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In a companion paper (see pp. 43}61 of this issue), it was shown that when a system is
non-viscously damped, an identi"ed equivalent viscous damping model does not accurately
represent the damping behaviour. This demands new methodologies to identify non-viscous
damping models. This paper takes a "rst step, by outlining a procedure for identifying
a damping model involving an exponentially decaying relaxation function. The method uses
experimentally identi"ed complex modes and complex natural frequencies, together with the
knowledge of the mass matrix for the system. The proposed method and several related
issues are discussed by considering numerical examples of a linear array of damped
spring-mass oscillators. It is shown that good estimates can be obtained for the exponential
time constant and the spatial distribution of the damping.
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1. INTRODUCTION

Linear systems must generally be expected to exhibit non-viscous damping. In a companion
paper [1] it was shown that when a system is non-viscously damped, it is possible to "t
a viscous damping model to the set of measured transfer functions but that the "tted
damping matrix will be non-symmetrical. The "tted model may also be misleading in other
ways: for example, it may predict the wrong spatial distribution of damping over the
structure. Of course, a priori selection of viscous damping in the identi"cation procedure
rules out any possibility of recognizing other damping behaviour present in the structure. In
this paper, the identi"cation of certain non-viscous damping models is considered in the
context of general multiple degrees-of-freedom linear systems.

A key issue in identifying non-viscous damping is to decide on an appropriate damping
model to consider. There have been detailed studies of material damping and of speci"c
structural components. Lazan [2], Bert [3] and Ungar [4] have given excellent accounts of
di!erent mathematical methods for modelling damping in (solid) material and their
engineering applications. The book by Nashif et al. [5] presents more recent studies in this
area. There is a large body of literature on damping in composite materials where many
researchers have evaluated a material's speci"c damping capacity. Baburaj and Matsuzaki
[6] and the references therein give an account of research in this area. A more extensive list
of references is given in Adhikari [7].

Other than material damping a major source of energy dissipation in a vibrating
structure is the structural joints. Here, energy loss can take place through air-pumping and
local frictional e!ects. The air-pumping phenomenon is associated with air trapped in
pockets in the vicinity of a vibrating surface. In these situations, the air is squeezed in and
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out through any available gap, leading to viscous dissipation of energy. Damping behaviour
associated with joints has been studied by many authors. For example, Earls [8] has
obtained the energy dissipation in a lap joint over a cycle under di!erent clamping pressure.
Beards and Williams [9] have noted that signi"cant damping can be obtained by suitably
choosing the fastening pressure to allow some interfacial slip in joints. In many cases, these
damping mechanisms turn out to be locally non-linear, requiring an equivalent
linearization technique for a global analysis [10]. These studies provide useful physical
insights into damping mechanisms, but due to their very speci"c nature it is not possible to
formulate a general procedure for the identi"cation of such mechanisms by simple vibration
measurement.

Banks and Inman [11] have proposed a somewhat general approach for identi"cation of
non-viscous damping models in Euler}Bernoulli beams. They have considered four
di!erent models of damping: viscous air damping, Kelvin}Voigt damping, time-hysteresis
damping and spatial-hysteresis damping, and used a spline inverse procedure to form
a least-squares "t to the experimental data. It was observed that the spatial hysteresis model
combined with a viscous air damping model gave the best quantitative agreement with the
experimental time histories. A procedure for obtaining hysteretic damping parameters in
free-hanging pipe systems is given by Fang and Lyons [12]. Assuming material damping to
be the only source of damping they have given a theoretical expression for the loss factor of
the nth mode. Their theory predicts higher modal damping ratios in higher modes. The
system-speci"c nature of these methods means that they cannot be extended in a simple way
to more general multiple degrees-of-freedom systems.

Recently, Woodhouse [13] has discussed the general class of linear non-viscous damping
models, in which damping forces are expressed in terms of the past history of the velocities
via convolution integrals over suitable kernel functions. Such kernel functions are described
under many di!erent names in the literature of di!erent subjects: for example, retardation
functions, heredity functions, after-e!ect functions and relaxation functions. This model was
originally introduced by Biot [14]. The viscous damping model is a special case of this
general damping model when the kernel functions are delta functions, and thus have no
memory. In reference [13], it was shown that for light damping, such damping models can
be handled in a very similar way to viscous models, using a "rst order perturbation method.
This motivates the development of procedures for the identi"cation of more general linear
damping models from standard vibration testing data.

A wide variety of mathematical expressions could be used for the kernel functions. Of
these, the exponential function seems to be a particularly promising candidate. Cremer and
Heckl [15] have written &&Of the many after-e!ect functions that are possible in principle,
only one* the so-called relaxation function*is physically meaningful''. They go on to give
a physical justi"cation for this model, by which they mean the exponential case. The
argument applies most convincingly to the case of material damping, rather than joint
damping. An alternative mathematical rationalization can be given in terms of exponential
contributions from the poles of frequency-response functions when the Fourier transform is
inverted [16]. With this motivation, this paper concentrates on "tting exponential damping
models to vibration data.

The analysis in this paper is restricted to linear system behaviour and it is assumed that
the damping is light. In section 2, we brie#y review the theory of determination of complex
frequencies and modes based on the "rst order perturbation method when the system is
non-viscously damped. Using these perturbation results, a method for identi"cation of
non-viscous damping models using complex modes and natural frequencies is proposed. It
is assumed that the mass matrix of the structure is known*either directly from a "nite
element model or by means of modal updating based on experimental measurements.
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Having the mass matrix attempts can be made to identify an exponential damping model
consistent with the measured complex modes. In section 3, a procedure to obtain the
relaxation parameter of an exponential damping model is outlined. Identi"cation of the
associated damping coe.cient matrix is discussed in section 4. The proposed method is
illustrated using simulated numerical examples directly comparable to those in the
companion paper [1].

2. BACKGROUND OF COMPLEX MODES

In this section, general linear damping models are considered, described by convolution
integrals of the generalized co-ordinates over appropriate kernel functions. Consider the
equations of motion of free vibration

MyK (t)#P
t

~=

G(t!q) y5 (q) dq#Ky (t)"0. (1)

Here G (t) is an N]N matrix of kernel functions. It will be assumed that G (t) is a symmetric
matrix so that reciprocity automatically holds. In the special case when G (t)"Cd(t), where
d(t) is the Dirac delta function, equation (1) reduces to the standard form for viscous
damping. A restriction on the form of the kernel functions is imposed by the fact that the
rate of energy dissipation given by

D(t)"
1

2
y5 (t)TP

t
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G(t!q)y5 (q) dq, (2)

where ( ' )T denotes matrix transpose, should be non-negative. Now, substituting
y(t)"z exp[ijt] and rewriting equation (1) in the frequency domain, the eigenvalue
equation can be expressed as
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where G(j) is the Fourier transform of G(t). This is a non-linear eigenvalue problem. Note
that, in contrast with the viscously damped case, the number of eigenvalues will not
necessarily be equal to 2N, since additional eigenvalues may be introduced by the form of
the functions G (j

j
). Exact solutions of such eigenvalue problems are computationally very

demanding and some kind of approximate method is required for further analysis.
Woodhouse [13] has treated this problem using a "rst order perturbation method assuming
the damping to be small. The main results are brie#y described for further reference.
Suppose the undamped problem has eigenvalues (natural frequencies) u

j
and eigenvectors

(modes) x
j
. The complex eigenvalues can then be expressed as
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is the frequency-dependent damping matrix expressed in normal

co-ordinates. Since the inverse Fourier transform of G(u) must be real it must satisfy the
condition G (!u)"G(u)*, where ( ' )* denotes complex conjugation. It follows that the
eigenvalues of the generally damped system appear in pairs j and !j* (unless j is purely
imaginary). The "rst order approximate expression for the complex eigenvectors can be
obtained in a way similar to that used for the viscously damped system (as was "rst given by
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Rayleigh [17]). The result is
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Note that the eigenvectors also appear in complex conjugate pairs. Since in general G @
kj

(u
j
)

will be complex, in contrast to the viscously damped case the real part of the natural
frequencies and mode shapes do not coincide with the undamped ones. This fact will
complicate the problem of "tting model parameters to experimental complex modes.

It is natural to consider "rst the idealized problem in which just one relaxation function is
used for identi"cation purposes. In that case, the general form of the kernel function in
equation (1) reduces to

G(t)"Cg(t), (6)

where g(t) is some damping function and C is a positive-de"nite coe$cient matrix. The
admissible form of g(t) is restricted by the condition of non-negative energy loss given in
equation (2). The damping model in equation (6) is physically realistic if the real part of the
Fourier transform of the kernel function is non-negative within the driving frequency range,
that is R[G(u)]*0, ∀u. This can be easily shown. Rewriting equation (2) in the frequency
domain and using (6), the rate of energy dissipation can be expressed as

D (u)"
u2

2
RMz*TCzG(u)N, (7)

where R( ' ) represents the real part of ( ' ) and D(u) and G(u) are the Fourier transform of
D(t) and g(t) respectively. A physically realistic model of damping must satisfy

D(u)*0 or
u2

2
RMz*TCzG(u)N*0 (8)

or RMG(u)N*0

since for a real value of driving frequency u2*0 and z can be chosen in a way that
RMz*TCzN*0 as C is positive de"nite.

3. FITTING OF THE RELAXATION PARAMETER

As has been mentioned earlier, from the wide range of non-viscous damping models the
exponential function seems a particularly good candidate. It satis"es condition (8) at all
frequencies. In this section, a general method to "t the relaxation parameter of an
exponential damping model using measured modal data is outlined.

3.1. THEORY

It is assumed that the damping has only one relaxation function, so that the matrix of
kernel functions is of the form

G(t)"ke~ktC, (9)

where k is the relaxation parameter and C is the associated coe$cient matrix. The factor
k serves to normalize the kernel function (see section 3.2). Complex natural frequencies and
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mode shapes for systems with this kind of damping can be obtained from equations (4) and
(5). In view of the expression for damping given in equation (9) it is easy to see that the term
G @

kj
(u

j
) appearing in these equations can be expressed as
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. Using this expression in equation (4), the jth complex natural frequency

is given by
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Similarly, from equation (5) the jth complex mode can be expressed as
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Suppose that jK
j
and z(

j
for j"1, 2,2, m are the measured complex natural frequencies and

modes. Write
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Here z(
j
3CN where N denotes the number of measurement points on the structure and the

number of modes considered in the study is m. In general, mON, usually N*m. Assume
that x(

j
3RN are the undamped modes and kL is the relaxation parameter to be estimated from

the experiment. In order to "t a damping model of the form of (9), equations (11) and (12)
must be valid in conjunction with the experimental measurements jK

j
and z(

j
. As an initial

approximation it may be supposed that the real part of the complex natural frequencies are
the same as the undamped natural frequencies:
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For most practical cases it turns out that the above value of uL (0)
j

is su$ciently accurate to
carry out further analysis. However, an iterative method is presented later which may be
used to update the value of uL

j
and remove the need for this approximation (see section 4.2

for details).
In view of equations (12) and (13) and considering that only m modes are measured,
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Here the unknown constants B
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are de"ned as
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It may be noted that in addition to B
kj
, the relaxation constant kL and the undamped modes

x(
k
are also unknown.
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Combining equations (15) and (16) gives
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From the preceding equation it is clear that if kL AuL
j
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. This implies that when

the damping mechanism is near to viscous, the real part of each complex mode tends
towards the corresponding undamped mode. Since the undamped modes are orthonormal
with respect to the mass matrix, from equation (16) it may be observed that the imaginary
part of each complex mode v(
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is M-orthogonal to its corresponding undamped mode so that
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Now, use of the orthogonality property of v(
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The notation kL
j
has been used because for di!erent choices of j on the right-hand side, in

general, di!erent values of kL will be obtained. If in practice very similar values were
obtained, this would con"rm the initial assumption that the actual system has only one
relaxation time. On the other hand, if signi"cantly di!erent values are obtained it would
indicate that the assumed model needs to be extended. It is shown shortly that the pattern of
variation of kL

j
can give some clues about the true underlying model. If it is wished to choose

a single value of kL to best represent a range of values found by this procedure, several
alternatives could be considered:

1. Simply select a value of j, say j"k)m, to obtain kL . For this choice
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How to select the value of k will be discussed in the next subsection.
2. Average the realizations of kL . For this choice
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where mk)m is the number of terms to be retained.
3. Sum the numerator and denominator separately and take their ratio to obtain kL . For

this choice
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This can best be illustrated via a numerical example.

3.2. SIMULATION METHOD

Numerical studies have been carried out using simulated systems identical to those used
in the companion paper [1]. Figure (1) shows the model systems together with the
numerical values used. For these parameter values, the resulting undamped natural



Figure 1. Linear array of N spring-mass oscillators, N"30, m
u
"1 kg, k

u
"4]103 N/m.
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frequencies range from near zero to approximately 200 Hz. The damping elements are
associated with masses between the sth and (s#l )th (N"30, s"8 and (s#l )"17 are
taken for the numerical calculations). For the system shown in Figure 1(a) the damping
force depends only on the absolute motion of the individual masses. Such damping will be
described as &&locally reacting''. For the system shown in Figure 1(b), by contrast, dissipative
elements are connected between certain adjacent pairs of masses. In this case, the damping
force depends on the relative motion of the two adjacent masses, and will be called
&&non-locally reacting''. In the companion paper [1], a viscous damping matrix was
calculated from the complex modes and frequencies of these systems. Here the parameters
of an exponential damping model using the same modal data are to be identi"ed.

The dissipative elements shown in Figure 1 are taken to be linear non-viscous dampers so
that the equations of motion are described by (1). Three damping models, two of which were
considered in Reference [1], are used: one with an exponential kernel function as assumed
in the model being "tted, and two others with di!erent functions to probe the limitations of
the "tting procedure. They are determined by three di!erent forms of g(t) (de"ned in
equation (6)):

f MODEL 1 (exponential):

g(1)(t)"k
1
e~k1t , t*0, (22)

f MODEL 2 (Gaussian):

g(2)(t)"2S
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2
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2 , t*0, (23)

f MODEL 3 (double exponential):
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All the three damping models are normalized such that the damping functions have unit
area when integrated to in"nity, i.e.,

P
=
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g( j)(t) dt"1. (25)
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This will make them directly comparable with the viscous model, in which the
corresponding damping function would be a unit delta function, g (t)"d(t), and the
coe$cient matrix C would be the usual dissipation matrix. For each damping function
a characteristic time constant can be de"ned via the "rst moment of g( j)(t):

h(j)"P
=

0

t g( j )(t) dt. (26)

For the three damping models considered here, evaluating this integral gives
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Note that for viscous damping h"0. The characteristic time constant of a damping
function gives a convenient measure of &&width'' : if it is close to zero the damping behaviour
will be near viscous, and vice versa. For comparability between the three damping models
all are taken to have the same time constant.

Complex natural frequencies and modes of the systems are calculated using equations (4)
and (5), then these are treated as if they were experimental data obtained from a modal
testing procedure. The procedures described above can be applied to identify the relaxation
parameter of an exponential damping model. Results of the "tting procedure are presented
for both small and large values of the characteristic time constant, expressed in
non-dimensional form by

h"c¹
min

, (30)

where ¹
min

is the period of the highest undamped natural frequency. When c is small
compared with unity the damping behaviour can be expected to be essentially viscous, but
when c is of order unity or bigger non-viscous e!ects are likely to be signi"cant.

3.3. NUMERICAL RESULTS

3.3.1. Results for small c

Consider "rst c"0)02, so that damping models show near-viscous behaviour. Since the
viscous model is a special case of the exponential model good "t quality might be expected
in this case. For the system shown in Figure 1(a) with locally reacting damping, Figure
2 shows the values of cL obtained from kL (recall that cL"1/¹

min
kL ) for all j"1,2, 30 for

Gaussian damping (model 2). In the same "gure, the values of cL corresponding to equations
(21b) and (21c) using mk"30 are also shown. Because the damping mechanism is near to
viscous the "tted values of cL are quite small, and in fact agree well with the assumed c"0)02
for all values of j. To obtain a single &&best'' value any one of the three relationships
in equations (21a)}(21c) could be used. Similar features were observed (results not
shown) when the "tting procedure was repeated for the non-locally damped case shown in
Figure 1(b).

Now, attention turns to the systems with the double exponential damping model (model
3). It is supposed that the two exponential functions combine to give a value c"0)02. In this
case, consider b

1
"0)5, c

3
"0)01 and b

2
"0)5, c

4
"0)03. Values of cL obtained for di!erent

modes for the locally reacting case with this damping model are shown in Figure 3. In the
same "gure, the values of cL corresponding to equation (21b) and (21c) are also shown. Again,
as in the case of damping model 2 discussed above, the "tted values of cL are all very close to
the correct value c"0)02. The only di!erence from the previous case is that values now



Figure 2. Values of cL obtained from di!erent kL calculated using equations (21a)}(21c) for the local case, damping
model 2; (**), "tted c( for di!erent modes; (. } . -), "tted using equation (21b), cL"0)020033; (} }), "tted using
equation (21c), cL"0)020071; (. . .), original c"0)02.

Figure 3. Values of cL obtained from di!erent kL calculated using equations (21a)}(21c) for the local case, damping
model 3; (**), "tted c( for di!erent modes; (. } . -), "tted using equation (21b), cL"0)019914; (} }), "tted using
equation (21c), cL"0)019840; (. . .), original c"0)02.
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decrease slightly with j rather than increasing. Similar features were observed (results not
shown) when the "tting procedure is extended to non-locally damped systems with damping
model 3. It is concluded that, when the damping is near to viscous, regardless of the
functional form or damping type, the "tting procedure gives a good estimate of the damping
time constant and that any one of the relationships in equations (21a)}(21c) may be used to
obtain the &&best'' relaxation parameter.

3.3.2. Results for larger c

When c is larger, the three damping models depart more strongly from the viscous
damping model, each in its own way. Typical results for the case c"0)5 are shown. When



Figure 4. Values of cL obtained from di!erent kL calculated using equations (21a)}(21c) for the local case, damping
model 2; (**), "tted c( for di!erent modes; (. } . -), "tted using equation (21b), cL"1)5642; (} }), "tted using equation
(21c), cL"0)6367; (. . .), original c"0)5.
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the "tting procedure is run for damping model 1, the calculation correctly reproduces the
assumed c value for all modes because the model being "tted is precisely the one assumed by
the theory. This con"rms the accuracy of the computer coding, but nothing further is to be
learnt from displaying the results. Figure 4 shows the values of cL obtained for each mode for
damping model 2 applied to the locally reacting system. The value of cL now varies
considerably with j. This indicates, of course, that the assumption of a single kernel function
is not correct for this system. As will be discussed shortly, the variation of cL with j gives some
clue as to the correct form of the kernel function. Estimates of cL obtained from equations
(21b) and (21c) using mk"30 are also shown in Figure 4. Both these estimates are higher
than the value of c used for simulation and also the estimate obtained using equation (21b)
is higher than that obtained using equation (21c). Observe that the value of cL obtained using
equation (21a) with k"1 (marked by a *) is very close to the value of the original c used in
the simulation. An explanation of this behaviour is given in Appendix A. It is shown there
that under rather general circumstances, a value of cL obtained from equation (21a) with
k"1 is likely to be a good estimate of the correct characteristic time constant de"ned via
the "rst moment as in equation (30).

Results for the non-local case are shown in Figure 5. A similar trend is seen to that in
Figure 4. In this "gure it is also observed that the value of cL obtained from equation (21a)
with k"1 (marked by a *) is very close to the value of the original c while those obtained
from equations (21b) and (21c) di!er signi"cantly from the original one. Also, observe that
estimates of cL obtained from the two former equations are higher than the simulated value
for both the local and non-local systems. However, unlike the case of Figure (4), here the
value of cL obtained from equation (21b) is lower than that obtained using equation (21c).

Now, consider damping model 3, consisting of two exponential functions. For the
numerical values take: b

1
"0)5, c

3
"0)2 and b

2
"0)5, c

4
"0)8. This results in an

equivalent c for the model of 0)5, the same as for damping model 2 discussed above. Figure
(6) shows the values of cL obtained for each mode for this damping model applied to the
locally reacting system. This time cL decreases with j, in contrast to the Gaussian case. The
range of variation is less dramatic, but still signi"cant. Observe that, as with damping model
2, the value of cL obtained from equation (21a) with k"1 (marked by a *) is very close to the



Figure 5. Values of cL obtained from di!erent kL calculated using equations (21a)}(21c) for the local case, damping
model 2; (**), "tted c( for di!erent modes; (. } . -), "tted using equation (21b), cL"1)5722; (} }), "tted using equation
(21c), cL"2)8130; (. . .), original c"0)5.

Figure 6. Values of cL obtained from di!erent kL calculated using equations (21a)}(21c) for the local case, damping
model 3; (**), "tted c( for di!erent modes; (. } . -), "tted using equation (21b), cL"0)2905; (} }), "tted using equation
(21c), cL"0)2590; (. . .), original c"0)5; ()) ' ))), c for the two exponential functions.
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value of the original c used in the simulation while that obtained from equations (21b) and
(21c) di!er signi"cantly from the original one. However, unlike the case of damping model 2,
here the estimates of cL obtained from the two former equations are lower than the simulated
value. Behaviour analogous to this was also observed when the identi"cation procedure is
repeated for the non-locally damped system.

3.4. DISCUSSION

It should be noted that for all the cases in Figures 2, 4, and 5, on the one hand, and
Figures 3 and 6, on the other, the values of cL evaluated for each mode show the opposite
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trend: for systems with damping model 2 the values of cL increase with increase of the mode
number j, whereas for systems with damping model 3 the values of cL decrease with increase
of the mode number. This behaviour can give further insight regarding the underlying
damping function. Recall that after obtaining the complex modes and frequencies and
having the mass matrix it is possible to obtain cL for di!erent modes:

c(
j
"

1

¹
min

kL
j
,

(31)

where kL
j

is given by equation (20). Because by equation (30) it is known that c(
j

is
proportional to hK

j
it is su$cient only to understand the behaviour of the "tted hK

j
. Using the

expression of kL
j
in equation (A.13) of Appendix A, hK

j
can be expressed as
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j
)
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j
)
, (32)

where F
R

and F
I
are, respectively, the real and imaginary parts of F, the Fourier transform

of the (non-normalized) damping function f (t) as de"ned in equation (A.1). Multiplying the
numerator and denominator of equation (32) by the normalization constant b, the "tted
hK
j
can be expressed in a more convenient form as
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)
. (33)

Here G(u), the Fourier transform of the normalized damping function g(t), is de"ned as

G(u)"P
=

0

g(t)e~*utdt. (34)

Expanding e~*ut in the above expression gives
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where M
k
, the kth moment of the damping function g(t), is de"ned as

M
k
"P

=

0

tkg(t) dt, k"0, 1, 2,2. (36)

For the three damping functions considered here in equations (22) and (23) the exact
expressions for the kth moment may be obtained as follows:
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Figure 7. First six moments of the three damping functions for c"0)5; ())0))), model 1; ())#))), model 2; ())*))),
model 3.
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Clearly, for all the damping functions M
k
'0 ∀k. In Figure 7, the "rst six moments of the

three damping functions considered here are plotted when c"0)5. It is clear that although
all M

k
'0 their values approach zero as k increases. This ensures that omission of the

higher order terms in equation (35) does not introduce much error for low values of u. Now,
separating real and imaginary parts of G(u) in equation (35) gives
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Using these relationships, from equation (33) the value of hK at any frequency can be
obtained as
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Since u is small and M
0
'M

2
, higher order terms arising in this expression will be small.

Thus, neglecting all the terms associated with higher power than u2,
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The variation of the "tted h
j
in the low-frequency region can now be deduced. The curve of

"tted h
j
will increase, as for the system with damping model 2 shown in Figures 2, 4 and 5, if
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Conversely, the curve of "tted h
j
will decrease if the above quantity is negative. This analysis

gives some insight into the nature of the underlying damping function. From Figure 7 or
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equations (37)}(39) it may be seen that the damping functions considered here give
behaviour which agrees with this condition.

4. FITTING OF THE COEFFICIENT MATRIX

4.1. THEORY

Once the relaxation parameter of the damping function is estimated the next step is to
obtain the coe$cient matrix C as shown in equation (9). After obtaining kL , from the
imaginary part of equation (11) the diagonal entries of C @ can be obtained as

C @
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"2I(jK

j
)
(kL 2#uL 2

j
)

kL 2
. (44)

This C @
jj

and kL can be substituted into equation (11) and subsequently an improved estimate
value of uL

j
may be obtained from (14) by
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j

are su$ciently close to uL (0)
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then the values of uL (new)
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can be taken as the
estimated values, i.e., uL
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j
. Otherwise the process can be repeated by substituting
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in place of uL
j
in one of equations (21a)}(21c) to obtain kL , and subsequently obtaining

a new set of uL
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from (45). This iterative procedure may be continued until the di!erences

between all new uL
j
and old uL

j
become su$ciently small. The "nal values of uL

j
and kL are

selected as the estimated values.
Now, kL can be substituted in equation (18) to obtain an estimate of the undamped modes

as
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After obtaining x(
j
, in this way from equation (16), the constants BI

kj
can be derived using

Galerkin error minimization as described in section 3 of the companion paper [1].
Denoting B3 3Rm]m as the matrix of unknown BI

kj
gives

B3 "[XK TX) ]~1XK TV) , (47)

where
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is the matrix of undamped modes. Now, the o!-diagonal terms C @
kj

can be obtained from
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, k, j"1,2,m, kOj. (49)

The diagonal entries of C@ have already been obtained in equation (44). Recall that C @
kj

are
constant coe$cients of the damping matrix in the modal co-ordinates, with associated time
function e~k9 t. The coe$cients in the original co-ordinates can be calculated using the
transformation

C"[(X) TX) )~1X) T]TC@[(XTX) )~1X) T]3 Rm]m. (50)

This coe$cient matrix together with the relaxation parameter completely de"nes the "tted
damping model for the structure. This "tting procedure has made use only of the complex
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natural frequencies, mode shapes and mass matrix to identify the best exponential damping
model associated with the measurements.

It is easy to check that when kL is large, i.e., when the damping mechanism is near to
viscous, this procedure reduces exactly to the procedure described in the earlier paper [1]
for identi"cation of a viscous damping model. Thus, this method is a generalization of
identi"cation of viscous damping properties to the more general linear damping case
described by an exponential model with a single relaxation time constant. One limitation of
this method compared to the identi"cation method for the viscous damping matrix is that
an estimate of the mass matrix is required. The extra information from the mass matrix also
enables one to detect whether the correct damping model of the system is viscous/
exponential or not.

4.2. SUMMARY OF THE IDENTIFICATION METHOD

In summary, the procedure can be described by the following steps:
1. Measure a set of transfer functions H

ij
(u) at a set of N grid points. Fix the number of

modes to be retained in the study, say m. Determine the complex natural frequencies
jK
j
and complex mode shapes z(
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from the transfer functions, for all j"1,2,m. Denote
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2. Obtain the "rst guess ( i.e., r"0) of the &undamped natural frequencies' as uL (r)
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3. Estimate the relaxation parameter kL (r)"uL (r)
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1
(or use a di!erent estimate

of kL given by equation (21b) or (21c)).
4. Calculate the diagonal terms of the C@ matrix as C @(r)
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, and go back to step 3.
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8. Evaluate the matrix B3 "[XK TX) ]~1XK TV) .
9. From the B3 matrix get
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10. Use

C"[(XK TX)~1X< T]TC@[(XK TX) )~1XK T]

to get the coe$cient matrix in physical co-ordinates.
It may be observed that even if the measured transfer functions are reciprocal, from this
procedure there is no reason why the "tted coe$cient matrix C will always be symmetric. If
indeed a non-symmetric C is detected then it may be guessed that the physical law behind
the damping mechanism in the structure cannot be described by an exponential model. This
possibility will be illustrated by considering numerical examples.
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4.3. NUMERICAL RESULTS

4.3.1. Results for small c

Consider "rst c"0)02 so that all the damping models show near-viscous behaviour. For
the system shown in Figure 1(a), with locally reacting damping, Figure (8) shows the "tted
coe$cient matrix of the exponential model for damping model 2, calculated using the
complete set of 30 modes. The "tted matrix identi"es the damping in the system very well.
Equation (21a) with k"1 has been used to obtain the relaxation parameter. As was seen in
Figure 2, the "tted relaxation parameter cL"0)02 so that the "tted characteristic time
constant also agrees exactly with the original one, even though the underlying model was
Gaussian rather than exponential. The high portion of the plot corresponds exactly to the
spatial location of the dampers. The o!-diagonal terms of the identi"ed damping matrix are
very small compared to the diagonal terms, indicating correctly that the damping is locally
reacting.

Now, consider the system shown in Figure 1(b) with non-locally reacting damping.
Figure 9 shows the "tted coe$cient matrix of an exponential model for damping model 2,
using the full set of modes. Again the high portion of the plot corresponds to the spatial
location of the dampers. Now, the negative o!-diagonal terms in the identi"ed damping
matrix indicate that the damping is non-locally reacting. It is concluded that in both cases
the proposed method extracts accurate information from the complex frequencies and
modes. In practice, one might expect to be able to use only the "rst few modes of the system
to identify the damping matrix. The proposed method can be applied using a smaller
number of modes, and it is found that the result behaves in a very similar way to the case of
identi"cation of a viscous damping matrix as discussed in the companion paper [1]*the
spatial resolution of the identi"ed coe$cient matrix gradually deteriorates as the number of
modes used to "t the damping matrix is reduced, but still the identi"ed coe$cient matrix
shows a reasonable approximation to the true behaviour.

When the "tting procedure is repeated using other damping models with a similarly short
characteristic time constant, the results are very similar. The detailed di!erence in their
functional behaviour does not in#uence the results signi"cantly. It may be observed that the
results obtained here are quite similar to those obtained by "tting a viscous damping model
Figure 8. Fitted coe$cient matrix of the exponential model for the local case, c"0)02, damping model 2.



Figure 9. Fitted coe$cient matrix of the exponential model for the non-local case, c"0)02, damping model 2.

Figure 10. Fitted viscous damping matrix for the local case, c"0)5, damping model 1.
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for the corresponding case discussed in section 4.1 of the companion paper [1]. In summary,
it can be said that when the time constant for a damping model is small the proposed
identi"cation method seems to work well regardless of the functional form of the damping
mechanism. The spatial location of damping is revealed clearly and the associated
relaxation parameter is accurately estimated whether damping is locally or non-locally
reacting. Modal truncation blurs the "tted coe$cient matrix, but does not degrade the
estimate of the relaxation parameter and overall the identi"cation process remains valid.

4.3.2. Results for larger c

When c is larger the two non-exponential damping models depart from the exponential
damping model, each in its own way. For the value c"0)5, Figure 10 shows the result of
"tting a viscous damping matrix, using the procedure described in the companion paper



Figure 11. Fitted coe$cient matrix of the exponential model for the local case, c"0)5, damping model 1.
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[1], for damping model 1 (equation (22)) with locally reacting damping and the full set of 30
modes. Note that although "tting started with a locally reacting damping model, which
means the true coe$cient matrix is non-zero only along the diagonal, non-zero values in the
o!-diagonal terms show that the "tted viscous damping is, in a sense, not locally reacting.
Figure 11 shows the corresponding result of "tting the exponential model for this problem.
This result clearly demonstrates the improvement of "tting over the result in Figure 10.
Since the damping model is &&identi"ed'' correctly in this case, the correct value of the
relaxation parameter is obtained, and the coe$cient matrix corresponds to the exact
coe$cient matrix for the problem. Thus, even if the characteristic time constant of the
damping mechanism present in a system is large, a correctly identi"ed damping model can
represent the true damping behaviour.

Figure 12(a) shows the "tted coe$cient matrix of the exponential damping model similar
to Figure 11 but with damping model 2 (equation (23)). The "tted matrix has some negative
o!-diagonal values which wrongly gives the impression that the damping type is non-local.
For this result equation (21a) with k"1 has been used to estimate the relaxation parameter.
Figure 12(b) compares the original damping time function (Gaussian) with the "tted
exponential function. It may be observed that although the "tted coe$cient matrix does not
match the original one very accurately the time functions agree with reasonable accuracy.
Since cL"0)4951 the characteristic time constant of the "tted exponential model is
surprisingly close to the exact c of the simulated model. This remains true with even larger
values of the characteristic time constant for systems with damping model 2.

The identi"cation results show somewhat di!erent behaviour for systems with damping
model 3. Figure 13 shows the "tted coe$cient matrix of the exponential function with
c"0)5 for damping model 3 with two exponential functions as considered in section 3.3.2.
Compared to the case of damping model 2 (Figure 12(a)), the "tted coe$cient matrix is
much closer to the original coe$cient matrix used for simulation. However, note that for
the "tted exponential function cL"0)4834, less close to the correct value than that obtained
with damping model 2.

In the companion paper [1], it was shown that the features of the "tted viscous model
were quite similar in the case of non-viscous damping models 1 and 2. Now, however, the
features of "tting the exponential model with damping model 2 (Figure 12(a)) are clearly
di!erent from those with model 1 (Figure 11) and model 3 (Figure 13). This is due to the fact



Figure 12. (a) Fitted coe$cient matrix of the exponential model for the local case, c"0)5, damping model 2.

Figure 12. (b) Original and "tted damping time function for the local case with damping model 2: (**),
original damping function, c"0)5; (.!!.!), "tted function, cL"0)49507.
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that a viscous damping model was incorrect for both models 1 and 2, whereas when "tting
the exponential model, it is correct for damping model 1 and close for damping model 3. For
damping model 2, since the original damping function is Gaussian while the "tted function
is exponential, the coe$cient matrix does not correspond to the exact coe$cient matrix of
the problem. For damping model 3, the "tted exponential function seems to give a much
better approximation to the original multiple exponential function, and the coe$cient
matrix is remarkably close to the &&correct'' values.

Finally, attention turns to the non-local case shown in Figure 1(b). As has just been
shown with locally reacting damping, the proposed method can identify the exact coe$cient



Figure 13. Fitted coe$cient matrix of the exponential model for the local case, c"0)5, damping model 3.

82 S. ADHIKARI AND J. WOODHOUSE
matrix and damping function for the system with damping model 1 because the "tted model
is the same as the original model. Figure 14 shows the "tted coe$cient matrix for damping
model 2, using the full set of 30 modes. For these results equation (21a) with k"1 has been
used to calculate cL"0)5033. Thus although the "tted coe$cient matrix does not match very
well with the original one, it is found once again that the value of the characteristic time
constant is quite accurately predicted. For damping model 3 it was observed (results not
shown) that, as in the locally reacting case, the identi"ed coe$cient matrix is very close to
the original one.

It might be thought that a useful check on the accuracy of the "tting method could be
made by comparing the &&measured'' and reconstructed transfer functions. However, little
information is gained from such a comparison. The reason is that for both viscous and
non-viscous "tting procedures, the poles and corresponding residues of all transfer
functions are "tted correctly. It follows from Liouville's theorem that the transfer functions
are always well reproduced. This demonstrates that there is a fundamental ambiguity in
damping identi"cation: two di!erent damping models (e.g., the viscous model and the
exponential model) with di!erent spatial distributions and di!erent sets of parameters can
reproduce accurately the full set of transfer functions of a system with an entirely di!erent
damping model (e.g., the Gaussian model) with di!erent spatial distributions and
parameters. This in turn implies that just by measuring the transfer functions it is not possible
to identify uniquely the governing damping mechanism. However, it should be noted that in
cases like Figures 12(a), 14, etc., the "tted coe$cient matrix is not symmetric. This is
a non-physical result, which can be regarded as evidence that the true damping behaviour is
not in fact described by an exponential function. In the companion paper [1] similar
features were also observed while "tting a viscous damping matrix.

This appears to mean that it does not matter whether the right damping model is used,
since a wrong model "ts all the transfer functions just as well. This is, however, misleading.
A common reason for constructing a theoretical model of vibration is in order to guide
changes to the structure to reduce a vibration problem. If the wrong damping model is used,
it is likely that prediction of the e!ect of structural changes will not be accurate. Conversely,
if it is wished to develop a procedure to estimate more reliably the correct damping model, it
would be necessary to introduce deliberate, controlled changes to the system in order to
obtain the necessary additional experimental information.



Figure 14. Fitted coe$cient matrix of the exponential model for the non-local case, c"0)5, damping model 2.
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5. CONCLUSIONS AND FURTHER RESEARCH

In this paper, a method has been proposed to identify a non-proportional non-viscous
damping model in vibrating systems. It is assumed that damping is light so that the "rst
order perturbation method is applicable. The method is simple, direct, and compatible
with conventional modal testing procedures. The complex modes and natural frequencies
are used together with the system mass matrix. The method does not require the full
set of modal data. The damping behaviour is assumed to be described by an exponential
relaxation function, and the relaxation time constant is found as part of the "tting
procedure. Identi"cation of the familiar viscous damping model is a special case of
the general method proposed here. The validity of the proposed method has been explored
by applying it to simulated data from a simple test problem, in which a linear array
of spring-mass oscillators is damped by non-viscous elements over part of its
length.

Numerical experiments have been carried out with a wide range of parameter values and
di!erent damping models. The main features of the results have been illustrated by two
particular damping models and representative parameter values. It has been shown that the
method generally predicts the spatial location of the damping with good accuracy, and also
gives a good indication of whether the damping is locally reacting or not. In general, the
relaxation time constant was "tted well, even when the coe$cient matrix was less accurate.
The transfer functions obtained from the "tted exponential damping model agree well with
the exact transfer functions of the simulated system. Reciprocity of the transfer functions is
preserved within an acceptable accuracy, although in some cases the "tted coe$cient matrix
is not symmetric, indicating that the true damping model di!ers from the assumed
exponential model.

When the time constant is short compared with the periods of all modes retained in the
analysis, the damping is close to viscous and the "tting procedure gives a physically sensible
symmetric coe$cient matrix and an accurate value of the relaxation parameter. When the
time constant is larger, however, the memory of the damping function in#uences the
detailed behaviour. If the identi"ed model matches the true model then the "tting procedure
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gives a correct physical description of the damping. When the models are di!erent, the poles
and residues of the transfer functions are still "tted accurately with a model of the form
considered, but the underlying di!erent functional behaviour manifests itself in
a non-symmetrical coe$cient matrix and signi"cant variation of "tted relaxation parameter
with mode number. A correct physical description of the damping mechanism can be
obtained only if a correct model is selected and "tted.

From equation (5) it can be deduced that, within the approximation of small damping,
each frequency function G @

kj
(u) can be observed at only two frequencies, u

j
and u

k
. This fact

imposes a fundamental restriction on identi"cation of an exact damping function using this
approach. When the "tted coe$cient matrix turns out to be non-symmetric, this indicates
that it was not possible to "t the assumed function through both &&measured'' frequency
points, and two di!erent coe$cients were needed. To correct this problem it would be
necessary to "t a di!erent damping model, able to pass through both measured points while
retaining symmetric coe$cients. The function cannot be uniquely determined by this
requirement, of course. There can be two possible ways to tackle this problem. Di!erent
physically plausible damping models can be &&inverted'' and attempts can be made to "t their
parameters using the approach outlined in this paper and see which model "ts the measured
data most convincingly. Alternatively, the viscous or exponential model might be used and
constraints put on the coe$cients such that they yield symmetric coe$cient damping
matrix. Research is currently in progress to explore these questions.

There are a number of interesting issues, which will be addressed in future works. Most
immediate of these are experimental testing of the prediction and analysis of the e!ect of
measurement errors on the procedure. After that, there is scope to extend the study to
two-dimensional systems, systems with joints, etc.
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APPENDIX A: SELECTING THE VALUE OF k9

From equations (21a)}(21c) it is clear that di!erent choices of j yield di!erent values of k( ,
which contradicts the initial assumption that the system has only one relaxation time. Here
it will be shown that for systems with normalized damping functions similar to equations
(22) and (23) the best estimate of k( is given by equation (21a) with k"1.

Since the damping functions are normalized to have unit area when integrated to in"nity
they can be written in the form

g(t)"b f (t) where b"
1

:=
0

f (t) dt
. (A.1)

The characteristic time constant is obtained from equation (26) as

h"
:=
0

t f (t) dt

:=
0

f (t) dt
. (A.2)

It is useful to express this result in the frequency domain. From the de"nition of the Fourier
transform

F (u)"P
=

0

f (t) e~*ut dt, (A.3)

di!erentiating with respect to u gives

F@(u)"
dF(u)

du
"P

=

0

!i t f (t) e~*utdt. (A.4)

From equations (A.3) and (A.4) it is clear that

F(0)"P
=

0

f (t) dt, and iF@(0)"P
=

0

t f (t) dt (A.5)

so that from equation (A.2) the characteristic time constant may be represented as

h"
iF@(0)

F (0)
. (A.6)
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Substituting g (t) from (A.1) and taking the Fourier transform of equation (6) gives

G(u)"C bF(u)"C b [F
R
(u)#i F

I
(u)], (A.7)

where

F (u)"F
R
(u)#iF

I
(u), (A.8)

where F
R

and F
I
are, respectively, the real and imaginary parts of F. Using this G(u) in the

approximate expression for the complex modes in equation (5) and separating real and
imaginary parts gives

u
j
"R (z

j
)+x

j
!u

j
bF

I
(u

j
)

N
+
k/1
kEj

C @
kj

(u2
j
!u2

k
)
x
k

(A.9)

and

v
j
"I(z

j
)+u

j
bF

R
(u

j
)

m
+
k/1
kEj

C @
kj

(u2
j
!u2

k
)
x
k
. (A.10)

From the above two equations it is easy to see that

u
j
"x

j
!

F
I
(u

j
)

F
R
(u

j
)
v
j
. (A.11)

It has been mentioned that v}
j
is M-orthogonal to its corresponding undamped mode, i.e.,

v} T
j
Mx}

j
"0. Using this relationship in equation (A.11) yields

vT
j
Mu

j
"!

F
I
(u

j
)

F
R
(u

j
)
vT
j
Mv

j
or

vT
j
Mu

j
vT
j
Mv

j

"!

F
I
(u

j
)

F
R
(u

j
)
. (A.12)

From this equation, the expression for k( may be rewritten as

k("!

uL
j
F
R
(uL

j
)

F
I
(uL

j
)

. (A.13)

For the exponential function it has been shown that the characteristic time constant
h"1/k. Thus, using equation (A.6)

k"
1

h
"

!iF (0)

F@(0)
. (A.14)

This is an exact relationship. It is now shown why equation (A.13) is a good approximation
to equation (A.14) when u

j
is small. Since f (t) is a real function F(u) can be expanded as

a real polynomial in (iu). Thus,

F(u)"F(0)#(iu) F(1)#
(iu)2

2!
F(2)#2, (A.15)

where all F (k) are real. From this expansion

F (0)"F(0) , F@(0)"iF (1) . (A.16)
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Now, consider the case when u is small. For this case, the higher order terms in series (A.15)
can be neglected to obtain

F (u)+F (0)#iuF (1). (A.17)

Comparing above with equation (A.8) and in view of (A.16) gives

F
R
(u)+F (0)"F(0) and F

I
(u)+uF (1)"!iuF @(0). (A.18)

Substituting in equation (A.14) gives

k+!

uF
R
(u)

F
I
(u)

when uP0. (A.19)

This result is immediately comparable with the expression for k( in (A.13). Observe that uL
j
is

closest to zero when j"1. For this reason, the best estimate of kL can be obtained by
choosing j"1 in equation (A.13). From equation (A.12) this in turn implies that

k(+!

u(
1
F
R
(uL

1
)

F
I
(uL

1
)

"

uL
1
v} T
1
Mv}

1
v} T
1
Mu}

1

. (A.20)

APPENDIX B: NOMENCLATURE

C viscous damping matrix
D(t) energy dissipation function
D(u) Fourier transform of D(t)
f (t) non-viscous damping functions (not normalized)
F(u) Fourier transform of f (t)
F
R
(u) real part of F (u)

F
I
(u) imaginary part of F(u)

G(t) damping function matrix in the time domain
g(t) normalized non-viscous damping functions
G(u) Fourier transform of damping function matrix G (t)
G(u) Fourier transform of damping function g (t)
G

R
(u) real part of G (u)

G
I
(u) imaginary part of G(u)

G@(u) frequency domain damping function matrix in the modal co-ordinates
H

ij
(u) set of measured transfer functions

K sti!ness matrix
mk number of modes used for estimation of k(
M mass matrix
M

k
kth moment of g (t)

N degrees of freedom of the system
m number of measured modes
Q

j
Q-factor for the jth mode

t time
¹

min
minimum time period for the system

x
j

jth undamped mode
X matrix containing x

jy(t) vector of the generalized co-ordinates
z
j

jth complex mode
z;
j

jth measured complex mode
U] matrix containing z;

ju;
j

real part of z;
j

U] matrix containing u;
jv;

j
imaginary part of z;

j
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V] matrix containing v;
ju

j
jth undamped natural frequency

j
j

jth complex natural frequency of the system
e
j

error vector associated with the jth complex mode
a(j)
l

constants associated with expansion of the jth elastic modes
f
j

jth modal damping factor
k relaxation parameter of the "tted damping model
kL
j

estimated relaxation parameter for the jth mode
k
1

constant associated with exponential damping function
k
2

constant associated with Gaussian damping function
k
3
, k

4
constants associated with double exponential damping function

b
1
, b

2
weights associated with double exponential damping function

b normalization constant associated with non-viscous damping function, f (t)"bg(t)
hK
j

estimated characteristic time constant for the jth mode
hK (u) frequency-dependent estimated characteristic time constant
h characteristic time constant
c non-dimensional characteristic time constant
d(t) Dirac-delta function
C space of complex numbers
R space of real numbers
R(f ) real part of (f)
I(f ) imaginary part of (f)
(f( ) estimated value of (f )
(f )T matrix transpose of (f)
(f )~1 matrix inverse of (f)
(f5 ) derivative of (f) with respect to t
(f )* complex conjugate of (f )
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