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A sector Fourier p-element is presented and applied to free vibration analysis of sectorial
plates. An important feature of this element is that it can describe the geometry of a sectorial
plate exactly and is therefore suitable for this type of plate. The element is formulated in
terms of a fixed number of cubic polynomial shape functions plus a variable number of
trigonometric hierarchical shape functions. The cubic polynomial shape functions are used
to describe the element’s nodal d.o.f. and the trigonometric hierarchical shape functions are
used to give additional freedom to the edges and the interior of the element. Results are
obtained for a number of sectorial plates with various boundary conditions and
comparisons are made with exact and 16-d.o.f. sector finite element solutions. The results
show that the solutions converge very quickly from above to the exact values as the number
of trigonometric terms is increased and highly accurate values are obtained with the use of
very few terms. The results also show that the sector Fourier p-element gives a much higher
accuracy than the 16-d.o.f. sector finite element with far fewer system d.o.f.
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1. INTRODUCTION

This paper deals with the Fourier p-version of the finite element method applied to free
vibration analysis of sectorial plates. There are a number of papers [1-4] that have
suggested this method.

The Fourier p-version of the finite element method has a number of major features. The
most important feature is that a simple structure such as a sectorial plate may be idealized
as just one Fourier p-element and the number of trigonometric terms is varied. The results
can then be obtained to any desired degree of accuracy by simply increasing the number of
trigonometric terms. Another important feature is that trigonometric shape functions are
used rather than forms of Legendre orthogonal polynomials which are commonly utilized
in the p-version of the finite element method. The use of forms of Legendre orthogonal
polynomials has the drawback that numerical rounding errors associated with floating
point arithmetic increase with increasing order of polynomial [5] and thus limits the use of
the method for high-frequency analysis. A sector Fourier p-element has the additional
important feature of describing the geometry of a sectorial plate exactly and is therefore
suitable for this type of plate.

The Fourier p-version of the finite element method has been limited currently to
rectangular domains. This paper is intended to show the applicability of the method to
a sectorial domain. In the sector Fourier p-element presented in this paper, the plate’s
transverse displacement is described by a fixed number of cubic shape functions plus
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a variable number of trigonometric shape functions. The cubic shape functions are used to
define the element’s nodal degrees of freedom (d.o.f.) and the trigonometric shape functions
are used to provide additional freedom to the four edges and the interior of the element. The
nodal d.o.f. and the amplitudes of the trigonometric shape functions on the four edges and
in the interior of the element are used as generalized co-ordinates. The potential and kinetic
energy expressions of the sector element are used in conjunction with Lagrange equations
to develop the equations of motion. The resultant equations are solved as a generalized
eigenvalue problem to yield the approximate frequencies.

Results of frequency calculations by use of the sector Fourier p-element are obtained for
a number of sectorial plates with various boundary conditions and comparisons are made
with exact and 16-d.o.f. sector finite element solutions. The 16-d.o.f. finite element used is the
sector version of the 16-d.o.f. rectangular finite element of Bogner et al. [6].

2. FORMULATION

2.1. THE SHAPE FUNCTIONS

The shape functions will be derived for the beam Fourier p-element shown in Figure 1
(a list of nomenclature is given in Appendix A). The x co-ordinate and the non-dimensional
{ co-ordinate are related by

X
=—. 1
(=% (1)

The transverse displacement w of the beam element is expressed as
W=C1+C2C+C3C2+C4C3+Cp+4SinpnCa p=132737"" (2)

The element’s nodal d.o.f. are the transverse displacement w and the slope w , at each of the
two nodes. The polynomial terms on the right-hand side of equation (2) are used to describe
the element’s four nodal d.o.f. and the trigonometric sine terms are used to provide
additional freedom to the interior of the element.

Equation (2) can be written in matrix form as

w = gc, 3)
where
g =[1,{ %8, sinpnl] 4)
and
Cc= [Cl,C2,C3,C4, cp+4]T' (5)
1 2
® ®
|—> {=x/L
B L |
[

Figure 1. The beam element.
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The operators g and Lg . can be evaluated at each node to obtain

p = he,
where
1 0 0 0 0 ]
01 00 P
h=[1 1 1 1 0
01 2 3 (—1)Ppn
|10 0 0 0 1 ]
and

T
p = [Wls LWl,xa Wy, LWZ,x, Wp+4] .

The vector ¢ can be obtained from equation (6) as

c=h"1p,
where
i 0 0 0 0 l
1 0 —pn
h '=| — -2 3 -1 Q2+ (—=D"prn
1 =2 1 -1+ (—1"p=n
B 0 0 0 1 |

Substituting equation (9) into equation (3) gives the relation
w=gh 1p.
The desired shape functions f are therefore given by
f=gh 1
where
f=[fi.f2. 1504 Fpr4]

and

fi=1=30+20,  fo=0-20+0,  f3=30-20,

fora=pa[—{+ Q2+ (= DN = (1 + (= D] + sin(pnl).

f4=—
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Figure 2. The first six hierarchical functions f,, and their first derivatives f, 4.

The first four shape functions are commonly used in the finite element method. The
trigonometric shape functions f, .+, lead to zero transverse displacement and zero slope at
each node. This feature is highly significant since these functions only give additional
freedom to the edges and the interior of the element and do not affect the nodal d.o.f.
Diagrams for the first six trigonometric shape functions f,+4(p = 1, 2, ..., 6) are shown in
Figure 2.

2.2. THE SECTORIAL PLATE EQUATIONS OF MOTION

An arbitrary sector plate element is shown in Figure 3. The element is bounded by
concentric arcs of two circles with radii a and b (0 < a < b) and two radii making an angle
¢ between them (0 < ¢p < 360°). The polar co-ordinates r and 6 and the non-dimensional
¢ and 5 co-ordinates are related by

0
&= 1=y (19, 20)

The transverse displacement w can be written as

M+4 N+4

wén )= Y Y welt) (&) filn). (21)

=1 I=1
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Figure 3. The sector plate element.

The strain energy U of the element is expressed as

D ('[! ¢ B} a o*w\? ¢ 1 ow\?
U_EL Jo [(b—a)2<g+b_a><5_fz> +(b—a)2(§+a/(b—a))<a_§>
o) Trorw) (&)
> (b —a)* (& + a/(b — a)* \ on* (b — a3\ 0¢* )\ o¢
“soaEran=ar\) (o) Fomwc ranal ) (o)
(b —a) (& +afb—a)\oc)\n*) ¢b—a)E+a/b—a)\oe?)\ n?
21— <a_w> <62_w>+ 21 —v) <02w>2
(b—a)* \0¢)\0¢*)  ¢(b—a)*(&+a/b—a)\dn

N 2(1 —v) <6w>2_ 41 —v) <62W><6W>:|dfd
b(b—aPE+afb—a) \on) ~ pb— a*E + afib —a)? \oéan) \ o G
(22)

The kinetic energy T of the element is expressed as

_ ph , (M (! a ow\?

The motion is assumed to be harmonic and the expression for w [equation (21)] is inserted
into the expressions for the strain energy U and kinetic energy T [equations (22) and (23)].
The resultant equations are then inserted into the known Lagrange equations to yield the
following equations of motion for undamped free vibration;

(Km,n - C02]\4m,n)qn = Oa m = 13 27 3, ,R, (24)

1

I M =

n
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in which K,, , are the coefficients of the stiffness matrix given by

Kpn=D [(b j)a)z Ciie B + ﬁ Dii! B +

1
¢3(b — a)® B
¢

To—ar

(A% + AL B + (Ei3’ Bj:* + EJy' B

_
(b —ay?

1-—vé
(b —a)?

v
+ PYE (DEOBJ? + DY BT°) —

(Ai3® + AL B

2(1 — vy 2(1 —v
* ¢((b — at))2 DBl + <b((b — 01))21:3!"0]3}’71 a

2(1 — v)

5@iaﬂﬂf+E$Wbﬂ(%>

and M, , are the coeflicients of the mass matrix given by
M,.n = pho(b — a)> C?5 BY:. (26)

The integrals are expressed as

rl
Apl = | fAfrede, (27)
JOo
rl
Byl =| fifidn (28)
JO
rl
Crl=| (& +a/b—a)ffide, (29)
JO
Rl —— T (30)
e @ afb—ayT T
= 1 “fde 31
) e —ap o
A YL (32)
H o € alb —a)t E

in which the indices o and f (o, f = 0-2) denote the order of the derivatives.

The exact values of the above integrals can easily be found by using symbolic computing
which is available through a number of commercial packages.

The indices are defined as

ik=1,2,....,M+4, jl=12...N+4 m=j+(i—1)(N+4),

n=1+(k—1)(N +4). (33-36)
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The order R of the element stiffness and mass matrices is
R =(M + 4)(N + 4). (37)

Particular boundary conditions can be specified for w, w,, wg, w4 on the element’s four
corners, for w, w, on the element’s two edges along the r direction, and for w, w, on the
element’s two edges along the 0 direction and it is possible to accommodate any
combination of corner and edge conditions in the analysis. The resultant equations can be
solved as a generalized eigenvalue problem to yield the approximate frequencies .

3. RESULTS

Results of the application of the sector Fourier p-element to the calculation of the
frequency parameters Q were obtained for S-S-S-S, C-C-S-S, and S-C-S-S sectorial
plates with a/b = 0-5, ¢ =90°, and v = 0-3. These examples were chosen because exact
solutions were available for comparison. The symbolism S-S-S-S indicates that the four
edges are simply supported. The symbolism C-C-S-S indicates that the edgesr = a,r = b,
0 =0, and 0 = ¢ are clamped, clamped, simply supported, and simply supported
respectively. The symbolism S-C-S-S indicates that the edges r =a, r =b, 6 =0, and
0 = ¢ are simply supported, clamped, simply supported, and simply supported respectively.

In order to see the manner of convergence of the sector Fourier p-element solution, each
sectorial plate is discretized into one element and the number of trigonometric terms is
varied. An equal number of trigonometric terms is utilized in both radial and
circumferential directions. Results for the 10 lowest modes of the S-S-S-S, C-C-S-S, and
S-C-S-S sectorial plates are shown respectively in Tables 1-3 along with exact solutions.
Blanks in these Tables are for places where there were too few system d.o.f. to be able to
produce these modes. Tables 1-3 clearly show that a very fast convergence from above to
the exact values occurs as the number of trigonometric terms is increased from 1 to 6 for the
S-S-S-S plate, from 1 to 12 for the C—C-S-S plate, and from 1 to 10 for the S-C-S-S plate
and highly accurate values are obtained with the use of very few terms. In fact, the sector
Fourier p-element values agree up to three significant digits with the exact ones for all plates
and for most of the modes. Tables 1-3 also show that the C-C-S-S and S-C-S-S sectorial
plates which present singularities in boundary conditions required about twice as many
trigonometric terms as those required by the S-S-S-S sectorial plate to obtain an
equivalent accuracy.

The performance of the sector Fourier p-element with that of the 16-d.o.f. sector finite
element on a system degree of freedom basis is also investigated. The 16-d.o.f. sector finite
element represents the special case with no trigonometric terms (M = N = 0). This special
finite element can also describe the geometry of a sectorial plate exactly and is therefore
suitable for this type of plate. Results for the 10 lowest modes of the S-S-S-S, C-C-S-S,
and S-C-S-S sectorial plates are shown respectively in Tables 4-6 along with exact
solutions and solutions from the 16-d.o.f. sector finite element. The numbers of
trigonometric terms M (= N) used in the sector Fourier p-element for the S-S-S-S,
C-C-S-S, and S-C-S-S sectorial plates are 6, 12, and 10 and the corresponding numbers
of system d.o.f. are 64, 168, and 132 respectively. The number of 16-d.o.f. sector finite
elements used in the S-S-S-S, C-C-S-S, and S-C-S-S sectorial plates is 64 and the
corresponding numbers of system d.o.f. are 256, 224, and 240 respectively. Tables 5-7
clearly show that the sector Fourier p-element produces a much higher accuracy than the
16-d.o.f. sector finite element with fewer system d.o.f. In fact, for the S-S-S-S, C-C-S-S§,



Convergence of the frequency parameters Q for the 10 lowest modes of the S-S—-S-S sectorial plate with a/b = 0-5 and ¢ = 90° (the whole plate is

TaBLE 1

discretized into one sector Fourier p-element) as a function of the number of trigonometric terms M (= N)

M(= N) 1 2 3 4 5 6 7 8 9 10
1 47096 73213 124-529 204-593 229-697 280-854 509-385 530-688 573.951 —

2 47089 68-384 123-638 166482 189-601 198-440 246793 336166 499166 521-529

3 47089 68-380 103-439 166:353 189-601 198422 228669 294757 332067 364-332

4 47089 68-380 103-437 150983 166:352 189-599 228653 283-599 294750 363965

5 47089 68379 103-437 150-983 166:349 189-599 209-646 228653 283-595 354030

6 47089 68379 103-437 150982 166:349 189-599 209-646 228652 278-386 283593

Exact 47089 68379 103-437 150982 166:348 189-599 209646 288652 278386 283593
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Convergence of the frequency parameters £ for the 10 lowest modes of the C-C-S-S8 sectorial plate with a/b = 0-5 and ¢ = 90° (the whole plate is

TABLE 2

discretized into one sector Fourier p-element) as a function of the number of trigonometric terms M (= N)

M(= N) 1 2 3 4 5 6 7 8 9 10
1 93944 111:049 153-469 — — — — —
2 93341 107-651 153131 225398 253-398 270284 313997 388-899 — —
3 93340 107617 135-694 225038 252-158 269-637 300-587 323-643 387-153 492452
4 93326 107-588 135651 178912 252:003 269-553 300-568 323-642 346713 444600
5 93324 107576 135617 178-849 236220 251-978 269-508 300-488 346592 408930
6 93322 107-572 135-609 178841 236215 251-978 269-506 300-468 305883 346534
7 93322 107-569 135-602 178827 236195 251-974 269-498 300-452 305857 346507
8 93322 107-568 135-600 178825 236194 251974 269-496 300-444 305857 346487
9 93321 107-568 135-598 178:821 236:188 251-973 269-494 300-439 305849 346479
10 93321 107-568 135-597 178-820 236:187 251973 269-493 300-437 305849 346472
11 93321 107-567 135597 178819 236:185 251-973 269-492 300-435 305846 346469
12 93321 107-567 135-596 178818 236:185 251:973 269-492 300-434 305.846 346466
Exact 93321 107-567 135-596 178817 236:183 251-973 269-491 300-432 305.844 346461
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Convergence of the frequency parameters Q for the 10 lowest modes of the S—C-S-S sectorial plate with a/b = 0-5 and ¢ = 90° (the whole plate is

TABLE 3

discretized into one sector Fourier p-element) as a function of the number of trigonometric terms M (= N)

M(=N) 1 2 3 4 5 6 7 8 9 10
1 70-345 94-310 146105 281-701 309-860 368208 — — — —
2 70-136 89-865 144705 211-250 222:293 231931 284-616 371:326 627925 654234
3 70136 89-858 124316 209-243 222274 231:055 268-334 323064 368516 432700
4 70-136 89-858 124308 172683 209-243 231015 268237 321571 323018 426836
5 70136 89-858 124308 172683 209-232 231-010 233-306 268237 321566 391091
6 70136 89-858 124307 172680 209-216 231-010 233299 268236 304670 321565
7 70136 89-857 124307 172680 209-215 231-009 233298 268236 304665  321:564
8 70-136 89-857 124307 172679 209-215 231-009 233296 268236 304662 321:564
9 70136 89-857 124307 172:679 209-214 231-009 233296 268236 304661 321563
10 70-136 89-857 124307 172679 209-214 231-009 233295 268236 304660 321-563
Exact 70136 89-857 124307 172679 209-214 231-009 233295 268236 304658 321563
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TABLE 4

Comparison of the frequency parameters Q for the 10 lowest modes of the S-S—S-S sectorial plate with a/b = 0-5 and ¢ = 90°. Numbers in
parentheses denote the numbers of system d.o.f.

Type of element 1 2 3 4 5 6 7 8 9 10

Sector Fourier p-element (64) 47-089 68379 103-437 150-982 166-349 189-599 209646 228:652 278386  283:593

Sector finite element (256) 47-089 68-383 103-491 151-307 166:387 189-635 210.865 228718 281-823  283-894

Exact 47-089 68379 103-437 150-982 166-348 189-599 209-646 228:652 278-386  283-593
TABLE 5

Comparison of the frequency parameters Q for the 10 lowest modes of the C-C-S-S sectorial plate with a/b = 0-5 and ¢ = 90°. Numbers in
parentheses denote the numbers of system d.o.f.

Type of element 1 2 3 4 5 6 7 8 9 10

Sector Fourier p-element (168)  93-321 107-567 135-596 178-818 236185 251973 269492 300434 305846 346466

Sector finite element (224) 93-331 107-581 135657 179-142 237-434 252-135 269-655 300-627 309-447  346-861

Exact 93-321 107-567 135-596 178-817 236:183 251973 269-491 300432 305-844  346-461
TABLE 6

Comparison of the frequency parameters Q for the 10 lowest modes of the S—C-S-S sectorial plate with a/b = 0-5 and ¢ = 90°. Numbers in
parentheses denote the numbers of system d.o.f.

Type of element 1 2 3 4 5 6 7 8 9 10

Sector Fourier p-element (132) 70-136 89-857 124-307 172-679 209214 231.009 233-295 268236 304-660 321-563
Sector finite element (240) 70-138 89-862 124-363 173-021 209293 231.082 234-594 268-335 308:328 321-887
Exact 70-136 89-857 124-307 172-679 209214 231.009 233295 268236 304-658 321563
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Convergence of the frequency parameters Q for the 10 lowest modes of the S-S—-S-S sectorial plate with a/b = 0-5 and ¢ = 90° (the whole plate is
discretized into two sector Fourier p-elements) as a function of the number of trigonometric terms M (= N) in each element

TABLE 7

M(= N) 1 2 3 4 5 6 7 8 9 10
1 47096 68437 105-288 176:674 204-600 226-505 264764 265825 539456 361277
2 47089 68-384 103-497 150986 166482 189-601 217-164 229020 285285 358282
3 47089 68-380 103-447 150986 166:353 189-601 210025 228675 278393 283624
4 47089 68-379 103-439 150983 166:352 189-599 209723 283655 278386 283-599
5 47089 68379 103-438 150-983 166:349 189-599 209-670 228653 278386 283595
6 47089 68-379 103437 150982 166349 189-599 209655 228652 278386 283593
Exact 47089 68379 103-437 150982 166-348 189-599 209646 228652 278386 283593
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and S-C-S-S sectorial plates, the sector Fourier p-element is much more accurate than the
16-d.o.f. sector finite element although it has respectively about 75, 25, and 45% fewer
system d.o.f.

Situations may arise in which a sectorial plate is made of two or more different materials
and/or edges which have two or more different boundary conditions. If this is the case then
the plate must be discretized into two or more elements. The applicability of the sector
Fourier p-element to such a case will be shown by considering an S—-S—S-S sectorial plate
with a/b = 0-5, ¢ = 90°, and v = 0-3. In order to see the manner of convergence of the sector
Fourier p-element solution, the sectorial plate is discretized into two identical elements each
with ¢ = 45° and an equal number of trigonometric terms M (= N) is used in both elements.
Inter-element compatibility is achieved by matching the displacements, rotations, and
warps at the nodes and the amplitudes of the trigonometric shape functions at the edges.
Results for the 10 lowest modes are shown in Table 7 along with the exact values. Table 7
clearly shows that a very fast convergence from above to the exact values occurs as the
number of trigonometric terms is increased from 1 to 6 and the values for M = N = 6 are in
excellent agreement with the exact ones.

4. CONCLUSION

A sector Fourier p-element has been presented and applied to free vibration analysis of
sectorial plates. The element is formulated in terms of a fixed number of cubic polynomial
shape functions plus a variable number of trigonometric shape functions. A major feature of
this element is that it can describe the geometry of a sectorial plate exactly and is therefore
suitable for this type of plate. Results of frequency calculations were found for a number of
sectorial plates with various boundary conditions and comparisons were made with exact
and 16-d.o.f. sector finite element solutions. The results of the sector Fourier p-element were
found to converge very quickly to the exact values as the number of trigonometric terms
increased and highly accurate values were obtained with the use of very few terms. When
compared with the 16-d.o.f. sector finite element, the sector Fourier p-element was found to
yield a much higher accuracy with far fewer system d.o.f. The applicability of the sector
Fourier p-element to cases where two or more elements are necessary has been
demonstrated by considering a simply supported sectorial plate discretized into two
identical sector Fourier p-elements and highly accurate values were found with the use of
very few trigonometric terms.
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APPENDIX A: NOMENCLATURE

inner radius

outer radius

thickness

angle between the two bounding radii

mass density

modulus of elasticity

Poisson’s ratio

flexural rigidity [ER3/(12(1 — v?))]

polar co-ordinates

non-dimensional co-ordinates

time

transverse displacement

rotation about 6-axis

rotation about r-axis

warp

strain energy

kinetic energy

coefficients of stiffness matrix

coefficients of mass matrix

coefficients of vector of generalized co-ordinates
number of trigonometric terms in radial direction
number of trigonometric terms in circumferential direction
order of stiffness and mass matrices

natural frequency

frequency parameter (wb?,/ph/D)
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