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1. INTRODUCTION

There are large number of works in the literature on vibrations of combined dynamical
systems consisting of beams or rods to which spring-mass secondary systems are attached.
Some of them with recent dates are given references [1}8]. The common feature of the cited
papers is that the corresponding continuous systems, i.e., primary systems, are made up of
a single beam or rod.

Motivated by the interesting study by Kukla et al. [9] which was published on the
problem of the natural longitudinal vibrations of two rods coupled by many translational
springs, the study published by GuK rgoK ze et al. [10] dealt with a similar system which was
made up of two clamped}free longitudinally vibrating rods carrying tip masses to which
a double spring}mass system was attached as a secondary system across the span. Then, an
alternative formulation of the frequency equation of the same system without tip masses
was given by GuK rgoK ze [11]. Natural longitudinal vibrations of the same system with
n secondary systems via the Green function method was investigated in the study by
Inceog\ lu et al. [12].

The present work is concerned essentially with a mechanical system, similar to that
described in reference [10], but here natural bending vibrations of two Bernoulli}Euler
beams attached with a double spring-mass system are investigated as a counterpart of that
publication.

2. THEORY

The problem to be investigated in the present note is the natural vibration problem of the
system shown in Figure 1. It consists of two clamped}free laterally vibrating
Bernoulli}Euler beams carrying tip masses as the primary system (ps) to which a double
spring-mass secondary system (ss) is attached across the span. The length, mass per unit
length, location of the spring attachment point, bending rigidity and tip mass of the ith
beam are ¸

i
, m

i
, g

i
¸
i
, E

i
I
i
, and M

i
, respectively (i"1, 2). The secondary system consists of

two springs of sti!ness k
1
, k

2
and the mass M. Let the bending displacements of the "rst and

second beams to the left and right of the spring attachment points be denoted as
w
11

(x, t), w
12

(x, t) and w
21

(x, t), w
22

(x, t), respectively, as depicted in Figure 1. z(t)
represents the displacement of the mass M.
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Figure 1. Two clamped}free beams with tip masses to which a double spring-mass system is attached in span.
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The equations of bending motion of the four beam portions are governed by the partial
di!erential equations.
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The corresponding boundary and continuity conditions at the spring attachment points are
as follows:
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Here dots and primes denote partial derivatives with respect to time t and position
co-ordinate x, respectively.
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Using the standard method of separation of variables one assumes that

w
ij
(x, t)"=

ij
(x) cos(u t) (i, j"1, 2), (3)

where =
ij
(x) are corresponding amplitude functions of the beam portions and u is the

unknown eigenfrequency of the combined system. Substituting these into the partial
di!erential equation (1) results in the ordinary di!erential equations
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Here, the following abbreviations are introduced
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where b denotes the eigenfrequency parameter. Assuming that

z(t)"Z cos(u t) (6)

and substituting equations (3) and (6) into equations (2) yields the corresponding boundary
and matching conditions for amplitude functions =

ij
(x) and Z:
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The general solutions of the ordinary di!erential equations (4) are simply
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where C
1j
}C

8j
are 16 integration constants to be evaluated via conditions (7). The

application of these boundary and matching conditions to the solutions (8) and the
amplitude Z yields a set of 17 homogeneous equations for the 17 unknown constants
C

1j
!C

8j
( j"1, 2) and Z. A non-trivial solution of this set of equations is possible only if

the characteristic determinant of the coe$cients vanishes. Upon taking into account that
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vanish, the characteristic equation reduces to the form
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where the corresponding elements are given in Appendix A.
It is worth noting that bM , of which all elements are functions, represents the dimensionless

frequency parameter of the combined system.

3. EXEMPLARY NUMERICAL RESULTS

The complicated frequency equation (9) was solved by using MATLAB version 5.1 on
a PC Pentium III. The "rst 10 non-dimensional frequency parameters are given in Table 1
to allow comparison with other studies related to the same system, that may be made in the
future. This table is based on the numerical values g

1
"g

2
"0)5, a

M1
"a

M2
"2, a

M
"1,

a
k1
"a

k2
"1000 with all other dimensionless parameters set to one.

However, there are many system parameters which can be varied, so it is meaningless to
tabulate the values obtained for various combinations of these many parameters. Instead,
results for three examples are given in a graphical form.
TABLE 1

¹he ,rst 10 non-dimensional frequency
parameters of the system in Figure 1;
g
1
"g

2
"0)5, a

M1
"a

M2
"2, a

M
"1,

a
k1
"a

k2
"1000

From equation (9)

1)07026286
1)55878983
3)30959152
6)33425479
6)81983036
7)46938324
7)92595594

10)66673582
10)74697127
13)40231846
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In all numerical evaluations presented here, the values of some of the non-dimensional
physical parameters are as follows: a

k
"1, a

L
"1, a

m
"1, s"1, and k"d"1.

The "rst example aims to explore the e!ect of the variation of the location of the spring
attachment points on the natural frequencies of the combined system where the mass ratio
a
M1

("a
M2

) is taken as a parameter. At "rst, the attachment point to the second beam is
"xed at g

2
"0)5 and the attachment point to the "rst beam is varied along the beam and

then vice versa. Tip mass ratio and spring sti!nesses are chosen as a
M
"1 and

a
k1
"a

k2
"1000, respectively. The large value of a

k1
"a

k2
implies that the investigated

system has a very rigid secondary system. As expected from the symmetry of the system, the
same curves are obtained in both situations, but for the sake of briefness only one of the
"gures is placed here. The results are shown in Figure 2.

As is shown in the "gure, all the dimensionless frequency parameters diminish as
a
M1

("a
M2

) parameter becomes larger. It seems that the reductions in the "rst two
frequency parameters are move obvious.

However, the fundamental frequency parameter decreases highly for small values of
a
M1

("a
M2

) while g
1
gets larger. It seems that the fundamental frequency parameter is not so

sensitive to the variation of g
1
.

The next example deals with the e!ect of the variation of the mass M of the secondary
system on the eigenfrequencies of the combined system. The spring attachment points
g
2
"g

1
"0)5 are chosen. The mass parameter a

M
is varied in the range 0}20. The results

are shown in Figure 3. The fundamental and the third non-dimensional eigenfrequencies
diminish continuously as a

M
gets larger, whereas the other two frequencies remain constant.
Figure 2. The "rst four dimensionless frequency parameters of the system shown in Figure 1 as a function of g
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Figure 3. E!ect of the variation of the dimensionless mass a
M

of the secondary system on the dimensionless
frequency parameters of the system shown in Figure 1 (g
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It is also interesting to note that the fundamental frequency changes linearly while the
secondary system mass becomes larger. The behavior of the curves can be explained as
follows. The physical system corresponding to the selected parameter values is a symmetric
system. For this reason, the mass M in between remains stationary in the second and fourth
modes. As a result, eigenfrequencies are not a!ected during variations of this mass. On the
other hand, in the "rst and third modes the mass M participates in the vibration, and
naturally its increase decreases the related frequency values.

The last example deals with the e!ect of the variation of the tip masses on the
eigenfrequencies of the combined system, where a

M1
"a

M2
is taken for the sake of

simplicity, and, a
M
"1 and g

2
"g

1
"0)5 are chosen. The results are shown in Figure 4. The

curves indicate clearly that the eigenfrequencies of the system decrease as the tip of masses
become larger, as expected.

4. CONCLUSIONS

The subject of this note is the lateral vibration problem of a combined system consisting
of two clamped}free Bernoulli}Euler beams, coupled by a double spring-mass system
attached to them in-span. After formulating the complicated frequency equation of the
combined system, the e!ects of the variation of some parameters upon the natural
frequencies were investigated through numerical examples.



Figure 4. E!ect of the variation of the dimensionless tip masses a
M1

and a
M2

of the secondary system on the
dimensionless frequency parameters of the system shown in Figure 1 (g
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APPENDIX A

The non-zero elements of the frequency determinant in equation (9) are as follows:
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