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Closed form formulae are reported describing point mobilities for thin cylindrical shells in
axisymmetric motion. Two cases are studied: (1) the in"nite shell and (2) the edge-excited
semi-in"nite shell and, for both, forces and moment excitation are considered. The solutions
of these problems are obtained analytically by resorting to perturbation methods and
presented in terms of the Green functions and point mobilities. These results are further used
to derive approximate expressions for the re#ection coe$cients of the shell-borne waves at
a free end and for the Green functions of a "nite free}free shell undergoing axisymmetric
vibrations.
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1. INTRODUCTION

Point mobility for a mechanical system is de"ned as the complex ratio of velocity to force
during harmonic motion. In mechanical engineering, this concept is widely used for
studying the vibration transmission to structures by force and moment. Formulae
describing mobilities of in"nite and semi-in"nite simple structural elements such as beams,
plates and shells are desirable from the theoretical point of view. Indeed, analytical
solutions display explicitly the functional dependence of the solutions on the problem
parameters, thus yielding a physical insight into the underlying mechanisms which govern
the structure response. Their bene"t is, however, not limited to theoretical considerations
and they also "nd application in practice. For instance, design methods based upon
substructuring techniques (see, e.g., references [1, 2]), resort to such formulae to study the
vibration transmission in built-up structures. A further application is that they provide
estimates for the vibration levels of similar but "nite structures [3].

Mobilities of beams and plates having in"nite or semi-in"nite extent have been the focus
of a vast number of past, as well as recent, studies (see, e.g., references [3}6]), yielding
closed-form solutions for a number of problems. For shells, the results reported by the
literature are fewer and have been obtained mainly numerically (see, e.g., references [7}10]).
In fact, scant attention has been devoted to the derivation of analytical solutions, perhaps
due to the complexity of the di!erential equations governing shell motions. The "rst to
attempt to "ll this void was Franken in 1960 [11]. Neglecting the #exural sti!ness of the
shell, he derived an analytical expression for the mobility of an in"nite thin-walled shell with
respect to a radial point force. Addressing the same problem 2 years later, Heckl [12]
obtained approximate solutions including the #exural sti!ness. It can be pointed out that,
by taking advantage of the in"nite character of the structure, both studies resort to the
0022-460X/01/210089#27 $35.00/0 ( 2001 Academic Press
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method of residues. Regarding the case of semi-in"nite shell subject to loads applied
at its end, the static case was solved explicitly by Simmonds in 1966 [13]. Recently,
Ming et al. [10] have presented numerical results for the dynamical version of this
problem. However, no attempt has been made to derive closed form solutions of the
mobilities of semi-in"nite shells. This may be due to the fact that the method of residues
cannot be used with equal success to deal with semi-in"nite structures as shown in
references [5, 6].

With consideration of only the axisymmetric mode of vibration, the present paper reports
on closed form formulae describing point mobilities for thin-walled cylindrical shells of
in"nite and semi-in"nite extent. The formulae are given for three types of load, namely an
axial force, a radial force and a bending moment. Regarding the in"nite shell problem, the
present results complete those obtained by Franken [11] and Heckl [12] in the case of
radial excitation. Further, since being a stage in the derivation of the mobilities,
approximate expressions for the shell Green functions are also presented. The validity of the
present results is bounded by the limitations inherent in the following assumptions:
(1) Love's "rst approximation [14], (2) vibrations in vacuo, and (3) point excitation in the
axial direction, i.e., the size of the excitation in this direction is larger than the shell thickness
but small compared to the axial wavelength.

The theoretical approach adopted in this study is based upon perturbation methods. This
strategy was used successfully by Wong et al. [15] to derive the normal frequencies of
a clamped cylindrical shell vibrating axisymmetrically. The problems addressed here are
formulated using the theory by FluK gge [16] and solved analytically by applying the method
of the matched asymptotic expansions [17]. Solutions are obtained in the form of power-
series expansions with the thickness-to-radius ratio of the shell taken as expansion
parameter. Retaining the leading terms of these expansions yields approximate expressions
of the shell Green functions with respect to the di!erent loads. Finally, the analysis is
pursued to higher order terms in order to obtain expressions for both the real and the
imaginary parts of the point mobilities.

The plan of this paper is as follows. Section 2 is concerned with the problem formulation
and presents the methodology for the computerisation of the results. In section 3, the
equations are re-written in line with perturbation theory and solved for the leading
term to exemplify the method. It appears that the derived expressions exhibit a singularity
slightly below the "rst ring frequency. In section 4, the Green functions and the mobilities of
the semi-in"nite and in"nite shells with respect to the di!erent loads are given in closed
form and are shown to compare well with exact calculations. Section 5 deals with the
singularities appearing in the previous results. They are tackled by resorting again to
perturbation theory and the derived results are represented by formulae containing
tabulated functions. Finally, section 6 provides approximate expressions for the re#ection
coe$cients of the shell-borne waves at a free end and for the response of a "nite free}free
cylindrical shell.

2. PROBLEM FORMULATION

The mechanical response of a cylindrical shell to an axisymmetric load is addressed for
the three following problems: the case of the semi-in"nite shell excited at its end (problem I);
the case of the in"nite shell excited in its middle (problem II) and the case of the free}free
"nite shell (problem III). Problems I and II can be tackled by studying a semi-in"nite shell
with certain sets of boundary conditions while solutions for problem III are derived from
results of the two former problems.
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2.1. GOVERNING EQUATIONS

Let a thin circular semi-in"nite shell made of a homogeneous isotropic material vibrate
in vacuo in its axisymmetric mode. The shell occupies the half-space x'0 (see Figure 1)
and, according to FluK gge shell theory [16], its displacements in the axial and radial
directions, respectively, denoted u and w, are governed by the two di!erential equations

uA# X2 u#kw@!bw@@@"0, ku@!bu@@@#(1!X2)w#b (w#w(4))"0, (1)

where k is the Poisson ratio, b the thickness parameter and X the non-dimensional
frequency. The reader is referred to the nomenclature given in Appendix B for the de"nition
of parameters not explicitly given in the text. Primes denote di!erentiation with respect to
the non-dimensional axial length s"x/R and derivatives of order n higher than 3 are
denoted Ln( )/Lsn"( )(n) to lighten the equations. In order to make the present analysis more
convenient, equation (1) is rearranged in the form

b(1!b)w(6)#b(X2#2k)w(4)#(b#4m4)wA#X2(1!X2#b)w"0,

(k#X2b) u@"!((1!X2#b)w#kbwA#b(1!b)w(4)), (2a,b)

where the notation

4m4"1!k2!X2 (3)

has been introduced.
Free axisymmetric vibrations of semi-in"nite shells can be expressed in terms of three

waves of propagating or near"eld types. Upon omitting the time dependence e*ut, its general
form may be taken as
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where i
p
, C

p
and A

p
are the non-dimensional propagation constant, the amplitude in the

radial and the axial directions of the wave p (p"1, 2, 3) respectively.
Substituting the form of solutions (4) into equation (2a) leads to a sixth order polynomial

in i
p
, also termed the dispersion relation. The three propagation constants are the roots of

the dispersion relation which yield solutions satisfying Sommerfeld's condition in the half-
space x'0. Accordingly, and owing to the time dependence adopted, these constants are
the roots located in the complex half-plane described by n/2(arg(i))3n/2. Further, to
each wave p (p"1, 2, 3) is associated a wave amplitude ratio, denoted ¹

p
"A

p
/C

p
, and

which expression is easily obtained by introducing equation (4) in equation (2b).
In both problems I and II, the shell is submitted to an axisymmetric excitation at x"0.

The excitation consists of an axial force, a radial force and a bending moment. The
distributions of these loads per unit length are (N

0
, Q

0
, M

0
) and the convention which is

employed regarding their positive directions is shown in Figure 1. Problem II (in"nite shell)
is transformed into a boundary-value problem by considering the response of a semi-in"nite
shell and a set of boundary conditions at x"0 in accord with the symmetry of the in"nite
shell. For problem I, i.e., the semi-in"nite shell excited at the edge, the set of boundary
conditions reads [16]

(4m4w#b (w#w(4)#kwA!u@@@))/kD
s/0

"n
0
,

(w@@@!uA)D
s/0

"q
0
, (wA!u@)D

s/0
"m

0
. (5a}c)



Figure 1. Geometry of the semi-in"nite shell, co-ordinate system and positive convention of force and moment
resultants.
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The right-hand members of equation (5) are de"ned by

n
0
"RN

0
/B, q

0
"R3Q

0
/D, m

0
"!R2M

0
/D, (6)

where B"Eh/(1!k2) and D"Eh3/12(1!k2) are the extensional and the #exural
rigidities respectively. In FluK gge's theory, the boundary condition with respect to the axial
force is usually given in the form

(u@#kw!bwA)D
s/0

"!n
0
, (7)

instead of equation (5a). Equation (5a) is obtained by re-arranging equation (7) together
with equation (1b) and was derived in order to save some algebra in the future analysis.

For problem II, i.e., the case of the in"nite shell excited in its &&middle'', symmetry implies
that half of the exciting load acts on each half of the shell. Furthermore, two sets of
boundary conditions have to be considered. One deals with the excitation by a radial force
and reads

uD
s/0

"0, w@D
s/0

"0, (w@@@!uA)D
s/0

"q
0
/2, (8)

while the second deals with axial force excitation and bending moment excitation:

(4m4w#b (w#w(4)#kwA!u@@@))/kD
s/0

"n
0
/2,

(wA!u@)D
s/0

"m
0
/2, wD

s/0
"0. (9)

2.2. SOLUTIONS TO THE BOUNDARY-VALUE PROBLEMS

To determine the response of the shell, the dispersion relation is solved to "nd the three
propagation constants satisfying Sommerfeld's condition and the associated wave
amplitude ratios ¹

p
are calculated. Then, substituting the displacement equations (4) into

the boundary conditions given by either equation (5), equation (8) or equation (9) and using
the previously calculated ¹

p
and i

p
yield a system of three equations with the wave

amplitudes C
1
, C

2
and C

3
as unknowns. Solving this system to "nd these constants gives the

receptances of each wave to the di!erent loads. Written in matrix form, the amplitudes of
the waves are given by

C"acX, (10)
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where C"[C
1

C
2

C
3
]T and X"[N

0
Q

0
M

0
]T. The matrix ac is referred to as the wave

receptance matrix. The element ac
p,X

is the receptance of the wave p with respect to the load
X (X"N

0
, Q

0
, M

0
). The superscript c is either c"R/2 or R depending on whether

reference is made to problem I (semi-in"nite shell) or II (in"nite shell).
Once the receptances of the waves are known, the direct mobilities, which are de"ned as

the complex ratio of velocity to force taken at the same point, are easily derived. For the
sake of convenience, they are gathered in matrix form as follows:

[uR wR hQ ]T"YcX. (11)

The overdot denotes time derivation and h represents the rotation of the normal to the
middle surface about the u-axis, h"Lw/Lx. The mobility matrix is symmetric and reads
explicitly

Yc
"

>c
u,N0

>c
u,Q0

>c
u,M0

>c
w,N0

>c
w,Q0

>c
w,M0

>ch,N0
>#h,Q0

>ch,M0

. (12)

Diagonal and o!-diagonal terms are referred to as input and cross-mobilities respectively.
They are related to the wave receptances by the relationships

>c
u,X

"iu
3
+

p/1

¹
p
ac
p,X

, >c
w,X

"iu
3
+
p/1

ac
p,X

, >ch,X"iu A
3
+
p/1

ac
p,X

i
pBNR. (13a}c)

For single force or moment excitation, the power injected into the shell is proportional to
the real part of the input mobility. In case of joint excitation, i.e., excitation consisting of
several components (forces, moments) correlated in time, cross-mobilities should be taken
into consideration when calculating the injected power. Unlike input mobilities, the sign of
the real part of the cross-mobilities may change, re#ecting the possible reduction of power
input by a certain combination of loads at the end of the structure.

3. THE PERTURBATION APPROACH

For thin shells the thickness parameter, which is proportional to the square of the
thickness-to-radius ratio, is very small (b@1). Equation (2a) shows that this small parameter
multiplies the highest derivative of the di!erential equation. This form of di!erential
equation is typical of edge-layer problems for which the variable of the problem undergoes
rapid changes across a narrow region [17]; the term edge-layer refers to the fact that these
regions frequently adjoin the boundary of the system. However, such layers should also be
expected in the narrow regions adjoining load application points or discontinuities in the
structure.

Setting b"0 in equation (2) yields the well-known membrane equation for shells. Using
membrane theory for studying the axisymmetric vibrations of shells is valid as long as the
edge layer can be neglected, i.e., at some distance from the boundary and at low frequencies.
The membrane equation being of second order, the vibration "eld is modelled by only one
wave and fails to satisfy the three boundary conditions at the edge. The two boundary
conditions involving bending stresses, i.e., the ones on the radial force and the bending
moment, should be dropped. However, for in"nite shell membranes, transverse shear
stresses are balanced by extensional stresses and the membrane theory can be used to assess
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the receptance of the shell to a radial force at low frequencies [11]. Conversely, the
membrane theory is inadequate to predict the response of a semi-in"nite shell to a radial
load located at its edge as the extensional stresses vanish there.

Among the perturbation methods, a most e!ective technique for treating edge-layer
problems is the method of the matched asymptotic expansions [17]. This method divides
the structure into an inner region adjoining the boundary and an outer region including the
rest of the structure. The sharp changes taking place in the inner region are described using
a magni"ed scale. The governing equations and the boundary conditions are expressed in
the new co-ordinate system and expanded as a function of the thickness parameter. The
displacement vector expansion, the solution of these equations, is referred to as the inner
solution. In the outer region, the equations of motion are expanded by using the original
co-ordinate system. The solution of these equations is called the outer solution. The basic
idea underlying the method is that the domains of validity of the two expansions overlap
and hence their matching provides the additional equations which allow all the constants in
the expansions to be determined. Finally, the inner and outer expansions are combined to
form a composite expansion valid both in the inner and outer regions. In the following
section, the governing equations and the boundary conditions for problem I (semi-in"nite
shell) are re-arranged according to the method. Thereafter, the derivation of the wave
receptances is exempli"ed by determining the solutions at the leading order. However, it
proved necessary to extend the analysis to higher orders in order to obtain approximate
expressions for all the wave receptances. The results of this further analysis are presented for
both the semi-in"nite and in"nite shells in section 4.

3.1. GOVERNING EQUATIONS IN THE INNER REGION

Following references [15, 17], the inner solutions, denoted ui and wi, are sought in the
form

ui"
=
+
k/0

jk uJ
k
, wi"

=
+
k/0

jkwJ
k
, (14)

where the expansion parameter is chosen to be

j"b1@4. (15)

Accordingly, modi"ed sets of governing equations and boundary conditions are derived by
applying the stretching transformation m"s/j to equations (2) and (5). Introducing
equation (14) in the modi"ed equations of motion and collecting by terms of equal power of
j yields

wJ (6)
k
#4m4wJ A

k
"!((X2#2k)wJ (4)

k~2
#X2(1!X2)wJ

k~2
#wJ A

k~4
!wJ (6)

k~4
#X2wJ

k~6
),

uJ @
k
"!(1/k) ((1!X2)wJ

k~1
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k~5
), (16)

where the convention that uJ
k
"wJ

k
"0 for k(0 is adopted. Acting similarly with the

modi"ed boundary conditions for problem (I) yields

(4m4wJ
k
#wJ (4)

k
#kwJ A

k~2
#wJ

k~4
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"n8
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k
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where d is Kronecker's delta function (d(k, 0)"1 if k"0, 0 otherwise) and

nJ
0
"n

0
, qJ

0
"j3q

0
, mJ

0
"j2m

0
. (18)

3.2. GOVERNING EQUATIONS IN THE OUTER REGION

In the outer region, the solutions for the longitudinal and the radial displacements are
denoted uo and wo. The solutions are sought in the form of

uo"
=
+
k/0

jkuL
k
, wo"

=
+
k/0

jkwL
k
. (19)

The equations satis"ed by the functions uL
k
and wL

k
are derived by inserting equation (19) into

equation (2) and collecting by terms of equal power of j. This yields

4m4wL A
k
#X2(1!X2)wL

k
"!(X2wL

k~4
#wL A

k~4
#wL (6)

k~4
#(X2#2k)wL (4)

k~4
!wL (6)

k~8
),

uL @
k
"!((1!X2)wL

k
#X2uL @

k~4
#wL

k~4
#kwA

k~4
#wL (4)

k~4
!wL (4)

k~8
)/k, (20)

where the convention that uL
k
"wL

k
"0 for k(0 is adopted. It appears that up to and

including the third order, these equations reduce to the membrane equation. For higher
order, a non-homogeneous term appears, leading to particular solutions.

3.3. LEADING ORDER SOLUTIONS

The derivation of the wave receptances is exempli"ed for the leading order k"0, i.e., the
leading terms of the inner and outer expansions, are sought which satisfy both the boundary
conditions and the matching equations. These solutions are then combined to form
a composite expansion valid everywhere, thereby yielding the "rst approximation for the
wave receptances.

At the leading order, i.e., k"0, the di!erential equations governing the vibrations in the
inner region and given by equation (16) read

wJ (6)
0
#4m4wJ A

0
"0, uJ @

0
"0 (21)

and their solutions are

wJ
0
"C1

0,0
#C1

0,1
m#C2

0,0
e~m(1`*)m#C3

0,0
e~m(1~*)m, uJ

0
"A1

0,0
. (22)

Likewise at the leading order, equation (20) becomes

4m4wL A
0
#X2(1!X2)wL

0
"0, uL @

0
"!((1!X2)wL

0
)/k (23)

and the outer solutions read

wL
0
"d

0
e~(XJX2!1/2m2)s, uL

0
"!

2m2JX2!1

kX
d
0
e~(XJX2!1/2m2) s#b

0
. (24)
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It is seen that the propagation constants not satisfying n/2(arg(i
p
))3n/2 (p"1, 2, 3)

are disregarded in the solutions. According to the method, the outer solution is valid
everywhere outside the inner region. Assuming damping implies that the solutions should
yield vanishing displacements when the axial variable s becomes in"nite. This implies that
the constant b

0
must be set to zero. The six remaining constants appearing in the

expressions of the inner and outer solutions have to be determined partly from the
boundary conditions and partly from the matching conditions.

From equation (17), the boundary conditions satis"ed by the leading term of the inner
solutions are

(4m4wJ
0
#wJ (4)

0
)k~1Dm/0

"nJ
0
, wJ @@@

0
Dm/0

"qJ
0
, wJ A

0
Dm/0

"mJ
0
. (25)

By solving the system obtained when equation (22) are introduced into equation (25), the
following results ensue:

C1
0,0

"kn8
0
/4m4, C2

0,0
"

mJ
0

2m2(1#i)
#

qJ
0

4m3
, C3

0,0
"

imJ
0

2m2(1#i)
#

qJ
0

4m3
. (26)

The matching of the outer and inner solutions is performed in the overlapping region,
where the inner region variable m tends towards in"nity and s tends towards zero.
According to reference [17], the matching principle used to provide the missing equations is

lim
m?`=

w8
0
(s; j)"lim

s?0

wL
0
(s; j), lim

m?`=

uJ
0
(s; j)"lim

s?0

uL
0
(s; j). (27)

Since the exponential terms in the inner solution describe a standing decaying wave, they
might be taken as zero in this region. Furthermore, expressing the limits of the inner
solutions in terms of the axial variable s, equation (27) become

C1
0,0

#C1
0,1

s

j
"d

0
, A1

0,0
"!

2m2JX2!1

kX
d
0
. (28)

Inasmuch as the limit of the outer expansion does not contain a term proportional to j~1,
the term j~1C1

0,1
in equation (28a) cannot be matched and the constant C1

0,1
should be

taken to zero.
Finally, the analysis of the leading order is completed by deriving composite solutions

which are valid both in the inner and the outer regions. According to Nayfeh [17], these
composite expansions, denoted we and ue, are de"ned by

we"wo#wi!lim
s?0

wL
0
(s; j), ue"uo#ui!lim

s?0

uL
0
(s; j). (29)

Thus, using equations (18), (22), (24), (26), (28), (29) and (6) and the relationship D"bBR2,
the composite solutions, expressed as a function of the original load distributions, read, at
the leading order,

we"
kRN

0
4m4B

ei1s#
RQ

0
4m3b1@4B

(ei2s#ei3s)!
M

0
4m2b1@2B

((1!i)ei2s#(1#i)ei3s),

ue"!

RJX2!1

2m2XB
ei1s, (30)
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where the propagation constants are given by

i
1
"!

XJX2!1

2m2
, i

2,3
"

!m (1$i)

b1@4
. (31a,b)

3.4. DISCUSSION

The "rst propagation constant given by equation (31a) describes a wave with a phase
velocity close to the extensional phase speed in a beam at low frequencies and in a plate at
high frequencies. This wave is referred to as the extensional wave in what follows. Likewise,
the two remaining propagation constants given by equation (31b) tend toward the
propagation constants of #exural wave in a #at plate at high frequencies. These waves are
referred to as the #exural waves. From the expressions of the propagation constants, it
appears that the vibration "eld can be described by two natural length scales, namely the
l
1
"s/b1@4 and l

2
"s.

Upon considering equation (30), it is seen that the analysis of the leading order does not
yield a complete wave receptance matrix. Indeed, the receptances of the extensional wave
with respect to Q

0
and M

0
and the receptances of the #exural waves with respect to N

0
do

not appear at this stage. To derive the complete matrix, the analysis should be pursued to
higher orders.

Finally, a second conclusion that can be drawn from equation (30) is that the
approximate expressions become singular when the parameter m given by equation (3)

vanishes, i.e., when the non-dimensional frequency X tends towards X
0
"J1!k2. These

singularities do not appear in the real solutions and the problem of their treatment is
tackled in section 5 by resorting again to perturbation theory.

4. THEORETICAL RESULTS

In this section, results issuing from the analysis of higher order solutions are given. The
details of the calculations are not presented since the algebra, though becoming more
cumbersome, is the same as in the preceding section. Yet a novelty appears for orders higher
than 2 owing to the fact that equations (16) and (20) are no longer homogenous. The
particular solutions of these non-homogeneous equations yield terms of the form speis in the
composite solutions. For propagating waves, these terms, referred to as secular terms in
perturbation theory [19], become unbounded as sPR. Since the exact solution is
bounded, the non-uniformities introduced by these terms should be removed. This can be
achieved by using perturbation methods, e.g., the Lindstedt}PoincareH technique [19]. This
method is based on the fact that these terms are nothing but the power-series expansion of
the propagation constants. Upon realising that, it is then rather straightforward to make the
solutions uniformly valid.

4.1. GREEN FUNCTIONS FOR THE RADIAL DISPLACEMENT

In order to obtain solutions for all the elements of the wave receptance matrices with
respect to the radial displacement, the calculations are performed up to the fourth and to
the second order in the case of the semi-in"nite and in"nite shells respectively. Table 1
provides the "rst non-zero term of the wave receptances for both problems as well as the
order of magnitude of the "rst following term. From the knowledge of the wave receptances



TABLE 1

=ave receptances for the radial displacement; 4m4"1!k2!X2, H"1!X2 and W"1!kX2/4m4

Excitation Wave type Semi-in"nite shell (problem I) In"nite shell (problem II)

Extensional wave p"1 a=@2
1,N0

"

kR

4m4B
#OAb

R

BB a=
1,N0

"

kR

8m4B
#OAb

R

BB

Flexural waves G
p"2

p"3

a=@2
2,N0

"!b1@2
(1!i)HWR

16m6B
#OAb3@4

R

BB a=
2,N0

"!

kR

16m4B
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and by retaining the leading term of the propagation constants, it is straightforward to
derive an approximate expression of the Green functions of the shell. These functions, given
in general form by

Gc
X
(x D0)"ac

1,X
ei1x@R#ac

2,X
ei2x@R#ac

3,X
ei3x@R, (32)

describe the radial displacement of semi-in"nite or in"nite shells with respect to an
axisymmetric load X. The wave receptances ac

p,X
and the wave propagation constants i

p
are

given in Table 1 and by equation (31) respectively.
In view of equation (31), three frequency domains can be distinguished depending on the

nature of waves associated with the propagation constants. In domain I, X(J1!k2,
only the extensional wave is propagating while the #exural waves exhibit complex
conjugate propagation constants characterizing a standing decaying "eld. In domain II

(J1!k2(X)1), the extensional wave and one of the #exural waves are purely
evanescent while the second #exural wave is propagating. Finally, in domain III (X'1), i.e.,
above the ring frequency, the extensional wave becomes propagating again and the #exural
waves are both of the propagating and near"eld types.

4.2. DIRECT MOBILITIES

Once the wave receptances are determined, the elements of the mobility matrix given by
equation (12) are derived in accordance with equation (13) for both problems. The results
are given in Table 2 where only the "rst non-zero terms for both the real and the imaginary
parts of the mobilities are presented. In order to be able to trace the role played by the
di!erent waves, the contributions of the extensional wave to the mobilities have been
underlined; the remaining terms are due to the #exural waves. For the semi-in"nite shell, it
proved necessary to carry on the analysis up to the seventh order in order to obtain the real
part of the input mobility >=@2

w,Q0
for low frequencies.

4.3. COMPARISON WITH &&EXACT'' RESULTS

Numerical solutions to problems I and II have been calculated according to the
methodology described in section 2 by means of MATLAB' over the non-dimensional
frequency range X"0)1}1)5. The physical properties of the shell used in the calculations are
listed in Table 3. These &&exact'' solutions will serve in what follows as references with which
the results from the approximate expressions will be compared.

Figure 2 shows the real part of the input mobilities for a semi-in"nite shell. The
anti-resonance exhibited by the real part of >=@2

w,Q0
at X"J1!k is due to the zero of

the function W. The agreement between &&exact'' and approximate solutions is very good for
the whole frequency range, apart from at the resonance which occurs at X

0
"J1!k2. As

mentioned in section 3, this is the result of the singularities contained in the approximate
solutions of Tables 1 and 2 when the parameter m vanishes. As shown later in section 5,
the singularities can be removed and it is seen in Figure 2 that the new forms of solution
given in Table 4, together with the values from Table 5 (both presented in section 5.1), are in
good agreement with the exact calculations.

The error on the input radial force mobility introduced by the approximate expression
has been assessed for the semi-in"nite shell. Figure 3 shows the error versus frequency
curves for three thickness-to-radius ratios. The ratio h/R was changed by keeping the radius
R equal to R"0)5 m and varying the shell thickness accordingly. It is seen that the error is



TABLE 2

Direct mobilities for semi-in,nite and in,nite shells; 4m4"1!k2!X2, H"1!X2 and W"1!kX2/4m4; the underlined terms represent the
contributions of the extensional wave

Excitation Response Semi-in"nite shell (problem I) In"nite shell (problem II)
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TABLE 3

Physical properties of the shell

Density, o (kg/m3) 7800
Young's modulus, E (N/m2) 2)1]1011
The Poisson ratio, k 0)3
Radius, R (m) 0)5
Thickness-to-radius ratio, h/R 0)02

Figure 2. Real parts of the input mobilities for the semi-in"nite shell. The lines indicate results obtained
numerically with FluK gge's theory while the symbols represent the values predicted by the expressions given in
Table 2. s, Re(>=@2

u,N0
); *, Re(>=@2

w,Q0
); ], Re(>=@2

h,M0
). The &&d'' symbols at X

0
"J1!k2 are obtained by using results

from section 5.
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very small outside the resonance. Indeed, the error is lower than 1% outside the
non-dimensional frequency region [0)92}0)97] for ratio h/R in the range [0)1}0)01].
Concerning the peak values at resonance, the simpli"ed expressions derived in section 5 and
given in Tables 4 and 5 yield a satisfying, even if poorer, agreement. These error values
correspond to the modulus of >=@2

w,Q0
and can vary somehow between the results of Tables 1

and 2. A good estimate of the errors can be obtained by determining the "rst following term
of the expansions for each quantities but this would involve very cumbersome algebra. As
expected, it appears that the higher the thickness-to-radius ratio, the wider is the
non-uniformity region where the solutions derived in section 3 break down. However, even
for ratios h/R as high as 1/10, this region remains very narrow.

4.4. DISCUSSION

Upon considering the mobilities of the semi-in"nite (problem I) and the in"nite shell
(problem II), respectively, it can be noticed that there is a factor 2 and 4 for the mobility
parts due to the extensional wave and the #exural waves respectively. Therefore, the power
#ow injected by a bending moment, which in domain I is governed by the extensional wave,



Figure 3. Error on the modulus of the input radial force mobility for the semi-in"nite shell, D(>=@2
w,Q0

) D. (**)
h/R"10, (**) h/R"1/50, (} } }) h/R"1/100. The &&d'' symbols at X

0
"J1!k2 are obtained by using results

from section 5.
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is doubled between problems I and II whereas the actual velocity at the excitation point,
governed by the #exural waves, is 4 times greater. It also appears that for in"nite structures,
the real part of the mobilities is always related to the receptance of the propagating
waves only and that these receptances are purely imaginary. For semi-in"nite structures,
waves of near"eld type can contribute to the real part of the mobilities as seen, for
instance, in the case of the radial excitation. Indeed, for problem I, the receptances of the
#exural waves are complex conjugate only for the "rst six orders but a di!erence occurs at
k"6. The contribution of the extensional wave to the injected power is due to the
imaginary part of its receptance which arises at the order k"11. Hence, the input power is
injected via the #exural waves, the contribution of the extensional wave being negligible.
Nevertheless, the great di!erence between the real parts of the input radial force mobility in
problems I and II reveals that this process of injecting power via the non-propagating wave
is not e$cient.

Another point of interest that has arisen in the course of this study is the discrepancies in
the analytical solutions resulting from the use of di!erent shell theories. In respect to the
boundary condition on the bending moment, moment per unit length is obtained by
integrating the moments generated by the normal stresses p

x
shown in Figure 4 about the

u-line and dividing by R du. This yields

M
0
"P

h@2

~h@2

p
xA1#

z

RB zdz. (33)

Unlike in the case of the theory by FluK gge [16], the term z/R is neglected in comparison
to unity in the integrand in many theories, e.g., those by Love, Timoshenko, Donnell [14].
This simpli"cation results in disregarding the contribution of the axial strain to moment
resultant with respect to the e!ect of change of curvature of the midsurface. Therefore, the
boundary conditions are given for these theories by

wAD
s/0

"m
0
, w@@@D

s/0
"q

0
, (34)



Figure 4. Normal stresses and shell section.
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wherein the axial displacement is absent. Using these boundary conditions yields the same
approximate expressions for the Green functions and the mobilities but with the function
W de"ned as W"!kX2/4m4 instead of 1!kX2/4m4. The e!ect of this change is signi"cant
below the ring frequency for problem I since W appears in the expression of the real part of
some mobilities. Solutions to the in"nite shell problem are una!ected by such
considerations.

Finally, considering the asymptotic behaviour of the approximate expressions at low or
high frequencies yields some well-known results. For instance, the input impedance to the
total axial force N, where N"2nRN

0
, acting on the shell extremity may be approximated

at low frequencies (X@1) by

Z"1/>=@2
u,2nRN0

+

XBJ1!k2

uR
2nR"oSc

L
, (35)

where S"2nRh and c
L

is the phase speed of extensional wave in a beam, c
L
"JE/o . This

result is similar to the input impedance of a beam of circular cross-section of radius R and
thickness h excited at its end [3]. At high frequencies, the shell responds as a plate of
thickness h submitted to a uniform axial load distribution N

0
,

Z"1/>=@2
u,N0

+XB/uR"ohc
LI

, (36)

where c
LI

is the phase speed of extensional wave in a plate, c
LI
"JE/(o(1!k2)).

Concerning the response to radial excitation at high frequencies (XA1), the input
impedance is given by

Z"1/>=@2
w,Q0

+

2B(!1)3@4X3@2b1@4

43@4iuR
"1/2ohc

B
(1#i), (37)

where c
B

is the phase speed of #exural wave in a plate, c
B
"Ju 4JEh2/(12o (1!k2)). One

can recognize the impedance of a #at plate to a uniform load distribution Q
0

located at its
edge. In fact, this impedance is the same as for a semi-in"nite beam of unit width [3], with
a minor correction on the bending wave speed to take into account the obstruction of the
cross-sectional contraction in the circumferential direction. Finally, the fading of the leading
term of the cross mobility >=@2

w,N0
re#ects the uncoupling occurring at high frequencies

between axial and radial displacements.
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5. TREATMENT OF THE SINGULARITIES AT X
0
"J1!k2

As mentioned in section 3, the previous solutions become singular when m"0, i.e.,
when X"X

0
, and it can be seen in Tables 1 and 2 that the higher the order of

the expansions terms, the greater the singularities. However, the singularities are not
part of the actual solutions since exact calculations show that the resonance peaks exhibited
by the shell vibrations in the vicinity of X

0
are of "nite magnitude. The frequency region

where the approximate solutions break down is referred to as the non-uniformity region.
In spite of the narrowness of this region, the treatment of the singularities is of major
importance due to the high vibration level undergone by the structure in this frequency
range. Furthermore, for in"nite shells excited by radial point force, Borgiotti et al. [8]
have pointed out that the axisymmetric mode carries most of the power in this frequency
region, the higher order circumferential modes being dominant at lower and higher
frequencies.

5.1. WAVE RECEPTANCES FOR THE RADIAL DISPLACEMENT AND DIRECT MOBILITIES

To brie#y outline the method used, the problem is re-formulated by using a row of
variable changes. Then a perturbation analysis is performed with the thickness parameter
as expansion parameter. Retaining only the leading term of the expansions yields
forms of solutions which are considerably simpli"ed with regard to the initial problem.
For the detailed analysis of the treatment of the singularities, the reader is referred to
Appendix A. The present section is devoted to the presentation of the results and their
discussion.

As shown in Appendix A, the wave receptances and the direct mobilities can be
represented by the formulae given in Table 4. These formulae contain the functions a\ c

p,X[
,

>[ c
u\ ,X[

, >[ c
w\ ,X[

and >[ ch[ ,X[ (with X[ "n\
0
, q\

0
, m\

0
and p"1, 2, 3) which are solely dependent upon

the variable c de"ned by

c"
(X2!X2

0
)

b1@3k4@3X4@3
0

. (38)

These functions should be computed, as they have no simple analytical expressions. For
instance, the variations of the function >[ =@2

u\ ,n\ 0
versus the variable c are plotted in Figure 5.

This curve represents the input axial force mobility made dimensionless by normalization
with respect to k1@3Ru/b1@6X5@3

0
B. In Figure 5, are also shown mobilities values after

identical normalization for the shell described in Table 3 and calculated with both FluK gge's
theory and the expression obtained in section 4 (see Table 2). It appears that >[ =@2

u\ ,n\ 0
agrees

nicely with the FluK gge solution while the mobility given by Table 2 becomes singular at
c"0.

Fortunately, owing to the sharpness of the resonance peaks and to their dependence upon
c only, there is no real need for an analytical description of a\ c

p,X[
, >[ c

u\ ,X[
, >[ c

w\ ,X[
and >[ ch[ ,X[ .

Instead, they can be described in terms of their most interesting characteristics. These
characteristics, illustrated in Figure 5 for the function D>[ =@2

u\ ,n\ 0
D, are denoted y

M
, c

M
and Dc.

They correspond to the peak values, the c-values at which these peaks occur and the

bandwidth of the resonance curve at y
M
/J2 respectively. They have been computed for all

the functions and tabulated in Table 5 for the semi-in"nite shell and in Table 6 for the
in"nite shell. Regarding the mobilities, characteristics are given for both the modulus and
the real part of the functions since they are needed to assess the maximum displacement and



TABLE 4

=ave receptances and direct mobilities for semi-in,nite and in,nite shells at X
0
"J1!k2

Excitation Response Wave receptance (p"1, 2, 3) Point mobility

* >c
u,N0

"

uRk1@3

b1@6(1!k2)5@6B
>[ c

u\ ,n\ 0

ac
p,N0

"

R

b1@3k1@3(1!k2)2@3B
a\ c
p,n\ 0

>c
w,N0

"

uR

b1@3k1@3(1!k2)2@3B
>[ c

w\ ,n\ 0

2 >ch,N0
"

u
b1@2(1!k2)1@2B

>[ ch[ ,n\ 0

2 >c
u,Q0

">c
w,N0

ac
p,Q0

"

R

b1@2k(1!k2)1@2B
a\ c
p,q\ 0

>c
w,Q0

"

uR

kb1@2(1!k2)1@2B
>[ c

w\ ,q\ 0

2 >ch,Q0
"

u
k2@3b2@3(1!k2)1@3B

>[ ch[ ,q\ 0

2 >c
u,M0

">ch,N0

ac
p,M0

"

1

b2@3k2@3(1!k2)1@3B
a\ c
p,m\ 0

>c
w,M0

">ch,Q0

2 >ch,M0
"

u
b5@6k1@3(1!k2)1@6BR

>[ ch[ ,m\ 0

TABLE 5

Characteristics of the resonance curves for the semi-in,nite shell

>[ c
u\ ,n\ 0

>[ c
w\ ,n\ 0

>[ ch[ ,n\ 0 >[ c
w\ ,q\ 0

>[ ch[ ,q\ 0 >[ ch[ ,m\ 0 a\ c
1,n\ 0

a\ c
1,q\ 0

a\ c
1,m\ 0

Modulus
c
M

!0)2 !0)3 !0)3 !0)3 !0)2 !0)2 !0)4 !0)2 0)1
y
M

2)2 2)3 1)2 3)4 2)2 2)1 0)8 1)0 0)6
Dc 1)0 1)0 0)9 1)0 1)0 1)6 1)8 1)0 2)3

>[ c
u\ ,n\ 0

>[ c
w\ ,n\ 0

>[ ch[ ,n\ 0 >[ c
w\ ,q\ 0

>[ ch[ ,q\ 0 >[ ch[ ,m\ 0

Real parts
c
M

!0)4 !0)3 !0)1 !0)1 0)0 0)2
y
M

1)9 2)3 !1)1 3)2 !1)7 1)1
Dc 0)8 0)6 0)6 0)7 0)9 2)9
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the power input respectively. On the other hand, for the wave receptances, only the
characteristics concerning the modulus of the receptance associated with the propagating
wave are reported since they are su$cient to assess the vibration level in the far "eld.



Figure 5. Input axial force mobility normalized with respect to k1@3Ru/b1@6X5@3
0

B. The &&s'' symbols and the
dash}dot line, (*}*), represent the modulus of the &&exact'' solution from FluK gge's theory and of the predicted
solution given in Table 2 respectively. (**) D>[ =@2

u\ ,n\ 0
D, (* *) Re(>[ =@2

u\ ,n\ 0
), (} } }) }Im(>[ =@2

u\ ,n\ 0
).

TABLE 6

Characteristics of the resonance curves for the in,nite shell

>[ c
u\ ,n\ 0

>[ c
w\ ,n\ 0

>[ ch[ ,n\ 0 >[ c
w\ ,q\ 0

>[ ch[ ,q\ 0 >[ ch[ ,m\ 0 a\ c
1,n\ 0

a\ c
1,q\ 0

a\ c
1,m\ 0

Modulus
c
M

!0)9 / !1)0 !1)0 / !0)8 !1)2 !0)6 0)0
y
M
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Dc 6)0 / 4)8 4)7 / 9)0 3)4 3)4 5)0

>[ c
u\ ,n\ 0
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w\ ,n\ 0

>[ ch[ ,n\ 0 >[ c
w\ ,q\ 0

>[ ch[ ,q\ 0 >[ ch[ ,m\ 0

Real parts
c
M

!1)9 / !0)6 !0)6 / 1)1
y
M

0)28 0 0)2 0)2 0 0)2
Dc 5)7 / 3)4 3)4 / 15)8
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The analysis carried out in Appendix A also yields simpli"ed forms for the propagation
constants. They read

i
p
"(k1@3X1@3

0
/b1@6)i\

p
, (39)

where the constants i\
p

are solutions of the dispersion relation

i\ 6
p
!ci\ 2

p
#1"0. (40)

Figure 6 shows computed results for the propagation constants obtained with equation (40)
(marked with the symbol &&#''). The solid lines indicate the solutions of the &&exact''



Figure 6. Real and imaginary parts of the propagation constants normalized with respect to k1@3X1@3
0

/b1@6.
(*) exact solutions calculated with FluK gge theory, (#) solutions of equation (40).
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dispersion relation from FluK gge theory after normalization with respect to k1@3X1@3
0

/b1@6. It
is seen that the roots are either purely real or arise in complex conjugate pairs, the latter

becoming real at c"3/ 3J4.
As shown in Figure 5, the non-dimensional frequency associated to the peak value is

slightly shifted from X
0
. Using the values given in Tables 5 and 6 for c

M
together with

equation (38), it is straightforward to obtain a better approximation of the &&exact''
resonance frequency X

e
. This yields

X
e
"X

0
#c

M
b1@3k4@3X1@3

0
/2. (41)

Finally, sharpness of resonance peaks can also be estimated using the values for Dc
provided by Tables 5 and 6. The current parameter used as a measure of sharpness is the
quality factor Q de"ned by

Q"X
e
/DX

1@J2
, (42)

where DX
1@J2

is the 1/J2-value bandwidth. By using equations (38), (41) and (42), the

quality factor can be approximated by

Q"2(1!k2)1@3/(b1@3k4@3Dc). (43)

As expected, equation (43) shows that the lower the shell thickness-to-radius ratio, the
higher is the quality factor, namely the sharper is the resonance peak.

5.2. DISCUSSION

The analysis of the non-uniformity region reveals that, at the resonance, the vibration
"eld is described by only one length scale (l

3
"s/b1@6), as shown by equation (39). Thus, the
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axisymmetric radial}axial vibrations of shells involve three waves of the same nature in the
vicinity of X

0
"J1!k2. Furthermore, by comparing the values given in Tables 5

and 6, it appears that the magnitude and the quality factor of the resonance peaks
for the semi-in"nite shell are higher by a factor of 5 or more than those of the in"nite
shell.

Upon assuming damping in the shell material, its e!ect can be represented by introducing
a complex modulus of elasticity, i.e., a complex non-dimensional frequency given by

X*"A1!
ig
2B X, (44)

where g is the loss factor. Replacing X by X*, in the expression of the input mobility with
respect to the axial force given in Table 2, i.e., >=@2

u,N0
, the quality factor associated with the

loss factor is approximately given by

Q"1/J3g . (45)

Upon equating equation (45) to equation (43), it appears that, if the loss factor is greater
than the limit value given by

g
a
"b1@3k4@3Dc/2J3(1!k2)1@3, (46)

the resonance is damping controlled. Below this value, it is the #exural rigidity which
bounds the peak values. In practice, upon assuming the Poisson ratio of 0)3 and by taking
Dc"2 in view of Tables 5 and 6, the values of g

a
are contained in the interval

0)0025)g
a
)0)012 for values of h/R varying in the range 1/10)h/R)1/100.

6. DERIVED RESULTS

6.1. REFLECTION COEFFICIENTS OF THE SHELL-BORNE WAVES AT A FREE END

Consider a semi-in"nite shell lying in the half-space x*0 and a set of three
negative-going waves of amplitude vector C~"[C~

1
C~

2
C~

3
]T which is incident upon the

free end of the shell at x"0. These waves will give rise to re#ected waves of amplitude
vector C#

"[C`
1

C`
2

C`
3

]T and the radial displacement w of the shell is given by

w"C`
1

ei1s#C`
2

ei2s#C`
3

ei3s#C~
1
e~i1s#C~

2
e~i2s#C~

3
e~i3s. (47)

The incident and re#ected amplitude vectors are related by the re#ection matrix r for free
termination de"ned by

C`"r )C~. (48)

The coe$cient of the re#ection matrix for the di!erent types of waves can be
derived from the knowledge of the wave receptances for the semi-in"nite case. Consider
a negative-going wave of type p incident upon the free end of the shell. This wave generates
forces (N*

0
, Q*

0
, M*

0
) at x"0. The amplitude of the re#ected waves can then be assessed by

using the Green function of the semi-in"nite shell together with a load
(!N*

0
,!Q*

0
,!M*

0
). Hence, the vanishing of the loads at the extremity, i.e., the free end

condition, is satis"ed.
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Applying this method to both the extensional and #exural waves yields the complete
re#ection matrix which reads at the leading order

r"

!1 !(1!i)b
kX2HW

8m8
!(1#i)b

kX2HW
8m8

!ib3@4
XH3@2W

4km5
!i 1#i

!ib3@4
XH3@2W

4km5
1!i i

, (49)

where 4m4"1!k2!X2, H"1!X2 and W"1!kX2/4m4.
It appears that the coupling between the extensional and #exural waves, given by the

element r
12

, r
13

, r
21

and r
31

, is very weak. Determined for the axial displacement, the
element r

11
is equal to 1, i.e., similar to the re#ection coe$cients for longitudinal wave in

a rod [3]. The results derived here show that an extensional wave incident upon the free end
of a shell does not yield radial displacement. Considering the re#ection of #exural waves
and their coupling, shows that the results are the same as for the #exural waves in a beam
with free termination [20].

6.2. PROBLEM III: THE FINITE FREE}FREE SHELL

Consider a free}free cylindrical shell of length ¸ excited at x"x
0

by an axisymmetric
load X, as shown in Figure 7. The mechanical response of the shell at frequencies below
X

0
"J1!k2, referred to as domain I, is deduced from the values of the wave

receptances derived in problems I and II (see Table 1) and from the re#ection matrix
(see equation (49)). In domain I, only the extensional wave is propagating and the
standing decaying "eld associated with the #exural waves vanishes much faster than
the near "eld of bending wave in a beam. It can be noted that the lower the
frequency, the greater is the decay. If the excitation is located outside the edge layer
described in section 3, only the extensional wave reaches the edge. Furthermore, since
it has been shown that the coupling between extensional and #exural waves is
very small, the in#uence of the #exural waves can be assumed to be limited to a
narrow region containing the excitation point and thus be disregarded at the shell
extremities.

Following Cremer and Heckl [3], it is "rst assumed that the shell is in"nite. The radial
displacement produced by the load X and associated with the extensional wave is given by
Figure 7. The "nite free}free shell.
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equation (32) and reads

w(x)"G
a=
1,X

ei1(x~x0)@RX for x*x
0
,

a=
1,X

e~i1(x~x0)@RX for x(x
0
,

(50)

where i
1

is given by equation (31a) and the wave receptances a=
1,X

by Table 1. Owing to the
"nite length of the shell, these waves will undergo an in"nite series of re#ections at the shell
extremities characterized by a re#ection coe$cient of r

11
"!1. It might be shown that the

total vibration "eld generated by the extensional wave can be expressed as a sum of
a geometric series, the characteristics of which are

;
0
"ei1x@R!ei1(2L~x)@R, q"e2i1L@R, S (x)"

ei1x@R!ei1(2L~x)@R

1!e2i1L@R
, (51)

where ;
0
, q and S (x) are the "rst term, the common ratio and the sum of the geometric

series respectively. Finally, it might be shown that the radial vibrations of the shell are
described by

w (x)"2ia=
1,X

XGsin(ii
1
x
0
/R)

ei1x@R!ei1(2L~x)@R

1!e2i1L@R
#H(x

0
!x) sin(ii

1
(x!x

0
)/R)H

#a=
2,X

Xei2@x~x0@@R#a=
3,X

Xei3@x~x0@@R, (52)

where H(x) is the Heaviside step function, i.e., is 0 for x(0 and 1 otherwise. The
propagation constants and the wave receptances can be approximated by the expressions
given in equation (31) and in Table 2 respectively. Finally, if the excitation is located at the
edge, i.e., x

0
"0, the radial vibrations are given by

w (x)"a=@2
1,X

ei1x@R!ei1(2L~x)@R

1!e2i1L@R
X#a=@2

2,X
Xei2x@R#a=@2

3,X
Xei3x@R. (53)

Equations (52) and (53) show that the shell response becomes in"nite at the frequencies for
which the denominator of the function S(x) vanishes. These frequencies correspond to the
principle of wave cycle closure described in reference [3], i.e., the extensional wave closes on
itself with the same phase after being re#ected at both ends. Using equation (31a), these
&&natural'' frequencies are the solutions of the equation

XJ1!X2

J1!k2!X2
"

nnR

¸

with n"1, 2, 3,2. (54)

Finally, the Green functions derived for the "nite free}free cylindrical shell are compared
to computed results obtained with the spectral "nite element formulation developed by
Finnveden [21] for straight #uid "lled pipes. The comparison is made with a shell of length
¸"20 m excited by a harmonic radial load of magnitude Q

0
"1 N/m located at x"¸/4.

The other physical properties of the shell are listed in Table 3 and the non-dimensional
frequency of the excitation is X"0)5. As shown in Figure 8, the radial displacement
predicted by equation (52) is in good agreement with the numerical results obtained with the
spectral "nite element formulation.



Figure 8. Shell response to a harmonic radial load applied at x"5 m. The non-dimensional frequency of the
excitation is X"0)5 and the load magnitude is Q

0
"1 N/m. The solid line represents the modulus of the radial

displacement calculated numerically with the spectral "nite element formulation [21]. The values predicted by
equation (52) are marked with &&s'' symbols.
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7. CONCLUSIONS

Perturbation techniques are applied to the analysis of the axisymmetric mode of
vibration of cylindrical shells. It is shown that they yield accurate approximate expressions
for the Green functions of semi-in"nite or in"nite shells with respect to force and moment
excitation. By pursuing the analysis, it was also possible to derive closed form formulae for
the mobilities of the shell with respect to axial and radial forces and a bending moment. The
analysis reveals that the response of the shell at the excitation point could be determined by
the #exural waves while the power #ow injected within the structure is governed by the
extensional wave. The present study also shows that di!erences in the closed form
expressions arise in the case of the semi-in"nite shell when di!erent thin-walled shell
theories are used to derive the real part of the input radial force mobility below the ring
frequency. For the in"nite shell, the approximate expressions remain the same, whatever the
thin shell theory used for the derivation. Finally, the derived Green functions are used to
determine approximate expressions for the re#ection coe$cients of the shell-borne waves at
the free end and to study the axisymmetric vibrations of a "nite free}free shell.
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APPENDIX A: FORM OF THE SOLUTIONS IN THE NON-UNIFORMITY REGION

The singularities are dealt with by searching for approximate solutions valid in the region
of non-uniformity. In perturbation theory [18], this problem is tackled by introducing
a detuning parameter in the governing equations. In the present case, this parameter is
taken as

p"4m4/bl, (A1)

where the constant l is a measure of the extent of the non-uniformity region. Additionally to
equation (A1), a stretching transformation de"ned by

m"s/be, (A2)

is introduced to derive a new variant of equation (2a). This yields

(1!b)b1~6ew(6)#b1~4e(X2#2k)w(4)#pb~2e`lwA#X2(1!X2)w#O(b)"0. (A3)
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The constants e and l are determined by requiring that the "rst, third and fourth terms of
equation (A3) are now of the same order of magnitude. It ensues that

e"1/6, l"1/3. (A4)

The following notation is then de"ned:

q"b1@6, p"4m4/b1@3, (A5)

together with the variables changes

u\ "!

X1@3
0

qk2@3
u, w\ "w, f"

(kX
0
)1@3

q
s. (A6)

Introducing equations (A5) and (A6) into the governing equations (2) and omitting terms
of order of magnitude O(q2) or lower in the writing yields

w\ (6)!cw\ A#w\ #O(q2)"0, u\ @"w\ #O (q2), (A7)

where the parameter c is de"ned by

c"!p/(kX
0
)4@3. (A8)

Similarly, when re-arranged with respect to equations (A5), (A6) and (A8), the boundary
conditions (5) read

(w\ (4)!cw\ #O(q2))Df/0
"n\

0
(w\ @@@#O(q2))Df/0

"q\
0

(w\ A#O(q2))Df/0
"m\

0
, (A9)

where

n\
0
"

n
0

q2k1@3X4@3
0

, q\
0
"

q3q
0

kX
0

, m\
0
"

q2m
0

k2@3X2@3
0

. (A10)

In the perturbation analysis, solutions are sought in the form of straightforward
expansions given by

C
u\
w\ D"

=
+
k/0

qk C
uL
k

wL
k
D . (A11)

Inserting equation (A11) into equation (A7) and collecting by terms of equal power of q, the
leading term of the solution can be taken as

wL
0
"

3
+
p/1

C[
p
ei\ pf, uL

0
"

3
+
p/1

C[
p

i\
p

ei\ pf, (A12)

where the constants i\
p

are solutions of the dispersion relation

i\ 6
p
!ci\ 2

p
#1"0. (A13)

Thus, these constants have no simple analytical expressions except when c"0 where they
read (i\

1
, i\

2
, i\

3
)"(!i, e5*n@ 6, e7*n@6).
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The amplitudes of the waves C[
p

in equation (A12) are related to the loads X[ given by
equation (A10) by the wave receptance matrix a\ c de"ned by

[C[
1

C[
2

C[
3
]T"a\ c[n\

0
q\
0

m\
0
]T, (A14)

where the superscript c indicates if reference is made to problem I or II. The elements of this
matrix, a\ c

p,X[
are determined by inverting the system obtained when equation (A12) is

introduced in the boundary condition (A9). The expressions of these coe$cients are very
cumbersome since they contain the roots of equation (A13). By using equations (A10)}
(A12), (A6), (A14) and (6), the receptances of the waves are expressed in terms of the original
variables and read

ac
p,N0

"

R

b1@3k1@3X4@3
0

B
a\ c
p,n\ 0

, ac
p,Q0

"

R

b1@2kX
0
B

a\ c
p,q\ 0

,

ac
p,M0

"

1

b2@3k2@3X2@3
0

B
a\ c
p,m\ 0

. (A15)

Likewise, using equations (13) and (A15) for the derivation of the mobilities yields the
expressions

>c
u,N0

"

uRk1@3

b1@6X5@3
0

B
>[ c

u\ ,n\ 0
, >c

w,N0
"

uR

b1@3k1@3X4@3
0

B
>[ c

w\ ,n\ 0
, >ch,N0

"

u
b1@2X

0
B
>[ ch[ ,n\ 0

>c
w,Q0

"

uR

kb1@2X
0
B
>[ c

w\ ,q\ 0
, >ch,Q0

"

u
k2@3b2@3X2@3

0
B
>[ ch[ ,q\ 0 ,

>ch,M0
"

u
b5@6k1@3X1@3

0
BR
>[ ch[ ,m\ 0 , (A15)

where the functions >[ c
u\ ,X[

, >[ c
w\ ,X[

and >[ ch[ ,X[ are given by

>[ c
u\ ,X[

"i
3
+

p/1

a\ c
p,X[

i\
p

, >[ c
w\ ,X[

"i
3
+
p/1

a\ c
p,X[

, >[ ch[ ,X[ "i
3
+
p/1

a\ c
p,X[

i\
p
. (A16)

Considering equations (A13), (A9), (A12) and (A16) indicates that the coe$cients i\
p
, a\ c

p,X[
,

>[ c
u\ ,X[

, >[ c
w\ ,X[

and >[ ch[ ,X[ are solely function of the parameter c de"ned in equation (A8).

APPENDIX B: NOMENCLATURE

A wave amplitude in the axial direction
B extensional rigidity (Eh/(1!k2))
C wave amplitude in the radial direction
D #exural rigidity (bBR2)
E Young's modulus
G Green function for the radial displacement
H Heaviside step function
¸ shell length
M

0
bending moment per unit length in the r, x plane

N
0

axial force per unit length
Q resonance quality factor
Q

0
radial force per unit length

R shell radius
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¹ wave amplitude ratio (A/C)
> direct mobility
Yc mobility matrix
Z impedance
c superscript; R/2 and R for the semi-in"nite and in"nite shell respectively
h shell thickness
i J!1
m parameter de"ned by 4m4"1!k2!X2
r cylindrical co-ordinate
r re#ection matrix
s non-dimensional axial length (x/R)
t time
u midsurface displacement in the x direction
v midsurface displacement in the u direction
w midsurface displacement in the r direction
x cylindrical co-ordinate
ac wave receptance matrix
ac
p,X

receptance of the wave p with respect to the load X
b thickness parameter (h2/(12R2))
d Kronecker's delta function (d(k, 0)"1 if k"0, 0 otherwise)
g shell loss factor
h rotation of the normal to the middle surface about the u-axis (Lw/Lx)
u cylindrical co-ordinate
i non-dimensional propagation constant
j expansion parameter
k the Poisson ratio
m inner region axial length
o density of the shell material
u circular frequency of the excitation
X non-dimensional frequency (uRJo(1!k2)/E)
( ) ) di!erential with respect to time
DzD modulus of the complex number z
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