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This paper describes an experimental characterization of the phase drift characteristics of
the oscillating pressure in an unstable combustor. It is shown that the phase continuously
drifts in a predominantly irregular manner and, given enough cycles, substantially drifts
from its “initial” value. It is also shown that the mean-squared value of the phase drift
monotonically increases with the number of cycles, a result that is consistent with the
predictions of a random walk model. It is concluded that these phase drift characteristics are
primarily caused by random processes (i.e., noise) and, thus, do not reflect the underlying
low-dimensional dynamics of the instability.

© 2001 Academic Press

1. INTRODUCTION

The occurrence of detrimental instabilities in lean, premixed (LP) combustors continues to
hinder the development of modern gas turbines [1-3]. These instabilities arise from
interactions between oscillatory flow and heat release processes in the combustor and often
lead to large amplitude, organized oscillations of the combustor’s flow fields. These
oscillations are undesirable because they significantly reduce the lifetime and regions of
operability of the combustor.

In an effort to eliminate these instabilities, a number of studies of the mechanisms
responsible for their occurrence and approaches for their control have been performed
during the past few years [ 1-9]. Several of these studies have shown that these instabilities
are likely initiated by a mechanism involving interactions between heat release, pressure,
and reactive mixture composition oscillations [3-8].

As emphasized by Culick and coworkers [10-137], however, an understanding of the
mechanism that is responsible for an instability does not necessarily provide any
information about the processes that control the nonlinear oscillations of the system. Such
an understanding of the transient and steady state non-linear oscillatory characteristics of
unstable combustors is needed to, for example, predict the amplitude of the oscillations or
develop and optimize active-control systems [7, 9].

The role of non-linear combustor processes in initiating and sustaining combustion
instabilities has been and continues to be a subject of theoretical investigations;
e.g., see references [10-17]. These analyses have yielded a great deal of insight into
the complex non-linear behavior that is often observed in unstable combustors.
For example, they have demonstrated the existence of stable limit cycles in unstable
combustors or the possibility of “triggering” of instabilities in linearly stable systems
[11,13].
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There has been little direct comparison, however, of the predictions of these analyses with
experimental results. Furthermore, although there are numerous experimental combustion
instability studies in the literature [ 1-7, 18-21], there has been little explicit treatment of the
non-linear processes that control the combustor oscillations in these studies. As such, there
has been little convergence of theoretical predictions and experimental results that would
allow for a critical assessment of the accuracy and completeness of the current
understanding of the non-linear processes that affect the oscillations in unstable
combustors.

This and a companion paper [22] report the results of studies that analyzed pressure data
measured in an unstable combustor in an effort to elucidate the characteristics of the
non-linear system dynamics. In pursuit of this goal, the work described in this paper
investigated the cyclic variability in the phase of the pressure oscillations. This work was
motivated by the observation that combustion instabilities are typically manifested as
nearly harmonic, low-degree-of-freedom oscillations of the combustor pressure. While these
harmonic oscillations are very repeatable (e.g., autocorrelations of the combustor pressure
often retain values of near unity for several hundred cycles), they also exhibit cycle-to-cycle
variability, similar to that observed in, for example, other unstable combustors [19-217] and
internal combustion engines [23]. This work investigates the cycle phase variability in an
effort to determine whether it can be used to obtain information about the underlying
processes that control the non-linear dynamics of the system.

To meet this goal, it is first necessary to determine whether such cyclic variability arises
from the non-linear processes controlling the low-degree-of-freedom oscillations that are of
interest, or from “background noise” (e.g., turbulent fluctuations) that is essentially
stochastic in nature [24, 25]. In other words, it is necessary to determine whether the cyclic
variability actually reflects the dynamics of the low-degree-of-freedom combustion
instability, or is due to “background noise”. If the effects of noise are too large, then
steady-state limit cycle data may not provide any information about the non-linear
characteristics of these systems.

The results of this investigation are presented in the following manner: The next section
presents experimental data and characterizes the main features of the cycle-to-cycle
variability in the phase of the pressure oscillations. Section 3 considers whether an
underlying low-dimensional system dynamic is reflected in these data. Section 4 suggests
that the majority of the phase drift is due to essentially random processes and, thus, does not
reflect the underlying dynamics of the combustion driven oscillations.

2. ANALYSIS OF COMBUSTOR PRESSURE DATA

The data presented in this paper were measured during unstable operation of a lean,
premixed gas turbine combustor simulator, see Figure 1, that is described in detail in
reference [6]. The natural longitudinal acoustic frequencies of the system are approximately
multiples of 100 Hz (i.e., 100, 200, ..., Hz) and excitation of the first seven of these modes
have been observed under different test conditions [6]. The data presented below were
obtained during a 204 Hz instability that was sampled over 13000 consecutive cycles at
a sampling frequency of 2000 Hz with a transducer located in the combustor. Table 1
summarizes the operating conditions under which these data were obtained.

As stated above, this study investigated the cycle-to-cycle variability of the phase of
pressure oscillations and, particularly the “drift” of this phase. This drift is illustrated in the
data presented in Figure 2. Figure 2 compares a time series record of measured pressure
data with an “average” harmonic signal given by S(t) = A cos(2nft + ¢) whose amplitude,
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Figure 1. A schematic of the investigated lean, premixed combustor simulator.

TABLE 1

Summary of combustor operating conditions

Mean inlet Mean combustor Oscillatory pressure
section velocity pressure (atm) amplitude (kpa)
u (m/s)
14-2 678 4280
145 668 3180
14-6 6-60 3440

Note: All data were obtained at an equivalence ratio of ¢ = 0-85 and a total mass
flow rate of 16 g/s.

A, and frequency, f, were determined by calculating their average values over 13 000 cycles
of oscillation. The phase, ¢, was set to equal the phase of the data during the first several
cycles of oscillation. As shown in Figure 2(a) the harmonic signal and measured data
coincide almost exactly for the initial four cycles of oscillation. A comparison of the
harmonic signal with the data after 100 cycles of oscillation shows, however, that the phase,
¢, has drifted approximately 45°. Although not shown here, an examination of the phase at
later cycles shows that it drifts irregularly and, given enough cycles, appears to take all
values between 0 and 360° with uniform probability.

The rest of the results presented in this section further quantify the phase drift that is
shown in Figure 2. It was evaluated by determining the temporal locations of the zero
crossings of the measured pressure data using linear interpolation. Using this technique, the
phase can be estimated within an uncertainty of — 0-7-1-4°.

Note that using zero crossings as an indicator of phase is only valid if the oscillatory
signal is dominated by a single frequency component. This is the case for the data presented
below, as Fourier transforms of the pressure data indicate, see Figure 3, that the next largest
periodic components in the measured signal are 404 and 808 Hz oscillations with
amplitudes that are approximately 30 times smaller than the 204 Hz oscillations. These
frequency components are likely the harmonics of the 204 Hz mode that are excited by
system non-linearities (the fact that they are not exact multiples in the Fourier transform is
likely due to errors derived from finite sample lengths).
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Figure 2. Comparison of measured combustor data (®) with the signal A cos(2xft + ¢) (—) for (a) the first
4 cycles and (b) after 100 cycles.
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Figure 3. Fourier transform of the combustor pressure for the data shown in Figure 2.

Note that the difference between successive zero crossings approximately equals half
a period of oscillations. As might be expected, however, this time difference takes a range of
values in the data. The statistical characteristics of this time difference are illustrated by its
probability density function (PDF) in Figure 4. Figure 4 indicates that the PDF of the
distance between zero crossings is nearly Gaussian. The average time between zero
crossings shown in Figure 4 is 2-45 ms, corresponding to an instability with a frequency of
f=0-5/0-00245 = 204 Hz. The standard deviation of the time between zero crossings
is 0042 ms, which corresponds to a standard deviation of the phase drift
g, = 360*0-042/2-45 = 6:17° per half cycle. The corresponding values of g, for the tests
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Figure 4. Comparison of the probability density function of the time between successive zero crossings () and
a Gaussian distribution (u = 14-5 m/s) (—).

conducted with the mean inlet section velocities of u = 14-2 and 14-6 m/s cases (see Table 1)
are 6:38 and 5-81° per half cycle, respectively.

Using the locations of the zero crossings of the pressure signal, the following procedure
was employed to divide the complete data record, composed of a total of N cycles, into
ensembles and to determine the dependence of the phase drift upon the number of cycles for
each ensemble: (1) determine the average time between every other zero crossing, T (i.e., the
period of oscillations), of the entire data record, (2) divide the data record into k ensembles,
where each ensemble is composed of n = N/k cycles of data (where n and k are integers), (3)
define the time from the beginning of the ith data record to the location of the 2jth zero
crossing (i.e., the jth cycle) as t;; (where j=1,2,...,n, and i = 1,2,..., k), (4) define the
difference between ¢; ; and the location of the “average” zero crossing, j T by d;; = t;; — jT,
(5) define the phase drift after the jth cycle as g;; =360d;;/T degrees. Note that
Y djcni=Y%_,qj—ni =0 by definition, because all phases are referenced to the average
period, T.

Figure 5 plots the typical dependence of the phase drift, g;; upon the number of cycles,
j(u = 14-5m/s, k = 50 ensembiles). For clarity, the figure only illustrates phase drift data for
six out of the 50 ensembles, Several items should be noted from the figure. First, the figure
shows that the phase does not simply oscillate about its initial value. Rather, it exhibits a net
drift that, in general, increases with the number of cycles. Second, there is no obvious
similarity or relationship between the phase drifts exhibited by different ensembles. For
example, the phase in some ensembles drifts very slowly and in other drifts much more
rapidly. Third, the phase drift exhibited by some of the ensembles displays oscillatory
characteristics, while that in other ensembles monotonically diverges from its initial value.
Thus, an examination of these data does not indicate the presence of any easily discernable
pattern or structure of the phase drift characteristics.

The possible presence of an underlying pattern in the data has been further examined
by comparing the extent to which phase variability at a certain time is correlated with
the phase variability at previous times. This relationship was examined using the
following expression for the autocorrelation of g;; (where k = 1 so the subscript i in g;;
is dropped):

N2
C, = Ziztdidits oo Np. (1)

PEACHE
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Figure 5. Comparison of the measured dependence of the phase drift of the combustor pressure upon the
number of cycles at six different sections of the data record (u = 14-5 m/s).
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Figure 6. Dependence of the autocorrelation of the phase variability upon the number of cycles (1 = 14-5 m/s).

C, quantifies the correlation between the phase deviation at some instant and its deviation
s cycles later. Figure 6 illustrates the typical dependence of C; upon the number of cycles
and shows that there is almost no correlation of g; with itself, even after one cycle. This lack
of correlation suggests that much of the phase drift shown in Figure 5 arises from processes
with short “memories” relative to the period of the pressure oscillations; i.e., processes that
can be idealized as random.
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To further analyze the phase variability shown in Figure 5, ensemble averages of the
phase drift data were examined, i.e., the averaged values of g;; over all k ensembles (where
i=1,2,..., k). Rather than examining the average value of the phase drift itself (because its
average value at the nth cycle is zero by definition; i.e., (1/k)Y5_, gj=,; = 0, see above),
however, it is more useful to examine the mean-squared phase drift:

qj =

1 -
D=

(4.)*. @

1=J

The objective behind the ensemble averaging procedure is to determine what type of
behavior the “average” data exhibits. There is an important point that should be noted
about this procedure, however, because it introduces the parameter k whose “correct” or
“optimum” value is unknown. In other words, it is desirable to examine the average
characteristics of the phase drift over as large a number of cycles as possible. This implies
that the value of n should be large, which for a fixed number of measured cycles of data, N,
requires a small value of k = N/n. In order to have good confidence in the averaged data,
however, it is necessary to ensemble average over a large number of data sets, i.e., to have
a large value of k.

Because of the tradeoff noted above, results are presented for several values of k. The
results for the lower values of k provide information on the average phase drift behavior
over long-time scales. Because these data are obtained by averaging over a small number of
ensembles, reduced confidence can be placed in evaluations of whether any apparent
patterns in the data are deterministic or random in origin. The results for higher k values
provide information that higher confidence can be placed in, but only over shorter time
scales. Figure 7 illustrates ensemble averaged phase drift plots for k = 30, 75, and 150. The
figure shows that the mean-squared phase drift monotonically increases with the number of
cycles. This result shows that the oscillatory phase does not remain about its initial value
but rather, it diverges from its initial value. Figures 7(b) and (c) also show that, neglecting
the first 20 cycles, the mean-squared phase drift exhibits a nearly linear dependence upon
the number of cycles. Finally, Figure 7 shows that the rate of phase drift is largest and
smallest in the u = 14-2 and 14-6 m/s cases respectively. This result suggests that the rate of
phase drift correlates with o, (i.e., the variability of the distance between successive zero
crossings) because the highest rates of phase drift correspond to the highest values of ¢, and
vice versa (recall that the values of o, for the u = 14-2, 14-5 and 14-6 m/s cases were 6-38, 6-17,
and 5-81° per half cycle respectively).

Besides the monotonically increasing phase drift, the phase data presented in Figure
7 also displays some oscillatory characteristics. These oscillatory characteristics manifest
themselves as slow time-scale oscillations that are best seen in the phase drift behavior over
a large number of cycles in Figure 7(a). These oscillatory characteristics can also be seen by
examining the difference between the data shown in Figure 7(a) and a least-square cubic fit
through the data (the choice of a cubic fit is arbitrary); see Figure 8. All three subplots in
Figure 8 show that the phase drift has oscillatory characteristics (with an oscillatory period
of approximately 150 cycles ~1-4 Hz). Note, however, that the amplitude of the oscillations
are quite small relative to the overall monotonic increase of the mean-squared phase drift
shown in Figure 7.

3. DISCUSSION

This section examines whether the phase drift characteristics presented in the previous
section are controlled by low-degree-of-freedom non-linear system dynamics or by the
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Figure 7. Dependence of the mean-squared phase drift upon the number of cycles for three different combustor
operating condition and k values of (a) 30, (b) 75, and (c) 150. In all three subplots, the data were obtained at a mean
inlet velocity of 14-2 m/s (top curve), 14-5 m/s (middle curve), and 14-6 m/s (bottom curve).

essentially random disturbances imposed on the system by, for example, turbulent
fluctuations. To address this question, we have considered what type of results would be
expected if the phase drift were due to random processes. It will be shown that the majority
of the ensemble averaged phase drift characteristics described in the prior section can be
captured by a random walk model.

The basic assumption behind the random walk model is that the phase drift at any cycle,
q;, is equal to its value at the prior cycle, g;—;, plus a perturbation, M;, ie.
q;=qj-1 +M;= Y’ _, M,,. This perturbation could be due to, for example, turbulent
fluctuations in velocity or temperature. We also assume that there is an uncertainty in
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determining the phase drift that is given by A4;. The resultant stochastic model for the phase
drift is

g =4+ Y, M,. (3)

A;and M,, describe random system disturbances with zero mean and variances of o4 and o3,
respectively. Note that these disturbances have qualitatively different effects upon the
characteristics of g;. A; represents processes that introduce a purely additive component to
the phase drift while M; represents those processes that can accumulate. Note that the total
drift, q;, after j cycles (or “walks”) is a function of all the multiplicative components in the
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Figure 9. Predicted dependence of the mean-squared phase drift upon the number of cycles obtained with
a random walk model. The slope of the line is ;.

past, i.e., My, M,,..., M;, and is only a function of the immediate value of the additive
component, 4;. Assuming that A4;, M;, M,, ..., M; are stationary, satistically independent*
random processes, it can be shown that the expected value of the mean-squared phase drift
equals [26]

(@ =<+ T (MRS = o + jok, @

m=1

where ¢ ) denotes the expected value operator. Figure 9 plots the predicted characteristics
of {g?) and shows its predicted linear dependence upon j, the number of cycles. Thus, the
figure and equation (4) show that purely random processes can cause a monotonically
increasing mean-squared phase drift. While the simple random walk model given by equation
(3) predicts a linear dependence of {g;)» upon j, it is possible to consider more complex
random models that predict a non-linear dependence between these two quantities (e.g., see
reference [26]).

While the predictions of equation (4) do not completely describe the characteristics of the
data shown in Figure 7, a comparison of the two shows that the model does capture many of
its dominant features. Specifically, the monotonically increasing drift in phase of the data
shown in Figure 7 is completely consistent with the predictions of equation (4). Second, the
mean-squared phase drift obtained by averaging over a large number of cycles (shown in
Figure 7(c) exhibits a nearly linear dependence upon the number of cycles between j = 20
and 80 cycles, in agreement with the predictions of equation (4). While this agreement does
not constitute conclusive proof, it does show that the observed phase drift characteristics
are consistent with those that would be expected if they were due to random processes.

It should be pointed out that while the dominant measured phase drift characteristics are
consistent with the predictions of a random model, it is likely that there is some
manifestation of deterministic processes in the approximately 1-4 Hz oscillations of the

'If My, M,, ..., M; are not statistically independent (ie., a “correlated” walk) but the area underneath he
autocorrelation curve is finite (i.e., the area under the curve in Figure 4), then it can be shown that (g7 still
increases linearly with j, but with a modified slope [26].
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phase shown in Figure 8. Specifically, Figure 8 indicates that the phase drift exhibits a small
amount of repeatable oscillatory behavior that is evident over long-time scales. While
these results must be interpreted with care since they were obtained from ensemble
averaging only 30 records (i.e., k = 30), the presence of oscillatory characteristics in all three
of the results, taken at different times and operating conditions, suggests that this
periodicity is not accidental. A number of combustor processes could be responsible for
these slow oscillations. For example, they could arise from non-linear combustor processes
that cause a slow “breathing” of the phase or from a slow oscillation in the fuel or air control
system.

4. CONCLUSIONS

This paper describes an analysis of the characteristics of cycle-to cycle variability in the
phase of the oscillatory pressure during combustion instabilities. Its principal findings and
conclusions are as follows: (1) the phase of the oscillatory pressure during a combustion
instability varies from cycle-to-cycle and, given enough cycles substantially drifts from its
“initial” values; (2) the mean-squared value of the phase drift increases monotonically with
the number of cycles; (3) the dominant features of the measured phase drift are consistent
with the predictions of a random walk model, suggesting that it is due to “background
noise”; (4) deterministic processes may be responsible for small amounts of periodicity in the
phase drift that are evident over long-time scales, i.e., over time scales of the order of 150
cycles of oscillation. These findings are also consistent with those of Culick et al. [24] and
Burnley [25], who suggest that unsteady motions in unstable combustors are composed
primarily of low dimensional oscillations upon which high dimensional, random-like
characteristics are superposed.

Also, this paper’s demonstration that the phase of the oscillatory pressure continuously
drifts during an instability implies that efforts to actively suppress combustion instabilities
must take this phase drift into account by designing controllers that can sense, identify, and
perform the necessary actuation over faster time scales than that of the phase drift.
Otherwise, the phase of the control actuation will not be optimally phased to suppress the
oscillations.
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APPENDIX A: NOMENCLATURE

random process, see equation (3)
autocorrelation

phase drift (s)

number of cycles

number of ensemble averages
random process, see equation (3)
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number of cycles in an ensemble
total number of cycles of oscillation
phase drift (deg)

period of oscillations

mean inlet velocity

Greek letters
o standard deviation
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