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This paper deals with structural damage detection using measured frequency response
functions (FRFs) as input data to artificial neural networks (ANNs). A major obstacle, the
impracticality of using full-size FRF data with ANNSs, was circumvented by applying
a principal component analysis (PCA)-based data reduction technique to the measured
FRFs. The compressed FRFs, represented by their projection onto the most significant
principal components, were then used as the ANN input variables instead of the raw FRF
data. The output is a prediction for the actual state of the specimen, i.e., healthy or damaged.
A further advantage of this particular approach was found to be the ability to deal with
relatively high measurement noise, which is of common occurrence when dealing with
industrial structures. The methodology was applied to the measured FRFs of a railway
wheel, each response function having 4096 spectral lines. The available FRF data were
grouped into x, y and z direction FRFs and a compression ratio of about 400 was achieved
for each direction. Three different networks, each corresponding to a co-ordinate direction,
were trained and verified using 80 PCA-compressed FRFs. Twenty compressed FRFs,
obtained from further measurements, were used for the actual damage detection tests. Half
of the test FRFs were polluted further by adding 5% random noise in order to assess the
robustness of the method in the presence of significant experimental noise. The results
showed that, in all cases considered, it was possible to distinguish between the healthy and
damaged states with very good accuracy and repeatability.

© 2001 Academic Press

1. INTRODUCTION

Since the introduction of parallel distributed processing by Rumelhart et al. [ 1], numerous
artificial neural network (ANN) techniques have been applied to structural health
monitoring and damage detection [2, 3]. Recent research indicates that neural
networks, such as the radial basis function (RBF) and the multi-layer back propagation
(BP), can be trained on measured frequency responses of healthy and damaged specimens
to recognize the actual condition of the structure. For instance, Wu et al. [4] identified
the damage in a three-storey building model by selecting the first 200 points of the
frequency response functions (FRFs) as input to a BP neural network. Chaudhry
and Ganino [5] used measured FRF data over some specified frequency range as input to
a BP neural network to identify the presence and severity of delamination in debonded
beams.

Although such work demonstrates the feasibility of training neural networks on FRF
data for damage detection, a very significant hurdle remains: the size of the FRF data, which
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is determined by the number of spatial response locations and the number of spectral
lines, is too large for neural network applications to representative engineering problems.
The direct use of such data will lead to neural networks with a very large number of
input nodes, which in turn will require a very large number of connections. Such networks
are known to be impractical, both in terms of training effort and convergence stability.
To avoid large neural networks, one can use a subset of the available FRF data by
considering fewer measurement points and by defining frequency windows. Atalla and
Inman [6] updated a 15-DOF lumped-parameter system and a flexible frame structure
using an RBF neural network, the input to which consisted of pre-selected frequency
points from a number of frequency windows. An alternative approach, based on
modal parameter input, is described by Levin and Lieven [7]. They reduced the size
of the FRF data by performing a modal analysis first. An RBF network was successful
in detecting errors in a cantilevered beam. Marwala and Hunt [8] combined the
previous two techniques and studied a clamped beam using a committee of multi-
layer perceptron (MLP) network. They concluded that better fault identification
results were obtained by the combined approach than the individual ones. However,
the computation time was increased because of the need to train two networks,
one for modal parameter input and the other for reduced FRF input. Because of possible
modal analysis errors, it was recognized that different weightings could be allocated to the
two networks.

As mentioned earlier, the examples above highlight the need to find a more compact
representation of the measured FRFs. The selection of data points from frequency windows
and the use of fewer spatial locations may lead to a loss of important information. The
alternative approach, the modal analysis route, though compact, is unlikely to succeed in
the cases where an accurate determination of modal parameters is fraught with difficulties:
high modal density, high damping, non-linear effects, etc. Accordingly, the main objective of
this paper is to present a method for an efficient and accurate reduction of the FRF data so
that neural network techniques can be applied routinely to structural damage detection.
A further objective is to demonstrate the feasibility of applying the methodology to
a representative industrial structure.

2. PRINCIPAL COMPONENT ANALYSIS

2.1. BASIC THEORY

Principal component analysis (PCA), developed by Jolliffe [9] and Bishop [10], is a linear
data compression technique which is widely used in the fields of image processing, flow
visualization, pattern recognition and time-series prediction. An application to structural
dynamics is due to Hasselman and Anderson [11, 12] who presented a theoretical basis
dealing with the derivation of modal metrics for use in non-linear model correlation,
updating and uncertainty evaluation of response time histories. They also developed
a frequency-domain tool for vibro-acoustic response predictions over a wide frequency
range.

Principal component analysis can be viewed as a statistical technique for achieving
a dimensionality reduction. Using an orthogonal projection, the original set of variables in
an N-dimensional space is transformed into a new set of uncorrelated variables, the
so-called principal components (PCs), in a P-dimensional space such that P < N. Here, the
basic theory for FRF data will be developed, though generalization to any other quantity is
straightforward.
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Using all available FRF data, let matrix[ H(w)],x~ be formed which has M rows of
FRFs, each with N frequency points. A typical element is denoted by h;;(w), indices i and
j indicating the position in the matrix.

The mean response of the jth column can be defined as follows:

% Z hij(w)- (1)

The corresponding standard deviation S; can be defined as

Z (hig(e) — @

A typical element h;;(w) of the FRF matrix [H(w)])s .y can now be replaced by

sl = ) 3
S; /M

The application of equation (3) to each element in turn yields a response variation matrix

[H(w):]MxN'
The correlation matrix can now be defined as

[C]NXN = [ﬁjfT\'xM[ﬁ]MxM (4)

By definition, the principal components are the eigenvalues and associated eigenvectors of
the correlation matrix:

[C] {lpi} = jLi{'lyi} > (5)

where i is the principal component index.

The first principal component, i.e., the highest eigenvalue and its associated eigenvector,
represents the direction and the amount of maximum variability in the original data. The
next principal component, which is orthogonal to the first component, represents the next
most significant contribution from the original data, and so on.

2.2. FRF RECONSTRUCTION

Since [C] is a square matrix, the number of principal components obtained from
equation (5) will be N. The projection of the response variation matrix [ H(w)]y «x On the
N principal components is given by

[ATvn = [H(O) oy [P I wn- (6)

The projection matrix [A] and the eigenvector matrix [¥] can be partitioned into two
sub-matrices with P principal components and (N — P) principal components:

[A]MxN = [[Al]MxPE [A2]Mx(N—P)],

[lP]NxN = [['luljzvxP ['PZJNX(N—P)]~

™
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The response variation matrix can now be reconstructed for P components only:
[ﬁR] =[4] [lP]T = [[AIJMXPE [Aszx(N—P)] [[qjlefo [qu]Nx(N—P)]T
~ [A v p[P1]pxn- (®)

Finally, element ﬁ,-jR of the reconstructed response variation matrix is used to obtain
element h;;z of the reconstructed FRF matrix:

hijr() = S;/Mhyg(e) + H;. 9

Let A4, 45, ..., Ay be the ordered eigenvalues of the correlation matrix [C]. A measure of the
maximum variation from the mean value can be computed as

N
Jo=Y A (10)
i=1

If the first P < N principal components are used to reconstruct the FRF data, a measure of
the reconstruction error is given by

Jez i}vi_ i;tlz i j’i' (11)

The relative reconstruction error becomes

- £.4)(52)

3. DETAILS OF THE NEURAL NETWORK

Artificial neural networks provide a general, non-linear parameterized mapping between
a set of inputs and a set of outputs. A network with three layers of weights and sigmoidal
activation functions can approximate any smooth mapping and such a type will also be
used here. A typical supervised feed-forward multi-layer neural network, known as a BP
neural network, is schematically illustrated in Figure 1.

Input layer Hidden layer Output layer

Figure 1. Typical BP neural network for damage detection.
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The network consists of three types of layers:

« the input layer that receives the measured FRF data,
 the hidden layer which processes the data and
o the output layer that provides the result of the analysis, i.e., healthy or damaged.

The structural damage detection model is established through network training on known
samples by the generalized delta learning algorithm. Based on s training samples, the
learning algorithm is designed to minimize recursively an error function E; of the form

1
Es = EZ(ysk - Osk)2> (13)
k

where yg and oy are the desired output and the actual output vectors of the kth unit
respectively.

Let the input and output vectors be denoted by x = {xy, X3, ..., X,}, 0 = {01, 02, ..., 0}
respectively. The corresponding target output vector is y = {y, ¥a, ..., V) and {w;;} is the
weight function between node i and j. A non-linear sigmoidal function f can be defined as

J(x) = — (14)

The output of the kth node in the hidden and the output layers can be described by

oy = f(nety) :f<Zij0j>’ (15)

where the net;, is the input of the kth node.
The interconnection weights, adjusted in such a way that the prediction errors on the
training set can be minimized, are given by

Awj; = nésjosia

0sj = (¥sj — 05)(1 — o5)o5; (when node j is in the output layer),

(16)
s = 05j(1 — 0gj) D.0gwi; (when node j is in the hidden layer),
k

where 0 < 5 < 1 is the learning rate coefficient, 4 is the actual change in the weight and ¢ is
the node error.

In order to control the network oscillations during the training process, a momentum
coefficient 0 < o < 1 is introduced to the definition of the weight change:

Asti(k + 1) = 1’]531‘031' + O(AsWﬁ(k). (17)
Once the change is computed, the new weight is given by

The training of a BP neural network is a two-step procedure. In the first stage, the network
propagates input through each layer until an output is generated. The error between the
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actual output oy and the target output y, is then computed using equation (13). In
the second stage, the calculated error is transmitted backwards from the output layer
and the weights are adjusted according to equations (17) and (18) in order to minimize the
error. The training process is terminated when the error E; is sufficiently small for each
training sample.

4. CASE STUDY: RAILWAY WHEEL

4.1. PRELIMINARIES

The methodology above was validated using simple numerical test cases based on finite
element models of beam and plate structures. Very good results were obtained in all the
cases studied. It was then decided to investigate the more taxing case of a railway wheel.
Railway wheels are subjected to random dynamic loads during their operation and hence
the initiation of fatigue cracks is relatively common. For the particular type under study,
circumferentially propagating cracks are known to occur at about 4 radius and these can
reach several centimetres in length. For both healthy and damaged specimens, several
FRFs, each containing 4096 spectral lines, were measured in the x, y and z directions
(Figures 2-4).

Although a visual inspection reveals that there are differences between the FRFs of the
healthy and damaged specimens, an objective assessment of the actual damage state is not
straightforward. Although there is a general trend for the healthy specimen FRFs to have
fewer, better defined modes with higher response levels, there are significant variations from
one FRF to the next. The approach proposed here is to design and train neural networks for
damage detection. However, the size of the FRF data, both the number of measurements
and 4096 spectral lines in each measurement, is prohibitive for a direct network use and
a data reduction process is necessary. Due to high modal density and significant

10°
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10 1 1

Figure 2. Healthy and damaged wheel FRFs in x direction: , healthy; ——, damaged.
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, healthy; ——, damaged.

measurement noise, a modal analysis is unlikely to yield accurate enough system
parameters. Similarly, the selection of key spectral points to represent frequency windows is
not straightforward because of the large variations in the dynamic behaviour. Therefore, the
principal component reduction of the FRF data appears to be the only way forward.
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TaBLE 1

Principal component eigenvalues together with relative and cumulative percentages

Principal component Percentage in sum of Cumulative

No. eigenvalue all eigenvalues percentage
1 1753-0 42-80 42-80
2 8868 21-65 64-45
3 4684 11-44 75-89
4 320-1 7-81 8370
5 209-2 511 88-81
6 141-6 346 9227
7 100-3 245 94-72
8 764 1-87 96:59
9 413 1-01 97-60
10 17-6 0-43 98-03
20 25 0-06 99-30
30 11 0-03 99-69
40 05 0-01 99-85
50 02 0-01 9995

4.2. PRINCIPAL COMPONENT ANALYSIS

Using equations (1)-(4), three correlation matrices were formed for each of the x, y and
z directions. Each matrix had 80 rows consisting of 40 FRFs for the healthy wheel, and
another 40 for the damaged one. The number of columns is equal to the number of spectral
lines, here 4096.

The principal component eigenvalues are listed in Table 1, together with their relative
and cumulative percentages. It is observed that the first 10 eigenvalues account for 98-:03%
of the variance of the response about the mean FRF values. Therefore, the reconstruction of
the response using 10 principal components would represent a reduction of
4096:10 = 4096:1 and the error would be 1:97%.

The FRFs of the healthy wheel were reconstructed using 1, 5 and 11 principal
components and the results are plotted in Figure 5 together with the original ones. As
expected, the match between the original and reconstructed FRFs improves with increasing
number of principal components. Here, the use of 11 principal components (cumulative
percentage 98-26%) was considered to be adequate. A very similar trend was observed for
damaged wheel FRFs, also plotted in Figure 5.

The most significant principal components contain those features which are dominant in
most of the frequency responses. It follows that random noise, which is not correlated with
such global features, will be represented by the less significant components’. Thus,
reconstructing the response by using the highest principal components only, should achieve
not only data compression but also remove some of the noise. For the case of 50 principal
components, the original, the reconstructed FRF's and their absolute difference is plotted in
Figure 6.

4.3. IMPLEMENTATION OF THE NEURAL NETWORK

As mentioned earlier, available FRF data were grouped into three correlation matrices of
order 80 x 4096. The selection of all 4096 spectral lines to define the input vector to the

T The argument probably does not apply to systematic errors caused by, for instance, a shaker misalignment.
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neural network is clearly impracticable. Even if the training time and convergence-related
problems could be overcome by parallel processing on fast CPU arrays, network
over-fitting would still remain a major obstacle. When the number of variables is much
greater than the number of training samples, neural networks can focus on local details of
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(lower plot), representing measurement noise (50 principal components).

individual training samples which may well be meaningless in a global context. In such
instances, a very large number of training samples may be needed, a feature that will be

illustrated below.
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The relationship between the number of training samples s, the number of input variables
n, the number of output variables m and the number of hidden layer nodes / in hidden layer
can be expressed as [12, 13]

s=14+hn+m+ 1)/m. (19)

Here, there are m = 2 output variables since the specimen is either healthy or damaged, and
n = 4096 input variables, each representing a spectral line of the corresponding FRF.
Meanwhile, h = 2049 hidden nodes are needed to create the BP network. In this case, the
required number of training samples becomes

s =1+ 2049(4096 + 2 + 1)/2 ~ 4199 427. (19a)

In other words, about 4-2 million samples are needed to make the network numerically
determined. Such a requirement cannot be met when dealing with real applications. The
principal component analysis was applied to each of the 80 x 4096 FRF matrices to achieve
an acceptable data reduction level. It was decided to retain 95% of the variance about
the mean response values. Such an approach led to using seven principal components in
the x direction, nine in y direction, and 13 in the z direction. Using equations (8) and (9), the
original FRF data array of 80 x 4096 was reduced to 80 x 7 for the x direction, 80 x 9 for the
y direction and 80 x 13 for the z direction. The reduced data sets were used as input vectors
to three different neural networks, one in each of the x, y and z co-ordinate directions. The
procedure is summarized in Figure 7.

For each neural network, the input consists of the PCA-compressed FRFs while the
output is either [1, 0] (healthy) or [0, 1] (damaged). Although it is possible to use 1 output
node only, 2 nodes were used to achieve better non-linear mapping and to improve the

FRF measurement data

.

Data group 1
(x direction)

'

PCA compression
using equations (8) & (9)

Data group 2
(v direction)

/

Data group 3
(z direction)

/

y

PCA compression
using equations (8) & (9)

PCA compression
using equations (8) & (9)

/

y

Input to ANN
(x direction)

Input to ANN
(y direction)

Input to ANN
(z direction)

Figure 7. Preparation of FRF data for neural network input.
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Figure 8. Data samples for training, verification, and testing in each group: S—samples, H—samples for
healthy state, D—samples for damaged state, T—training, V—verification.
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Figure 9. Training (lighter line) and verification (darker line) errors for the three neural networks.

damage detection resolution. In the general case, even more output nodes can be used for
damage location but this will increase the number of training samples.

The training, verification and sample testing paths of the three neural networks
are shown in Figure 8. Out of the 100 available FRFs, 80 were used for network
training and verification. The learning and momentum rates were fixed at 0-6 and 0-3
respectively. As will be discussed later, the remaining 20 were used for the damage detection
tests.

The error variation during the training and verification iterations is plotted in Figure 9.
As can be seen from Figure 9, both the training and verification errors drop sharply after 50
iterations for all three networks. The RMS values of training and verification errors after
600 iterations are listed in Table 2. The results indicate that all three networks are stable and
well trained. The output from the x direction network is plotted in Figure 10. It is easily seen
that all samples represented by their x direction FRFs are classified correctly, both for
training and verification.
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TABLE 2

Network architecture and training/verification errors (I: input, H:hidden, O:output)

Network NN structure Training error (%) Verification error (%)
x direction 71-4H-20 0-70 0-63
y direction 91-5H-20 0-56 0-86
z direction 131-7H-20 0-58 0-55
10
0-8
g_ 06
g 04
02
0 1 L 1 L 1 Il Il
0 10 20 30 40 50 60 70 80
Samples
10 F
Z
g 05
]
O | 1 1 1 | | 1
0 10 20 30 40 50 60 70 80

Samples

Figure 10. x direction network output for Nodes 1 and 2: Training sample (solid line), verification sample
(asterisk).

4.4. DAMAGE DETECTION

After successful training and verification of all three networks, three sets of 20 FRFs, 10
FRFs from a healthy specimen and 10 FRFs from a damaged specimen, were selected in
each of the x, y and z directions. The FRFs in each set were fed sequentially into the
appropriate network, thus creating 20 tests in each co-ordinate direction. The output from
all three networks is listed in Table 3. Half of the FRF's were polluted by adding 5% random
noise and these correspond to Tests 6-10 and 16-20 in Table 3. In spite of added noise, all
tests are seen to be successful, the output from Nodes 1 and 2 yielding a clear distinction
between healthy and damaged specimens. It should be noted that robustness to noise is, in
the main, provided by the PCA compression which acts as a filter (Figure 6). When using the
noise-polluted FRFs, the truncation levels for PCA compression were kept the same as in
section 4.3, namely 7, 9 and 13 principal components in the x, y and z directions.

5. CONCLUDING REMARKS

(1) The results indicate that the combination of FRF data reduction via the principal
component analysis and the use of artificial neural networks provides a suitable
methodology for damage detection. Once the size problem is circumvented, the training of
the neural networks with FRF data from several damage configurations/specimens is
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TABLE 3

(a) Output from the x direction network
Test 1 Test2 Test3 Test4d TestS Test6 Test7 Test8 Test9 Test 10

Node 1 0998 0998  0-999 1-000 0994 0998 0998 0999 1-000 0-992
Node2 0000 0001 0002 0-000 0007 0-000 0-002 0-004 0-000 0-011

Test 1 Test2 Test3 Test4d TestS Test6 Test7 Test 8 Test9 Test 10
Node 1 0002 0-002 0-001 0-000 0-006 0-002 0-002 0-001 0-000 0-008
Node 2 1-000 0999 0998 1-000 0992 1-000 0998 0-996 1-000 0989

(b) Output from the y direction network
Test 1 Test2 Test3 Test4 TestS5 Test6 Test7 Test 8 Test9 Test 10

Node1 0995 0996 0995 0995 0995 0980 0979 0976 0995 0-986
Node2 0006 0004 0004 0004 0005 0023 0018 0019  0-005 0-011

Test1 Test2 Test3 Test4 TestS5 Test6 Test7 Test8 Test9 Test 10
Node 1 0002 0-002 0-003 0-004 0-004 0-002 0-002 0-003 0-062 0-003
Node 2 0998 0998 0997 0996 0996 0-998 0998 0-996 0923 0996

(¢) Output from the z direction network
Test 1 Test2 Test3 Testd TestS Test6 Test7 Test 8 Test9 Test 10

Node1 0996 0997 0997 0995 0996 0995 0997 0997 09% 0-997
Node 2 0003 0003 0004 0005 0005 0004 0003 0004 0006 0-004

Test 1 Test2 Test3 Test4 TestS5S Test6 Test7 Test8 Test9 Test 10
Node 1 0-008 0-006 0-008 0-011 0-007 0-018 0-011 0-012 0-017 0-009
Node 2 0991 0-993 0-992 0-989 0994 0979 0-989 0989 0-984 0-993

relatively straightforward. The routine availability of measured frequency response data
and relatively modest computational requirements make the method well suited to on-line
industrial applications.

(2) The extension of the methodology to damage location is somewhat more difficult.
A fine spatial resolution is needed for damage location, a requirement that increases
the number of input nodes. Similarly, significantly more output nodes will also be
needed to monitor the state of various locations on the structure simultaneously.
The increase in the input and output nodes will inevitably require more training
samples, making data compression even more critical. In any case, preliminary
studies with combined ANN methods and using an alternative approach based on
self-organizing Kohonen maps led to some limited success in damage location and further
work is in progress.

(3) The principal component analysis is a powerful tool for reducing the size of measured
frequency response data. Such a reduction has clear benefits over data reduction via point
selection or modal analysis. Even when a relatively small number of principal components
is used, the PCA-compressed FRF's appear to retain most of the original information. This
feature is likely to be suited to other signal processing applications.

(4) The principal component analysis has the potential for filtering unwanted
measurement noise. Consequently, it is, in principle, possible to pre-process measured
FRF data for better modal analysis. Such a route will be explored in a forthcoming

paper.
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