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A new method is presented in this paper for computing the natural frequencies of
a non-uniform beam with an arbitrary number of transverse open cracks. The essence of this
new method lies in the use of a kind of modi"ed Fourier series (MFS) which is specially
developed for a beam with transverse open cracks. Unlike conventional Fourier series,
modi"ed Fourier series can approach a function with internal geometrical discontinuities.
Based on the modi"ed Fourier series, one can treat the cracked beam in the most usual way
and thus reduce the problem to a simple one. The beam can be of non-uniform cross section
and the number of cracks can be arbitrary. By using the present method, only standard
linear eigenvalue equations, rather than non-linear algebraic equations, need to be solved.
All the formulae are expressed in matrix form which renders the programming quite
straightforward.
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1. INTRODUCTION

Knowing the dynamic behaviour of a structure with cracks is of signi"cant importance in
engineering. There are two types of problems related to this topic: the "rst may be called
&&direct problem'' and the second called &&inverse problem''. The &&direct problem'' is to
determine the e!ect of damages on the structural dynamic characteristics, while the &&inverse
problem'' is to detect, locate and quantify the extent of the damages. In the past two
decades, both the direct and the inverse problems have attracted many researchers
and many relevant literatures have been published. Dimarogonas [1] presented a
state-of-the-art review of various methods in tackling the cracked structure problem.

Although many researchers [2}12] studied the e!ect of damages on the structural
dynamic characteristics, their studies were often limited to a uniform cantilever beam or
a uniform simply supported beam. Moreover, there are only one or at most two cracks
presented in their beams. Recently, Shifrin and Ruotolo [13] developed a method which can
be used to tackle a beam with multiple cracks, but their studies are still restricted to uniform
beams.

Gudmunson [14] employed a theory based on "rst order perturbation to study the e!ect
of cracks, notches and other geometrical discontinuities on the eigenfrequencies of slender
structures. By employing the Euler}Bernoulli beam theory, Christides and Barr [15]
established a set of di!erential equation for one-dimensional cracked beams.

On the whole, the available methods can be classi"ed into two main categories. In the
"rst category, the beam is modelled as an assembly of a number of sub-beams connected by
0022-460X/01/190701#17 $35.00/0 ( 2001 Academic Press
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massless rotational springs. Subsequently, the vibrational di!erential equations are
established and then solved individually [2}9, 13]. The second category falls within the
regime of the "nite element method [10}12, 14}18]. The former is a kind of continuous
method while the latter is a kind of discrete method. Compared to the "nite element
method, the continuous method yields more accurate solutions since no discretization was
made. On the other hand, the continuous method has some limits and drawbacks. Firstly,
its applications are usually restricted to uniform beams. Secondly, the formulae are more
complex and not uni"ed. Thirdly, to obtain the natural frequencies, it usually needs to
search the roots of a non-linear algebraic equation (i.e., the determinant of an eigenmatrix).
To overcome these drawbacks and to retain the accuracy are the main objectives of
developing the present method.

Conceptually, the simulation of a cracked beam is analogous to that of a beam with
stepped changes of cross-sections and/or with intermediate point supports. Recently, the
modi"ed Fourier series (MFS) and the modi"ed beam vibration functions (MBVF) were
developed and have been successfully used to solve the vibrational problems for structures
with stepped cross-sections and/or intermediate point supports [19}24].

In this paper, a new method is developed for computing the natural frequencies of
a non-uniform beam with an arbitrary number of transverse open cracks. The essence of this
new method lies in the use of a kind of modi"ed Fourier series that is developed specially for
the analysis of a beam with arbitrary number of transverse open cracks. Unlike the
conventional Fourier series, the modi"ed series is able to approach a function with internal
geometrical discontinuities e!ectively. Based on the present modi"ed Fourier series, one can
treat the cracked beam in the most usual way and thus reduce the problem to be a simple one.
As can be seen in Equation (45), the extra e!ort needed is just to add the K

3
matrix to the

sti!ness matrix of the beam. The beam can be of non-uniform cross-section and the number
and depth of cracks can be arbitrary. In the present method, only standard linear eigenvalue
equations, rather than non-linear algebraic equations, need to be solved. Since this new
method falls within the frame of continuous methods, its capability of achieving higher
accuracy is expected. Moreover, all the formulae can be expressed in a uni"ed way and in
matrix form, which renders the programming quite straightforward. To demonstrate the
e!ectiveness and accuracy of the present method, several numerical examples are shown.
The results show good agreement with other available published results.

2. THEORY AND FORMULATION

2.1. MODIFIED FOURIER SERIES >
m
(y)

Figure 1 shows a beam having (Q!1) number of transverse open cracks located at
y"y

2
, y

3
,2 , y

Q
and with N point-spring supports located at y"s

1
, s

2
,2, s

N
respectively. The beam can have non-uniform cross-sectional areas A(y) and various second
moment of area I(y) along the longitudinal direction y. The depth of the cracks are
Ma

i
, i"1, 2,2, Q!1N, a

i
*0, and the translational and rotational sti!ness of the

point-springs are Mk
i
, s

i
, i"1, 2,2 , NN. The point-springs are introduced here for the

purpose of modelling the boundary supports and the intermediate point supports, if any.
The transverse de#ection of the beam is denoted by w (y, t) where y stands for the location

and t stands for the time. By using the modi"ed Fourier series expansion, we have

w(y, t)"
R
+

m/1

q
m
(t)>

m
(y) (R"2r#1), (1)



Figure 1. A beam having (Q!1) number of cracks located at y"y
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.
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where q
m
(t) are the generalized co-ordinates of the beam and >

m
(y) are the so-called

modi"ed Fourier series which is constructed speci"cally such that it can approach
a function with internal discontinuities. In the present formulation,>

m
(y) is expressed as the

sum of a basic Fourier series>I
m

[25] and an augmenting piece-wise linear function>I
m
(y) as

follows:

>
m
(y)">M

m
(y)#>I

m
(y) , (2)

>M
m
(y)"G

1, m"1,

cos(ku
0
y), m"2k, k"1, 2,2, r,

sin(ku
0
y), m"2k#1, k"1, 2,2, r,

(3)

>I
m
(y)"

Q`1
+
j/1

f
j
l
j
(y), (4)

where u
0
"n/l is the basic frequency and l

j
(y) are the piece-wise linear-interpolation base

functions:

l
j
(y)"G

y!y
j~1

y
j
!y

j~1

, y
j~1

)y)y
j

(omitted if j"1),

y!y
j`1

y
j
!y

j`1

, y
j
)y)y

j`1
(omitted if j"Q#1),

0, yN[y
j~1

, y
j`1

].

(5)

By adding the piece-wise linear functions M>I
m
(y), m"1, 2,2, RN (see Figure 2) onto the

basic Fourier series M>M
m
(y), m"1, 2,2, RN, we can force the whole function

[>
m
(y), m"1, 2,2, RN to satisfy the geometrical discontinuity conditions at the locations



Figure 2. Augmenting piece-wise linear function >I
m
(y).
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of cracks. Thus, in the following analysis, we can treat the cracked beam in the most usual
way and need not bother further about the internal geometrical discontinuities.

The geometrical discontinuity condition at the crack's location y"y
j
( j"2, 3,2, Q)

is [18]

>@
m
(y

j
#0)!>@

m
(y

j
!0)"c

j~1
>A

m
(yPy

j
), (6)

where c
j~1

is the #exibility coe$cient of the cracks having a depth of a
j~1

. For one-sided
cracks, it can be expressed as

c
j~1

"5)346h (y
j
) f (m

j~1
) ( j"2, 3,2, Q), (7)

where h(y
j
) is the depth of the cross-section of the beam at the y"y

j
and

m
j~1

"a
j~1

/h (y
j
), (8)

f (m)"1)8624m2!3)95m3#16)375m4!37)226m5#76)81m6!126)9m7#172m8

!143)97m9#66)56m10. (9)

Substituting equation (2) into equation (6) and considering that>M
m
(y) is a smooth harmonic

function, we have

>I @
m
(y

j
#0)!>I @

m
(y

j
!0)"c

j~1
>M A

m
(y

j
). (10)

Substituting equations (4) and (5) into equation (10), we have

!h
j
f
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#h
j
) f

j
!h
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f
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j
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j
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where

G
h
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"y
j
!y
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,

h
j
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!y

j
.

(12)

At the two ends, y"y
1

and y"y
(Q`1)

, we set

f
1
"0, (13)

f
Q`1

"0. (14)
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Equations (11), (13) and (14) can be expressed in matrix form as follows:

Af"b, (15)

where

A"

1 0 0 0 0 2 0 0

!h
2

h
1
#h

2
!h

1
0 0 2 0 0

0 !h
3

h
2
#h

3
!h

2
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0 0 0 0 } 2 0 F
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Q

h
Q~1

#h
Q

!h
Q~1
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, (16)

f"[ f
1

f
2

f
3

2 2 f
Q~1

f
Q

f
Q`1

]T, (17)

b"[0 !h
1
h
2
c
1
>M A

m
(y

2
) 2 2 2 2!h

Q~1
h
Q
c
Q~1
>M A

m
(y

Q
) 0]T. (18)

By solving equation (15), we can determine the coe$cients f
j
( j"1, 2,2, Q#1) and thus

determine the augmenting piece-wise linear functions>I
m
(y) and the modi"ed Fourier series

>
m
(y).

2.2. ENERGY ANALYSIS

2.2.1. Potential energy

The potential energy of the cracked beam can be expressed as the summation of three
parts:

;";
1
#;

2
#;

3
(19)

in which ;
1

is the potential energy stored in the cracked beam due to the bending
deformation of the beam itself; ;

2
is the potential energy stored in the point-springs which

are used to model the boundary supports and intermediate supports (if any); ;
3

is the
potential energy stored in the massless rotational springs which are used to model the
existence of crack(s).

To express ;
1
, ;

2
and ;

3
in a concise way, "rstly we denote

H1 (y)"[>M
1
(y) >M

2
(y) 2 >M

R
(y)], (20)

H3 (y)"[>I
1
(y) >I

2
(y) 2 >I

R
(y)], (21)

H(y)"[>
1
(y) >

2
(y) 2 >

R
(y)], (22)

q(t)"[q
1
(t) q

2
(t) 2 q

R
(t)]T. (23)
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Thus, we have

H(y)"H1 (y)#H3 (y) (24)

and

w (y, t)"H(y)q(t). (25)

Then, we can derive the expressions for the energy terms ;
i
as follows.

Potential energy ;
1
:

;
1
"

Q
+
i/1

1

2 P
yi`1

yi

EI(y)w2
,yy

(y, t) dy. (26)

Substituting equation (25) into equation (26) we have

;
1
"1

2
qTK

1
q, (27)

where K
1

represents the sti!ness matrix of the cracked beam corresponding to the potential
energy ;

1
such that

K
1
"

Q
+
i/1
P
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EI(y)HT
,yy

(y)H
,yy
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l

0

EI(y)H1 T
,yy

(y)H1
,yy
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2
:

;
2
"

N
+
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1

2
[k

i
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i
, t)#s

i
w2
,y
(s
i
, t)]. (29)

Substituting equation (25) into equation (29), we have

;
2
"1

2
qTK

2
q, (30)

where K
2

represents the sti!ness matrix of the cracked beam corresponding to the potential
energy ;

2
, such that

K
2
"

N
+
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[k
i
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i
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i
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i
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(s
i
)H
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(s
i
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3
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3
"

Q
+
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1

2 C
EI (y

j
)

c
j
D [w

,y
(y

j
#0, t)!w

,y
(y

j
!0, t)]2 (32)

Substituting equation (25) into equation (32), we have

;
3
"1

2
qTK

3
q, (33)
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where K
3

represents the sti!ness matrix of the cracked beam corresponding to the potential
energy ;

3
such that

K
3
"

Q
+
j/2

[c
j~1

EI(y
j
)]HM T

,yy
(y

j
)HM

,yy
(y

j
). (34)

Finally, substituting equations (27), (30) and (33) into equation (19), we obtain the total
potential energy of the cracked beam system,

;"1
2
qTKq, (35)

where K is the sum of the three component sti!ness matrices such that

K"K
1
#K

2
#K

3
. (36)

2.2.2. Kinetic energy

The kinetic energy ¹ of the cracked beam can be expressed as

¹"

1

2 P
l

0

oA(y)w2
, t
(y, t) dy. (37)

Substituting equation (25) into equation (37), we have

¹"1
2
q5 TMq5 , (38)

where M is the mass matrix of the cracked beam system such that

M"P
l

0

oA (y)HT (y)H (y) dy. (39)

2.3. EULER}LAGRANGIAN EQUATIONS

The Euler}Lagrangian equation of the cracked beam is

d

dt A
L¸
Lq5 B!

L¸
Lq

"0, (40)

where ¸ is the Lagrangian function

¸"¹!; (41)

Substituting equations (38) and (35) into equation (41), and then the results into equation
(40), we have

MqK#Kq"0. (42)



Figure 3. A cantilevered beam with one crack located at the clamped end.

Figure 4. E!ect of a single crack at clamped end on the "rst two natural frequencies:**, 1st order frequency
ratio, Present; - - - - -, 2nd order frequency ratio, Present; s, 1st order frequency ratio, Shifrin et al.; h, 2nd order
frequency ratio, Shifrin et al.
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2.4. FREQUENCY EQUATION

For synchronous vibration, we have

q (t)"q cos(ut#/). (43)

Substituting equation (43) into equation (42), we can obtain the frequency equation

Kq"u2Mq (44)

or

(K
1
#K

2
#K

3
)q"u2Mq. (45)

Equation (45) is a standard linear eigenvalue equation that can be solved by standard
programs. It is worth noting that the matrix K

3
represents the cracks' e!ect on the sti!ness

of the beam.



Figure 5. A cantilevered beam with two cracks while the second crack's location is variable.
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3. NUMERICAL EXAMPLES

To validate the present theory and to check the correctness of the coded program,
we computed the natural frequencies of a uniform beam with 1, 2 or 3 cracks and
compared the results with available published results which are based on pure continuous
methods. It is then extended to compute the natural frequencies of a non-uniform beam
with four cracks.

3.1. EXAMPLE 1: A CANTILEVERED BEAM WITH A CRACK LOCATED AT THE CLAMPED

END [13]

Figure 3 shows a cantilevered beam with a crack located at the clamped end. The
results obtained by the present method and the results from reference [13] are shown in
Figure 4 where the vertical axis stands for the frequency ratio of the natural frequencies of
the cracked beam to the natural frequencies of the same but uncracked beam, i.e., the
frequency reduction. The horizontal axis stands for the normalized sti!ness (l/c

1
) of the

arti"cial rotational spring introduced at the crack. It can be seen that the present results
agree very well with those from reference [13], in which pure continuous method was
employed.

3.2. EXAMPLE 2: A CANTILEVERED BEAM WITH TWO CRACKS [13]

Figure 5 shows a cantilevered beam with two cracks. For the purpose of comparing the
results from reference [13], the same geometrical properties of the beam are used, that is
length l"0)8 m, rectangular cross-section has width b"0)02 m and height h"0)02 m. The
"rst crack is at "xed location y

c1
"0)12 m and has a depth a

1
"2 mm. The second crack's

location varies from the left end to the right end of the beam and its depth also varies (a
2
"2

or 4 or 6 mm). The results obtained by the present method and those from reference [13] are
shown in Figures 6}8. Good agreements are observed.

3.3. EXAMPLE 3: A CANTILEVERED BEAM WITH THREE CRACKS [13]

Figure 9 shows a cantilevered beam with three cracks. For the purpose of comparing the
results from reference [13], the same geometrical and physical properties of the beam are



Figure 6. E!ect of the second crack on the "rst order natural frequency: ==, a
2
"2 mm, Present; - - - - -,

a
2
"4 mm, Present; } - } -, a

2
"6 mm, Present; s, a

2
"2 mm, Shifrin et al.; h, a

2
"4 mm, Shifrin et al.;

m, a
2
"6 mm, Shifrin et al.

Figure 7. E!ect of the second crack on the second order natural frequency:==, a
2
"2 mm, Present; - - - - -,

a
2
"4 mm, Present; } - } -, a

2
"6 mm, Present; s, a

2
"2 mm, Shifrin et al.; h, a

2
"4 mm, Shifrin et al.;

m, a
2
"6 mm, Shifrin et al.
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used, that is length l"0)8 m, rectangular cross-section has width b"0)02 m and height
h"0)02 m. Both the "rst and the second cracks are at "xed locations (y

c1
"0)04 m,

y
c2
"0)08 m) and have a "xed depth (a

1
"6 mm, a

2
"4 mm). The third crack's location

varies from y
3
"0)1 to 0)78 m and its depth also varies (a

3
"2 or 4 or 6 mm). The results



Figure 8. E!ect of the second crack on the third order natural frequency:==, a
2
"2 mm, Present; - - - - -,

a
2
"4 mm, Present; } - } -, a

2
"6 mm, Present; s, a

2
"2 mm, Shifrin et al.; h, a

2
"4 mm, Shifrin et al.;

m, a
2
"6 mm, Shifrin et al.

Figure 9. A cantilevered beam with three cracks while the third crack's location is variable.
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obtained by the present method and those from reference [13] are shown in Figures 10}12.
Good agreements are observed again.

3.4. EXAMPLE 4: A NON-UNIFORM CANTILEVERED BEAM WITH FOUR CRACKS

Figure 13 shows a non-uniform cantilevered beam with four cracks. The beam has the
same length (l"0)8 m) as those in the examples above. The cross-section is rectangular,
having width b"0)02 m but the height h changes linearly from 0)02 m at the clamped end
to 0)01 m at the free end. The locations and depths of the "rst, second and third crack are all
pre-de"ned (y

c1
"0)04 m, a

1
"6 mm, y

c2
"0)08 m, a

2
"4 mm and y

c3
"0)12 m,



Figure 10. E!ect of the third crack on the "rst order natural frequency: ==, a
3
"2 mm, Present; - - - - -,

a
3
"4 mm, Present; } - } -, a

3
"6 mm, Present; s, a

3
"2 mm, Shifrin et al.; h, a

3
"4 mm, Shifrin et al.;

m, a
3
"6 mm, Shifrin et al.

Figure 11. E!ect of the third crack on the second order natural frequency:==, a
3
"2 mm, Present; - - - - -,

a
3
"4 mm, Present; } - } -, a

3
"6 mm, Present; s, a

3
"2 mm, Shifrin et al.; h, a

3
"4 mm, Shifrin et al.;

m, a
3
"6 mm, Shifrin et al.
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a
3
"2 mm). The fourth crack's location varies from y

c4
"0)14 to 0)78 m and its depth also

varies (a
4
"2 or 4 or 6 mm). The results are shown in Figures 14}16.

It is worth noting that the changes of frequency could be quite substantial. Reference [10]
reported a case of cantilevered beam having a single crack near the support showing 13% of



Figure 12. E!ect of the third crack on the third order natural frequency: ==, a
3
"2 mm, Present; - - - - -,

a
3
"4 mm, Present; } - } -, a

3
"6 mm, Present; s, a

3
"2 mm, Shifrin et al.; h, a

3
"4 mm, Shifrin et al.;

m, a
3
"6 mm, Shifrin et al.

Figure 13. A non-uniform cantilevered beam with four cracks while the fourth crack's location is variable.
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changes for a crack with depth ratio of 30%. Therefore, the proposed method in the paper is
suitable for the range of crack with reasonable depth.

4. CONCLUSIONS

A new method Fourier series (MFS) was presented. It was developed to tackle the
problem in beams with arbitrary number of cracks. The modi"ed Fourier series can
approach a function with internal geometrical discontinuities e!ectively. Applying this



Figure 14. E!ect of the fourth crack on the "rst order natural frequency:==, a
4
"2 mm; - - - - - -, a

4
"4 mm;

} - } }, a
4
"6 mm.

Figure 15. E!ect of the fourth crack on the second order natural frequency: ==, a
4
"2 mm; - - - - - -,

a
4
"4 mm; } - } }, a

4
"6 mm.
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through the Euler}Lagrangian equation, we can treat the vibrational analysis of a cracked
beam in the most usual way. It thus renders the problem-solving procedures simple. In the
formulation, a crack assumes having sti!ness, which is simply added to the sti!ness matrix
of the beam. The beam can be of non-uniform cross-section and the number of cracks can be
arbitrary. In solving the natural frequencies of a cracked beam, only a standard linear
eigenvalue equation needs to be solved. All the formulae are expressed in matrix form and
computer coding is straightforward. Numerical examples showed that the present method is



Figure 16. E!ect of the fourth crack on the third order natural frequency: ==, a
4
"2 mm; - - - - - -,

a
4
"4 mm; } - } }, a

4
"6 mm.
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versatile and e!ective. Nevertheless, the application of the present method is restricted to
the cases of small-magnitude vibration with all-time open cracks.
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APPENDIX A: NOMENCLATURE

>M
m
(y) basic Fourier series

>I
m
(y) augmenting piece-wise linear function

>
m
(y) modi"ed Fourier series

Q!1 number of transverse open cracks
My

i
, i"1, 2,2, Q#1N y-ordinate of LHD end-point, cracks and RHD end-point

Ms
i
, i"1, 2,2, NN y-ordinate of point-spring supports

A(y) cross-sectional area of the beam
I(y) second moment of area of cross-section
w(y, t) transverse de#ection of beam
q
m
(t) generalized co-ordinate of a cracked beam

r highest order of the basic Fourier series
R number of terms of modi"ed Fourier series
u

0
basic frequency

Ml
j
(y), j"1, 2,2, Q#1N piece-wise linear-interpolation base function

M f
j
, j"1, 2,2 , Q#1N value of the augmenting piece-wise linear function

Ma
j
, j"1, 2,2 , Q!1N depths of cracks

Mc
j
, j"1, 2,2, Q!1N #exibility coe$cients of cracks

A coe$cient matrix for determining the augmenting function
f vector of the values of the augmenting piece-wise linear function
b RHD vector for determining the augmenting function
; total potential energy of a cracked beam
;

1
potential energy of a beam due to bending deformation

;
2

potential energy stored in the support-springs
;

3
potential energy stored in the equivalent rotational springs which are
used to model the existence of cracks
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H1 vector of a basic Fourier series
H3 vector of an augmenting function
H vector of a modi"ed Fourier series
K total sti!ness matrix of a cracked beam
K

1
sti!ness matrix corresponding to potential energy ;

1
K

2
sti!ness matrix corresponding to potential energy ;

2K
3

sti!ness matrix corresponding to potential energy ;
3

¹ kinetic energy of a cracked beam
M mass matrix of a cracked beam
¸ Lagrangian function
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