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This paper presents a computer modelling investigation of the dynamic behaviour of
rotors supported by hydrodynamic bearings. The rotor is discretized into finite elements.
The fluid-film bearings are represented by non-linear forces that are linearized in
the neighbourhood of the static equilibrium position. Particular emphasis is given to the
modelling of impacts between rotor discs and their casings, for which two approaches are
used, namely (i) Newton’s impact theory and (ii) direct determination of contact forces using
a contact stiffness. In the first approach, the discs are assumed to be connected to the shaft by
spring elements. The discs and the stationary part are considered to be absolutely rigid.
Velocity components of the discs after the impact are calculated using the law of
conservation of the momentum and moment of momentum. Dissipation of mechanical
energy during impact is taken into account through the coefficient of restitution. In the
second approach local flexibility and damping in the contact area are assumed. Local
deformation produces impact forces and moments acting on the shaft at the disc location. In
both cases, Coulomb friction is assumed to act in the contact area. A modified form of the
Newmark method was applied to solve the resulting non-linear equations of motion. Both
approaches make it possible to characterize the steady state forced vibration behaviour
(periodic, quasi-periodic, chaotic). In addition, the second approach provides further
information on the likely magnitude and time history of the impact forces, duration of
impacts, etc. The two approaches are illustrated by examples involving imbalance excitation
and kinematic excitation of the baseplate.

© 2001 Academic Press

1. INTRODUCTION

To ensure efficient performance, the radial clearance between the rotating and the
stationary parts in rotating machinery is usually small. Consequently, lateral vibration of
the shaft can result in contact between the rotor discs and the stator. Friction forces acting
in the contact area produce local heating and considerable wear, and such working
conditions can lead to serious failure of the machinery.

For investigation of this phenomenon, computer-modelling methods can be applied, and
researchers have analyzed flexible rotor-systems using many different approaches. Some
have utilized continuous models, but these are rather often complicated, even if the model is
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linear. Others have represented the shaft as a beam-like body, discretized into finite
elements for which appropriate stiffness, inertia, gyroscopic and damping matrices are
derived in references [1, 2], taking into account the rotation of the rotor.

Computational models for hydordynamic bearings have been presented in a large
number of publications. The commonly accepted assumptions on which the theory of
fluid-film bearings is based are summarized in references [3, 4]. The bearings are usually
represented as non-linear force couplings between rotor and stator. In cases where the
displacements and velocities of the journal centre from the state of equilibrium are not large,
the bearing forces are often linearized in the neighbourhood of the equilibrium position to
simplify the solution of the equation of motion. Linearization of bearing forces is described
in references [3, 4].

Impact of the rotor on the stationary part causes non-linear behaviour of the system. It
has been observed both numerically and experimentally [5] that, even if the excitation is
a periodic function of time, the induced vibration can be not only periodic, but also
quasi-periodic or chaotic in character. The resulting rotor motion can be viewed in various
ways, including orbit plots, Fourier transforms of time series of the response, and Poincare
maps [6, 7]. Bifurcation diagrams show the dependence of the motion type on a relevant
control parameter such as speed of rotation, rotor-stator clearance, etc.

Rotor-stator impact can be incorporated into computational models in several ways.
The simplest approach is based on application of Newton’s laws, as described in references
[8-10], using a coefficient of restitution. Possible ways to determine practical values for the
coeflicient of restitution are described in reference [11]. Alternatively, contact behaviour
can be modelled fairly simply by using a spring element to represent the contact stiffness, as
described in references [5, 12]. However, friction and rotation of the shaft cross-section
about axes perpendicular to the shaft centreline in the contact region are not taken into
account in references [5, 12]. A more complete description of the contact problem can be
obtained by using a finite element approach; see reference [13]. However, such a detailed
model is not always the most suitable approach if the main aim is to obtain efficient
computational predictions of overall system dynamics.

The aim of this paper is to contribute to the development of efficient methods for
analyzing the dynamics of a rotor system in which contact occurs between rotor discs and
the stationary parts of the system. Particular attention is paid to cases when both the discs
of the rotor and the stator can be regarded as rigid bodies, and when the mass of the
stationary part is considerably greater than mass of the rotor. Two modelling approaches
have been developed and implemented in computer simulations. These are based on the
application of Newton’s laws and direct calculation of the impact forces. In the first
approach, rotor-stator contact is modelled by using a coefficient of restitution. In the
second approach, local flexibility and damping of the colliding bodies are considered. In
general, these parameters depend on the deformation and rate of deformation of material in
the neighbourhood of the contact area. Both methods take into account local flexibility
between the discs and the shaft which allow not only linear displacement of the discs
perpendicular to the shaft centreline but also their rotation about axes perpendicular to the
shaft central line. The latter, novel feature allows the position of the point of contact
between disc and casing to move axially according to disc rotation, which influences the
moments exerted about the disc centre by the contact forces.

To solve the equations of motion of rotor systems numerically, the Runge-Kutta method
is usually applied. Experience shows that a very short integration step is usually required to
obtain satisfactory results, particularly when dealing with contact events. From the point of
view of numerical stability the Newmark method is often advocated, but its basic algorithm,
given for instance in reference [14], must be modified to make it possible to determine



ROTOR SYSTEM WITH DISC-HOUSING IMPACT 217

explicitly the magnitudes and directions of radial and tangential components of impact
forces during a contact event.

The next section of this paper deals with the formulation of the equations of motion and
linearization of the resulting model. Two ways of incorporating impacts between the discs
and the stationary part are then described. Finally, simulation results for the two models are
presented and discussed.

2. EQUATIONS OF MOTION

In developing the lumped-parameter rotordynamic model, the system is assumed to have
properties as outlined in the following. The shaft is represented as a flexible bar-like body,
discretized into finite elements. The rotor rotates at constant angular speed, is rigid in
torsion, and the friction forces that act on the discs during contact with the stator do not
influence the speed of rotation. The shaft carries a number of discs that are attached to the
shaft via connecting springs. These allow translation of the disc perpendicular to the shaft
and rotation of the disc about diametral axes, perpendicular to the shaft, but are torsionally
rigid. The discs are thin, rigid and circular, and run in cylindrical casings that are concentric
with the undeflected shaft axis. Inertia and gyroscopic effects are taken into account in the
shaft and disc models. Material damping is assumed to be viscous, and external damping
linear. The bearings are modelled as hydrodynamic ones, the distribution of the oil pressure
in the gap between the rotor journals and bearing housings being described by Reynolds
equation. Finally, the rotor can be loaded by external force or kinematic inputs, which can
be constant, or have harmonic or general time histories.

The lateral vibration of such rotor systems is described by equations of motion of the
form

Mi + (B + 1y Ky + QG)X + (K + QKo)x = f + f5(x, X) 1)

together with appropriate initial conditions, and boundary condition relationships of the
form

Xpc = Xpc(t)- )

A complete listing of the notation is given in Appendix D.

The hydrodynamic fluid-film bearing forces are included in the computational model as
a non-linear coupling-force vector, fz. The force magnitudes depend on the bearing
geometry, the dynamic viscosity of the lubricant and on the relative displacements and
velocities of the rotor journal and bearing housing centres.

Radial and tangential components of the bearing force acting on a rotor journal of length
L and mean radius R are given by the integrals

2n pL 2n pL
Fb,:—J fp(@,x)Rcos@dxd@, Fb,z—f Jp(@,x)Rsin@dde, 3,4)

0 0 0 0

where x is the co-ordinate in direction of the bearing axis and the meaning of angle 6 is
evident from Figure 1.

The distribution of the oil pressure p along the circumference and length of the bearing
gap results from solving Reynold’s equation and depends on boundary conditions. Solution
in a closed form can be obtained only in special cases, see references [ 3, 4].
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Figure 1. Geometry of the hydrodynamic bearing.

To obtain elements of vector fp the radial and tangential components of the bearing
forces equations (3) and (4) must be resolved into the fixed frame of reference by using the
transformation

Fyy = Fy,cosy — Fysiny, Fy. = Fy,siny + Fy cos?, (5, 6)

where angle y (see Figure 1) must satisfy the trigonometric equations

Y — Ve siny = 2 Zn . (1.9

\/(J’J ve)* + (2 — ZB) \/(YJ — yp)* + (25 — zp)?

cosy =

The resulting vector of bearing forces fz can be expanded into a Taylor series in the
neighbourhood of the static position, as

f5(x, X) = fpgr + DX + Dg(x — xg7) + -+, )
where
ofp(x, X of(x, X
fpsr = f5(Xs7, 0), Dy = [%} > Dy = [%}
X = Xgr, X =0 X = Xg7, X =0
(10-12)

If displacements and velocities of the rotor journal centre from the equilibrium position
are small relative to the bearing clearance, terms of second and higher order in the Taylor
series (9) can be neglected. Under this condition, after substituting equation (9) into
equation (1), the following some manipulation, the linearized equation of motion becomes

M-X+B + ny Ksp+ Q-G — Dp) X +(K+ Q- Ke—Dg) x = {5 + £4(t) + fgsr — D~ X7
(13)

From the physical point of view the negative of matrices Dy and Dy express the linearized
stiffness and damping properties of the fluid-film bearings.
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A necessary step in the linearization process is to determine the static position of the rotor
system by solving the following set of non-linear algebraic equations for the elements of
vector Xgr:

(K + Q-K¢) xgr = fsr + fp(Xs7, 0). (14)
After introducing the substitution
fsrc = fsr + fpsr — DgXsr (15)
the linearized equation of motion (13) is transformed to
Mx + (B + ny-Ksy + Q-G — Dp)x + (K + Q- K¢ — Dg)x = f55c + £(2), (16)
where the vector fgrc follows from equations (14) and (15) as
fsre = (K + QK¢e — Dg)Xsr. (17)

As previously mentioned, impacts between the discs and the stationary part will be
modelled in two ways as described in the following sections.

2.1. APPROACH BASED ON APPLICATION OF NEWTON’S IMPACT THEORY

To apply Newton’s impact theory, the following additional properties are assigned to the
model rotor system. The discs and the rotor casing are taken to be absolutely rigid bodies
and the effective mass of the casing is considerably greater than the mass of particular discs.
Dissipation of mechanical energy due to deformation of the colliding bodies is taken into
account by means of the coefficient of restitution, and Coulomb friction opposes slipping
motion in the contact area. It is assumed that the rotor speed is such that the circumferential
velocity of the disc is the dominant component of the relative velocity between the colliding
bodies at the point of contact. Consequently, the Coulomb friction force acts on the disc in
a circumferential direction, which is determined entirely by the direction of rotation of the
rotor. For investigation of individual impact events, it is assumed that the centre of mass of
the disc is coincident with its geometric centre.

The rigid discs have four degrees of freedom (d.o.f:s), i.e., the linear displacements in the
y and z directions and rotations about axes parallel to y and z. The discs are connected to
the shaft through isotropic spring elements having lateral and bending stiffness in two
mutually perpendicular directions. The springs have a physical meaning because they
represent a mounting stiffness (effectively a contact stiffness) between the disc and shaft.
From the modelling viewpoint the springs are particularly convenient, because they
decouple the disc from the shaft at the moment of the impact, thus allowing simple
application of Newton’s impact theory.

It will be assumed that, during the contact period, the impact forces are considerably
greater than all other forces acting on the colliding bodies, including the forces and
moments transmitted by the spring elements connecting the discs and the shalft.

The geometry of the system during impact is evident from Figure 2, which also
identifies the radial and tangential components of contact force, F,, F,, acting on the
disc. The centre, C, of the disc is shifted radially and its central plane is turned resulting
in axial displacement of impact point R. To describe the impact, the rotated frame of
reference, Oy, is introduced. Axis On passes through centres of the disc and the casing and
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Figure 2. Disc geometry and contact force components.

through the impact point R. Axis O¢ is coincident with axis Ox and O( is perpendicular to
O¢& an On.

To analyze the problem, the y and z components of the velocity of the disc centre, and the
angular velocity of the disc, must be transformed into the rotated frame of reference as
follows:

i]c = J}c COS (pé + Z.C Sin (péﬂ éc = — .)}C Sin (pé + Z.C COS (Pé’ (18, 19)
Py = §,COS Qs + @SN @, Pr = — @y, Sin Qs + ¢, COS P¢. (20, 21)

Here the angle ¢, which defines the instantaneous swash angle of the disc, is a solution of
the two equations

Yc . Zc

—, sin @z = ————.
Ve + zé Ve + zé

According to Newton’s theory, the period of impact has two phases that are separated by
an instant of time when the normal component of the relative velocity of the colliding
bodies at the point of impact is zero.

Upon taking into account the assumption that mass of the disc is considerably smaller
than the mass of the stationary part, components of the disc velocity after the impact can be
determined by solving the following set of equations, which will be discussed later:

COs @ = (22, 23)

Ty Tr
mp(tico — fict) = — f E,@)dt,  mp(ic2 —tico) = — J E,(dt, (24, 25)

0 To

T, Tx

Ip(Pro — ¢u1) = Rnng E,@dt,  Jp(d — ¢ro) = Rzﬂ/)gJ E,(t)dt, (26, 27)

0 To
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TR

To
ﬁCO - RD¢§¢CO = 0’ ER = J E’r(t) dl/Jv E’r(t) dt (289 29)
0

T,

Tr Tr

E (o) dt, Jp(pyz — Py1) = — RD(PgJ F.()dt.

0

E[ = 'LLE.,.S, mD(C.CZ - C'Cl) = f

0

(30-32)

Equations (24), (25) and (31) govern the change of the disc’s linear momentum during
impact in the radial and tangential directions and equations (26), (27) and (32) govern the
change in its moment of momentum. Equation (28) expresses the relationship between the
translational and angular velocities of the disc at the point in time separating the first and
second phases of the impact. Equation (29) defines the coefficient of restitution and equation
(30) expresses Coulomb’s law for friction.

Parameter s depends on the direction and orientation of the friction force. Upon noting
that the tangential component of the velocity of the disc at the impact point, immediately
before impact, is given by

ém = éc1 + RpQ, (33)
then s takes values as follows:
s=1 if (g1 >0, s=0, if (g, =0, s=—1 if {z; <O. (34)

Because the angular velocity, Q, of the rotor is usually high, the second term on the
right-hand side of equation (33) is considerably greater than the first so that

{c1 < RpQ, (35)
in which case equation (33) can be rewritten into the approximate form
{r1=RpQ. (36)

The magnitudes of the velocity components of the disc immediately after the impact,
obtained in the rotated frame of reference, must be transformed to the fixed frame as

Ve = 1j¢ COS @ — {csin Pe, Z¢ = fjcsin g + {ccos Pes (37, 38)
@y = (p,COS Qs — P Sin @, @, = ¢p,sin@: + P, coS ;. (39, 40)

Impact of the disc with the casing occurs if the following geometric and kinematic
conditions are satisfied:

e — Rp(1 — cos ) = 9, ilc — Rp@:p: > 0. (41, 42)

The velocities of the discs after the impact are calculated by using equations (37)-(40), and
the new acceleration magnitudes are determined from

Xz = Mil[fSTC + f(t) — (B + nVKSH + QG — DB)XZ — (K + QKC — DK)X] (43)

To take account of the boundary conditions the equation of motion is transformed to the
form

AzY + Ay + Aoy =, (44)
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where matrices Ay, A;, A, and vectors y, y, ¥, b are obtained from A§, A¥, A%, x, X, X, b*
(defined below) by removing the rows and columns that correspond to those degrees of
freedom for which the boundary conditions are prescribed:

A* :M, AA>k :B+’7VKSH+QG_DB> AZ’)‘ :K+QKC—DK, (45—47)
b* = fgrc + £(t) — MXpc — (B + nyKsy + QG — Dp)Xpc — (K + QK¢ — Dg)xpe.  (48)

To solve the modified equation of motion, equation (44), the Newmark method was
applied in a modified form (see Appendix A). After each integration time step, a check was
performed to determine whether or not contact had occurred, using the conditions

Ne,e+40 — Rp(1 — cos QDQH—At) =0, Nei+a — Ro@Pe i 2t Pei+ a0 > 0. (49, 50)

The physical nature of the problem dictates that the time step, 4t, must be very short, so
that there is no need for a more complex, iterative procedure to determine the instant of
impact with sufficient accuracy. When an impact happens, the post-impact magnitudes of
velocities and accelerations of the rotor system are determined before the next integration
step is performed.

2.2. APPROACH BASED ON DETERMINATION OF IMPACT FORCES

The second modelling approach is based on direct determination of contact forces acting
between the colliding bodies during impact. This is achieved by modelling the local radial
deformation behaviour at the point of contact by using an assumed contact stiffness in
parallel with a viscous damping element. As before, Coulomb friction is assumed to act at
the point of contact, the friction force acting on the disc in the circumferential direction.

The impact force has radial and tangential components (see Figure 2), both of which
depend on local contact stiffness and damping and on the geometric and kinematic
parameters of the colliding bodies, as follows:

Frr = Eonr = - kcon [ﬂc - IQD(1 — COS (PC) - 5] - bcon(’/]C - RD(pg(b;)’ (51)
F = Foon = — Keon [ﬂc - RD(1 — Cos (Pg) - 5].“*9 - bcon(ﬁC - RD(pgqbg):us' (52)

Here s is given by equation (34) and k,,, and b,,, are defined below.

If, during the period of impact, the disc undergoes angular displacement about
a diametral axis, the contact force produces a bending moment acting on the disc. It has two
components given by

Mconr = E‘ontRD(p§5 Mwnt = - F;onrRDqDO (537 54)

which act about axes parallel to F,, and F,, respectively.
The power dissipated by the friction force is given by

Py =F(lc + RpQ), (55)
which can be approximated as follows if the speed of rotation of the rotor, 2, is high:

P, = F,RpQ. (56)
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In general, the contact stiffness and damping are complex functions of strain and strain
rate in the deformation zone and thus depend on the displacement and velocity of the disc
centre in the radial direction so that

kcon = kcon(’/’C: ’/iC): bcon = bcon(nC’ ’/’C) (57, 58)

In the simplest case k., and b, can be considered as constant, and the damping
coefficient b,,, is often expressed as a multiple of the contact stiffness

bcon = ﬁcon kcon . (59)

Before incorporation of components of the impact forces and moments into the equation
of motion they must be transformed from the rotated to the fixed frame of reference, by
using the same transformation as that used in equations (37)-(40), so that

Eony = Fconr COS g — Eont sin Pe, Eonz = Eonr sin Pe + Eont COs @, (607 61)

Mcany = Mom‘ Cos Qoé - Mcont sin 40.5» Mconz = Mconr Sin@é + Mcant Cos (Pg, (62, 63)

where angle ¢. satisfies equations (22) and (23) at the appropriate point of time.
Following the above analysis, the equation of motion can be written as

M-X + B + nyKsu + QG — Dp)X + (K + QK¢ — Dg)x = fsrc + £(1) + feon(x, X). (64)
To take the boundary conditions into account, equation (64) can be written as

where matrices Ay, A;, A, and vectors y, y, ¥ are as defined for equation (44) and b results
from vector b*, given below, by omitting those elements for which boundary conditions are
prescribed:

b* = fgrc + £(t) — MXpc — (B + nyKsy + QG — Dp)xpc — (K + QK¢ — Dg)xpc + feon-
(66)

Equation (65) is non-linear because vector b is a function of displacements and velocities.
For its solution a modified Newmark algorithm was used, as outlined in Appendix B. The
principal problem with its application is how to express the vector of impact forces froy at
point of time ¢ + At, because the kinematic parameters are not yet calculated at this time. As
before, the physical nature of the problem requires the use a short integration time step At.
Therefore, the simplest possibilities are either to use the kinematic parameters obtained at
previous integration step (i.c., at time t), in which case

feon(t + At) =fcon [X(2), X(1)], (67)

or to assume that the rotor motion during the short time interval is uniformly accelerated so
that

feon(t + At) =feon[X(t) + Atx(t) + 3 At2%(t), X(t) + AtX]. (68)
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Before performing each integration step, the conditions of impact
Ne = Ro(l = €05 @) =8, For <0, (69, 70)

must be inspected for all discs and new values of contact forces calculated as required. The
force condition (70) is introduced to avoid physically unrealizable tensile contact forces
acting between the discs and the stationary part. These can be predicted if, as when
a viscoelastic contact model is used, the contact forces are assumed to depend on the rate of
deformation of material in the neighbourhood of the impact point.

3. APPLICATION EXAMPLES

The above modelling schemes will now be illustrated by application to two examples.
These are based on the system shown in Figure 3, for which relevant geometrical and
physical parameter values are given in Appendix C. The system consists of a shaft, which

D1 B2 D2

[

I / |
1 I ]

600

A
v

800

A
) 4

1200

A
v

A\ VAN *

Figure 3. Schematic of the example rotor system. Legend: B1, B2—bearings, D1, D2—discs, SH—shaft,
FP—foundation plate.



ROTOR SYSTEM WITH DISC-HOUSING IMPACT 225
TABLE 1

Eigenvalues (rad/s) at different angular speeds of rotation

Q =250rad/s Q = 500 rad/s Q =750 rad/s Q = 1000 rad/s
n A, (rad/s)
1. —3424 12671 —34-3+ 251-2i —32:74 37621 —28-5+ 502-3i
2. —87-4+ 13701 —977+ 261-8i —93-4+ 3894i —752+ 522:9i
3. —9-84 62551 —934 61501 —84+ 605-2i —774 595-3i
4. —1394 642:9i —19-2+ 651-6i —27-04 6582 —46:24 658-6i
5. —40-14 2061-4i —51-04 2044-1i —49-34 2029-9i —46'14+ 2017-1i
6. —74:64 2067-61 —76:44 2083-7i —84-74 2096-9i —93-94 2108-5i
700
4
600 - 3
=, 500 |
3
8
% 400
g
&
=
5 300 [
<
Z
200
100 1 1 1
200 400 600 800 1000

Angular speed of rotation (rad s)

Figure 4. Dependence on rotor speed of imaginary part of eigenvalues of example rotor system.

supports two discs, and is coupled to a rigid foundation plate through two hydrodynamic
bearings. The shaft rotates at constant speed and the overhung disc runs in a cylindrical
housing.

For the purpose of the calculation the model rotor was discretized by using six finite
elements. The discs were considered to be thin and absolutely rigid and both bearings as
short and fully cavitated. Dead load of the rotor was taken into account.

For reference, the complex eigenvalues of the system at a range of shaft speeds are given in
Table 1, from which it can be seen that the system is stable. Figure 4 shows the dependence of
the first two pairs of system natural frequencies on shaft speed and illustrates the expected
splitting of these pairs due to gyroscopic coupling. The effect of increasing bearing stiffness on
the lowest natural frequencies as the shaft speed increases is clearly visible.

3.1. EXAMPLE 1

In this example, the shaft was loaded by a concentrated radial force, of constant
magnitude and direction, acting at the location of disc D1. In addition, a suddenly applied
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imbalance force was assumed to act on disc D2, equivalent to a centre-of-mass eccentricity
of 1-0 mm, represented by two, mutually perpendicular harmonic forces acting on the shaft
in the plane of disc D2. The aim was to investigate the influence of the width of the clearance
between disc D2 and its housing on the response of the rotor system. The first mentioned
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Figure 5. Orbits of centre of disc D2 and time histories of eccentricity for various initial clearance gaps.
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modelling approach was used and the coefficients of restitution and Coulomb friction for
contact between disc D2 and its housing were taken to be 0-8 and 0-2 respectively. The shaft
speed was 500 rad/s.

Some representative results of the numerical simulations, all relating to the period when
the vibration can be considered as steady state, are given in Figures 5-9. Figure 5 shows the

y-coordinate

z-coordinate
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Angular frequency (rad s™)
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Figure 6. DFT of displacement of centre of disc D2.
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orbit of the centre of disc D2 and corresponding time series of its eccentricity for three
values of the rotor-casing clearance. With 12 mm initial clearance there is almost
continuous sliding contact between the disc and certain sections of the casing. With 1-4 mm
initial clearance, the steady state vibration of the rotor is periodic. During the simulation
period only one impact occurs.

Figure 6 shows the Fourier transforms of time series of y and z displacement components
of the centre of disc D2. The principal contributions to the steady state response are formed
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Figure 7. Bifurcation diagram based on horizontal displacement of centre of disc D2.

7018
g PR
[
8 o016 F i
3 . s
Ny
B 014 F .
g (] .
qa 012 : ‘ . LI PO +*
z !;
3 . .
= . * -
e 01fF . s d
o b LI
3] tt
g i i
2 008 | + ! !
5]
£ $
: it
Z 006 - ;
s
=)
9]
g 004 % 1 1 1 1 1
= 1-15 12 1-25 13 1-35 1-4 145 1-5

Width of the gap (m) x10°

Figure 8. Bifurcation diagram based on horizontal velocity of centre of disc D2.



z-displacement (m)

z-displacement (m)

z-displacement (m)

ROTOR SYSTEM WITH DISC-HOUSING IMPACT

229

Bearing B1 Bearing B2
x 10~ x 107
4 8
6 -
2t BT
g
g T
o 5
0 L
_4 -
— | | -6 1 I 1 I 1
5 0 > 4 2 0 2 4 6 8 10
y-displacement (m) «10°° y-displacement (m) x 107
Gap 120 mm
x10~° %107
4 4
2 | E 2
5
=
w
3
&
of T o0r
~
-2 1 -2 L
-2 0 2 4 -2 0 2 4
y-displacement (m) %107 y-displacement (m) x107°
s Gap 1-30 mm
x 10
5
4 -
3 -
) E
s
=
or &
3
_1 - .1)
_2 -
3 1 I 1
-2 o 2 46 -2 0 2 4 6 8 10
y-displacement (m) % 10 y-displacement (m) %10
Gap 1-40 mm

Figure 9. Orbits of bearing centres under mass imbalance excitation.



230 J. ZAPOMEL ET AL.

by partial motions with frequencies corresponding to integer multiples of one-half of the
frequency of excitation. In all cases investigated the dominant frequency in the spectra is
equal to the excitation frequency due to mass imbalance corresponding to the shaft speed
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Figure 10. Trajectory of centre of disk D2 under vertical displacement excitation of base plate.
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Figure 11. Time history of eccentricity of centre of disk D2 under vertical displacement excitation of base plate.
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Figure 12. Effect of contact stiffness and coefficient of friction on steady state orbits of centres of discs D1 and
D2 under vertical displacement excitation of base plate.

500 rad/s. When the initial clearance is 1-3 mm, the frequency spectrum has a broadband
character that is characteristic of chaotic motion.

Figure 7 is a bifurcation diagram representing the dependence of the y displacement of
the centre of disc D2, determined at the end of each rotor revolution, on the initial
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rotor—stator clearance. For clearances between 1-37 and 1-42 mm, the steady state vibration
is 2T-periodic where T is the period of excitation. When the clearance is greater, the motion
becomes 1T periodic. However, if the clearance is lower, then the vibration becomes
quasi-periodic or even chaotic (i.e., hardly predictable). The behaviour of the z-component
of displacement shows the same trends. The same pattern of behaviour is observed in
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Figure 13. Effect of contact stiffness and coefficient of friction on DFT of displacement of centre of
disc D2.
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Figure 8 based on the y-component of velocity of the centre of disc D2 at the end of each
revolution of the rotor.
The forms of the trajectories of the rotor journal centres in bearings B1 and B2 are
evident from Figure 9. It is clear that their displacements from the static position can be
considered small with respect to the bearing gap (0-2 mm), justifying the use of the approach
based on linearization of the stiffness and damping properties of the fluid-film bearings.
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Figure 14. Effect of contact stiffness and coefficient of friction on time history of radial impact force D2 under
vertical displacement excitation of base plate.
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3.2. EXAMPLE 2

The second modelling approach is demonstrated here for the case in which the system is
excited kinematically. The foundation plate was subjected to a vertical harmonic
displacement with 1:0 mm amplitude and angular frequency 300 rad/s. In this case, the
influence of the contact stiffness and coefficient of friction at the rotor-casing contact were
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studied. Reference values of these parameters, assumed constant, were chosen as follows:
contact stiffness k,,, = 1 x 10° N/m, based on Hertzian contact theory (Note that this is two
orders of magnitude smaller than the radial stiffness of the disc-to-shaft connection spring,
see Appendix C); coefficient of friction u = 0-1. The coefficient of proportionality between
viscous damping and contact stiffness (equation (59)) was assumed to be 1 x 10~ 7 s and the
shaft speed was again taken as 500 rad/s. The principal results are summarized in
Figures 10-15.

Figures 10 and 11 show the initial trajectory and corresponding time history of the
eccentricity of the centre of disc D2 when the excitation is applied. The displacement of the
disc centre slightly exceeds the initial rotor-stator clearance. This is due to two factors; (i)
local deformation of the colliding bodies (contact stiffness) and (ii) because of turning of the
disc central plane around axes perpendicular to the shaft central line, as permitted by
flexibility of the shaft and of the disc-to-shaft mounting.

The forms of orbits of the centres of discs D1 and D2 are shown in Figure 12 for a range
of values of contact stiffness and Coulomb friction coefficient. The results correspond to the
period when the transient component of the vibration has already died out. In all the
illustrated cases the steady state vibration is periodic. It is evident that the studied
parameters influence the form of the trajectory of the investigated nodes. For example,
increasing the contact stiffness from 10° to 10'°® N/m changes the number of impacts during
one excitation period from two to three. (Note the different scales in the vertical and
horizontal directions.)

Fourier transforms of the steady state time histories of the y and z components of the
response of the centre of disc D2 are shown in Figure 13, for a range of contact parameters.
In all cases, the dominant frequencies correspond to integer multiples of the excitation
frequency (300 rad/s). Figure 14 shows time histories of radial component of the impact
force during the corresponding period of steady state vibration. Increasing the contact
stiffness by a factor of 10 reduces the period of duration of the impact by a factor of ~ \/F),
as expected, and increases the maximum value of the impact force. However, it may be
noted that the combination of these two factors does not produce a large change in the
impulse of the impact force. Increasing the coefficient of Coulomb friction from 0-1 to 0-4
has little influence on the magnitude of the radial component of the impact force and
duration of the impacts. The time histories of the power dissipation during contact, due to
friction forces, have shapes that are identical to the radial force time histories shown in
Figure 14, the instantaneous power being obtained by multiplying the radial contact force
by the coefficient of Coulomb friction and the sliding velocity.

Time histories of the relative eccentricities of the rotor journal centres in bearings B1 and
B2 are shown in Figure 15. The maximum changes in eccentricity in the bearings resulting
from base-plate excitation are no greater than about 15% of the bearing clearance in the
cases considered, again indicating the acceptability of the modelling approach based on
linearization of the stiffness and damping properties of the bearings.

4. CONCLUSIONS

Investigation of the behaviour of rotor systems in which impacts occur between the rotor
and its housing is an interesting problem for which several modelling approaches can be
used.

Procedures based on the application of Newton’s theory and on the direct calculation of
the contact forces have been developed and tested. Both approaches make it possible to
investigate lateral vibration of the rotor system from the point of view of the limit state of
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deformation that is determined by the width of the gap between the rotor and the stationary
part, to determine frequency of the impacts during the transition or steady state phase of the
motion and consider character of the steady state vibration (periodic, quasi-periodic,
chaotic). For this purpose knowledge of forms of trajectories, Poincaré maps, bifurcation
diagrams or Lyapunov exponents are needed. The second procedure provides some
additional information e.g., on the magnitude and time history of the impact force or on
time of duration of the impacts. The applicability of the methods has been illustrated by
examples involving imbalance and baseplate excitations.
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APPENDIX A: ALGORITHM 1
Given: f3, y—coefficients of the Newmark method,

At—time step.



ROTOR SYSTEM WITH DISC-HOUSING IMPACT 237

1. Determination of constants of the Newmark method:

__1 _Y
aO_ﬂAtza a4_ﬁ B
R L L L
1 ﬁA[’ 5 2 ﬁ 5
1

a, = M, 06:At(1—'))),
1

a3=2—B—1, a, = yAt.

2. Determination of modified coefficient matrices:
Ag, AL A,
3. Calculation of the initial accelerations:
Yo = Az '[bo — A;¥o — AogYol-
4. Determination of the matrix of effective stiffness:
A= Ao+ agA, +aAy.
5. Set-up of the vector of effective load:
berivar =bira + As(aoy, + azy, + asy) + A(ary, + asy, + asy,).
6. Calculation of displacements at point of time t + At:
AcrYiran =besiva-
7. Calculation of accelerations and velocities at point of time t + At:
Yora = ao(Ye+ae — ¥i) — @2¥: — a3 ¥, Vitar =i + a6¥e + a7¥14 41
8. Conditions of impact for all discs:
He,evae — Rp(1 —cos @y 4 4) =0, e e+t — RpQe it st Prirar > 0.

If the conditions are not satisfied, go to 11.
9. Calculation of new velocities ¥, 4, of the colliding discs after the impacts.
10. Calculation of new accelerations of the system after the impact:

Viou = Az_1 “[bo — A1Vt ae — AoYitacl-

11. t + 4t — ¢, Yetar 2 Vs Vitar = Yoo Veva = Vo5
Return to 5.

APPENDIX B: ALGORITHM 2
Given: 5, p—coefficients of the Newmark method,

At—time step.
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1. Determination of constants of the Newmark method:

ag = ! a _7 1

O_ﬁAtza 4_B s

P A S

1 ﬂAt’ 5 2 ﬂ b
1

a, = ﬂ’ ae = At(1 —7),
1

a3=2—ﬁ—1, ay = yAt.

2. Determination of modified coefficient matrices:
Ag, Ay A,
3. Calculation of the initial accelerations:
Yo= Az '[by — A1¥o — AoYol
4. Determination of the matrix of effective stiffness:
Acr=Ap + apAy +a Ay
5. Calculation of the vector of impact forces:
beon. i+ a1 = Deon(Yis 1)-
6. Set up of the vector of effective load:
beriva = by s + As(aoy, + a2y, + asy,) + Ai(ary, + asye + asy,) + beon e+ ar-
7. Calculation of displacements at point of time t + At:
Aefyt+At = bef,t+At~
8. Calculation of accelerations and velocities at point of time ¢ + At:
Yora = ao(Ye+ae — Y1) — a2¥; — as¥i, Yeva =Yi + a6¥: + a7¥14 a1

9.t 4+ 4t -1, Yitar 2 Ves Vevae = Ve Verae = Ve
Return to 5.

APPENDIX C: GEOMETRICAL AND PHYSICAL PARAMETERS OF THE MODEL
SYSTEMS

Shaft

Element 1 length 200 mm diameter 100 mm
Element 2 length 200 mm diameter 100 mm
Element 3 length 200 mm diameter 130 mm
Element 4 length 200 mm diameter 150 mm
Element 5 length 200 mm diameter 80 mm
Element 6 length 200 mm diameter 80 mm
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Young’s modulus  2-1 x 10*! N/m?
Density 7800 kg/m?
Coeflicient of viscous damping 2:0x 1077 s

Discs Disc 1 Disc2
Mass 24 kg 32kg
Radius 0-15m 025 m
Diametral moment of inertia 0-09 kgm? 0-12 kg m?
Polar moment of inertia 0-18 kgm? 0-25 kgm?

Disc-to-shaft spring elements
Longitudinal stiffness 1 x 10! N/m

Bending stiffness 1 x 10" Nm/rad
Rayleigh coefficients for external damping
o=1>5, p=0.

Bearings

Radius 60 mm

Length 150 mm

Bearing clearance 0.2 mm

Oil viscosity

0-04 Pas

Static load at disc D2
y (horizontal) component 12000 N
z (vertical) component 20000 N

Matrices
M, K

B

Dy

Dy

G, KC
Ksu

Vectors

XsT
XBcs> Xpc» XBe
X2, X3

0

APPENDIX D: NOMENCLATURE

mass, stiffness matrices of the rotor system

damping matrix (external damping, material damping of the stator)
partial derivatives with respect to elements of vector X

partial derivatives with respect to elements of vector x

gyroscopic, circulation matrices of the rotor

stiffness matrix of the shaft

generalized forces

static loading forces

time-varying forces (including applied and constant forces)
bearing forces

bearing forces at equilibrium position of the rotor

contact (impact) forces

generalized displacements, velocities, accelerations
generalized displacements at equilibrium position
boundary conditions (displacements, velocities, accelerations)
generalized velocities, accelerations after impact

zero vector

Scalars, vector components

Fbr: Fbt
Fbyanz

rrs Frt

Fconra Fcom

radial, tangential components of bearing force acting on rotor journal

¥, z components of bearing force acting on rotor journal
radial, tangential components of impact force acting on rotor
radial, tangential components of impact force acting on rotor

239
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Feony, Feonz ¥, z components of the impact force acting on rotor

Jp moment of inertia of the disc (with respect to its diameter)

Keon> Deon contact stiffness, coefficient of damping in the contact area

Moy Mo radial, tangential components of moment of impact force acting on rotor
Monys Meonz v, z components of moment of impact force acting on rotor

Mp mass of the disc

Py power of the friction (tangential component of the impact) force

Ry radius of the disc

Tr, Ty time of duration of the impact, of the first phase of the impact
t, At time, time step (increment)
Vi, Zj v, z displacements of the rotor journal centre
VB> ZB v, z displacements of the bearing housing centre
Yo, Zc ¥, z, 11, { displacements of the disc centre C
Peon coeflicient of proportionality
0 width of the gap between the disc and the stationary part
Er coeflicient of restitution
ny coefficient of viscous damping
nes Ce n, { displacements of the disc centre C
@y, @z, @y, @;  rotation of the disc around axes y, z, parallel to 5, {
RV tangential component of velocity of the disc at impact point R
u coefficient of friction
Q rotor angular velocity

overdots denote differentiation with respect to time.
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