by
CS~S

m
the quantity

CS~S
m

"!

dvS~S
m

B(m#1)4
, (52)

where m*0 is a non-negative integer and B is the constant

B"AEIS
2

o¸A
n
¸B

2

B
2
. (53)

It can be proved that, if CS~S
m

'0, the measurement of the pair MCS~S
m

, CS~S
2m

N, m*0,
determines uniquely the severity of the damage, e.g., the spring sti+ness K

B
, and the variable

S"cos 2(m#1)ns/¸ of the damage location s. To show this, it su$ces to observe that the
eigenpairs of the simply supported uniform beam in bending vibrations are

vS~S
m

"

EI

o A
(m#1)n

¸ B
4
, uS~S

m
(x)"S

2

o¸
sin(m#1)n

x

¸

, (54)

m"0, 1, 2,2, and then repeat the same procedure used for the free}free axial vibration
case to obtain expressions (29) and (30) for K

B
and S respectively.

Finally, a result similar to that attained at the end of section 3 is valid for cracked beams
in bending also. If m is a non-negative integer, then the measurement of the mth frequency of
the cracked beam under simply supported boundary conditions (S}S ) and of the (m#1)th
frequency for sliding}sliding boundary conditions (Sl}Sl ) (e.g., w@"w@@@"0 at x"0 and
x"¸) determines uniquely the sti+ness K

B
of the rotating spring and the position variable

S@"cos 2(m#1)ns/¸, wherein s is the abscissa of the cracked cross-section.
De"ning CSl}Sl

m
,!dvSl}Sl

m
/Bm4 with m*1, and keeping the conventional meaning of the

symbols stable and with m"0, 1, 22, it is possible to attain the following expressions for
the damage parameters:

K
B
"

1

CSl}Sl
m`1

#CS}S
m

, (55)

S@"!1#
2

1#CS}S
m

/CSl}Sl
m`1

. (56)

The latter expression is valid if CSl}Sl
m`1

'0. If CSl}Sl
m`1

"0 then S @"!1.

6. CONCLUSIONS

This paper has been focused on detecting a single crack from the knowledge of the
damage-induced shifts in a pair of natural frequencies of a vibrating rod. In spite of the
problem being ill-posed, it was found that there are certain situations concerning uniform
rods in which the non-uniqueness of the solution may be considerably reduced by means of
a careful choice of the data. The analysis is based on an explicit expression of the frequency
sensitivity to damage and allows non-uniform bars under general boundary conditions to
be considered. Analytical results agree well with experimental tests on cracked steel rods.
Some of the results are also valid for cracked beams in bending.
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