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1. INTRODUCTION

The recent study [1], published by Inceoglu and Giirgdze on the problem of the natural
longitudinal vibrations of two rods coupled by several double spring-mass systems,
constitutes the motivation behind this note. It is concerned with the transverse vibrations of
a system consisting of two clamped-free Bernoulli-Euler beams carrying tip masses to
which several double spring-mass systems are attached across the span. The main purpose
of the study is to derive a formulation for obtaining the natural frequencies of the system
described by using Green’s function method.

The special case of a symmetrical system can be a model of a suspension bridge tower for
studying its bending vibrations, among other applications.

2. THEORY

The problem to be dealt with in the present study is the natural vibration problem of the
system shown in Figure 1 i.e., a laterally vibrating system consisting of two clamped-free
beams carrying tip masses to which several double spring-mass systems (secondary system:
ss) are attached across the span.

However, to aid the explanation on the one hand and to clarify the physics of the problem
on the other, Green’s function method will be first applied to one ss, and then it will be
generalized to n ss.

2.1. THE CASE OF ONE ss, n = 1

The combined system, which has already been studied in reference [2] and is to be
investigated initially, consists of two clamped—free beams carrying tip masses to which
a double spring-mass system is attached in span, as seen in Figure 2. L;, m;, n;L; and E;I;
denote the length, the mass per unit length, the location of the spring attachment point and
the lateral rigidity of the ith beam, respectively (i = 1, 2). The secondary system consists of
two springs of stiffnesses k;, k, and the mass M. Further, the bending vibration
displacements of the first and second beams are denoted as wi(x,t) and wj(x, 1),
respectively, and z(t) represents the displacement of the mass M.

Assuming the spring forces, which are generated by the secondary system, as singular
effects for both of the beams, the bending vibration equations of the system can be written in
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Figure 1. Two clamped-free laterally vibrating beams carrying tip masses to which several double spring-mass

systems are attached across the span.

the following form:

4 2
Wi(.x, [) + m; Ew)

o wi(x, 1) = k;[z(t) — w;(n; L;, 1)16(x — n; L;),

EiIiF i=1,2.
X

The motion of the secondary mass is governed by

MZ(t) = — ky[2(t) — wi(ny Ly, 0] + ka[wa(n2 Ly, 1) — 2(0)],

(M

@

where 8(") denotes the Dirac delta function and dots and primes denote partial derivatives

with respect to time ¢ and position co-ordinate x respectively.
Using separation of variables according to
wi(x, t) = Wi(x)coswt, i=1,2,

z(t) = Z cos wt,

)

where W;(x) and Z are the corresponding amplitude functions and w is the unknown
eigenfrequency of the combined system, and putting them into equations (1) and (2),

WY (x) — B* Wi (x)

ks {kz[Wz(hz) — Wi(hy)] + My? Wi (hy)

= d(x—nh
Elll kl + k2 — MS(,O2 } (x 1)’

WY (x) — 1B Wy (x) ka {kl[WI (hy) — Wa(hy)] + Myw® Wy(hy)

- S(x — h
Ezlz kl + kz — ]\/Is(,l)2 } (X 2)’

are obtained, where

h;

n;L;,

4)
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Figure 2. Two clamped-free laterally vibrating beams carrying tip masses to which a double spring-mass system
is attached across the span.

Using the non-dimensional parameters

X - W — ki kz Ms
L= W. = — = AL = s =—, =
él Li, i Li, ﬂ B 1> Ock, ELI,/L? A kl Oy m1L1
L - N
OCL:L_j’ 5=:uaL5 () éa_é’ l=192 (6)

the above equations can be reformulated as

kY kq LWZ 2) — VI/I 1 M_4Wl 1
17 <4 D4 117 k 1 L _1 1) — _2 2 k k M_4W2 2
W5V<52)—5454W2(52)={“2[( P lan) +Zﬁ7(i;:°;ﬁiﬁ“ PR o, —
)

For the solution of the above differential equations, Green’s function method will be
employed. For the sake of completeness, the derivation of the corresponding Green’s
function is given in Appendix A. Therefore, via an analogy with (A3), ie., using
Eins ByGi(E1, my), 1 for the first beam and &5, 175,60 f,G, (&5, 15), 1 for the second beam,
instead of x, &, B, G(x, &), L respectively, Green’s functions, which correspond to the
combined system, can be written as follows:

Gi(S1,m) ﬁ3{(p4 (BEy = m)H(Er — ) + BG"(0,1)@3(BE1) + G(0, 1) Pu(BEy)}

G(&5,12) = 5= { Py (OB (E5 — M) H(E2 — 12) + OB G(0, 15) D3 (9B E5)

2(5ﬁ

+ G"(0,12) Pa(SBES)) @)



LETTERS TO THE EDITOR 373

where
®,(x) =coshx + cosx, @,(x)=sinhx + sinx,
®;(x) = coshx — cosx, @4(x)=sinhx — sinx. )

Here H(") denotes the Heaviside unit step function. Now, the displacements of the points
¢, =n, and &, =1, can be given in the form

_ W _ W _4W
i = G {2 0,

- o, [(1/0t) Wi (171) — Wa(072)] + (o, /o, ) otas B Wa (112)
1472 =G J 1 2 Liud . 10

2(12) 212, 112) { [1+ oy — (“M/“kl)ﬁ4] (10)
These equations represent a set of two homogeneous equations for the solution of the
unknowns W, (n,) and W,(n,). A non-trivial solution exists when the determinant of the
coefficient matrix vanishes. This condition in turn leads to the following frequency equation:

(1—G,Cyy) —GCy,
=0, 11
’—Gzcm (1 - G,Cyy) (b
where,
C.. = [“Mﬁ4 — kaakl]_ C., = Oy Ok 0L, _
MU 4 o — (ofou) BT T+ oy — (/on) BT
C.. — OCkZ/OCL _ _ (Osz/akl)aME4 - 0552
U+ o — (/o) BT 22+ o — (/o) BT
(;ié Gi(nia ni)a l = 1’ 2 (12)

The solution of equation (11) yields the desired non-dimensional frequency parameters f§ of
the combined system.

2.2. GENERALIZATION FOR THE CASE OF SEVERAL ss’s n = n

Consider a system of two beams that are carrying tip masses and coupled by » ss’s in such
a way that n points of the first beam of co-ordinates #14, 712, ...,71, are connected to
n points of co-ordinates 7,1, /22, --- , 2, belonging to the second beam, by using springs of
stiffnesses ky 1, k2.1, k1,2, K2 2, ..., k1 4, k2, and the masses M; , M, ..., M, made up of ss’s,
as shown in Figure 1.

Considering equations (7) representing the governing differential equations of the
combined system having one ss, i.e. n = 1, can be reformulated for the case of several ss’s, i.e.
n =n, as below:

o, o, Lo, W (125) — Wi(n1)] +_05M_,ﬁ_4 Wi (1)
[1+ o, — (OCM_,-/O(k,h,-):BAL]

WI1V(51)—E4Wl(51)= Zn: { }5(51 —’11;‘),
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WY (&) — 6*B*Wa(Ey)

_ i {“k“[(l/%)wﬁ (n1j) — Wz(’lz;’)] + ((xkzvj/akl'j)'xMjﬂ_“.VVZ(an)

3(&; —mpy). (13
[1 + o, — (oar, /o, ) B*] } (&3 — 125 (13)

Similarly, for this case, equations (10) can be rearranged as

o, O [0 Ws(n2) — Wi(ny)] + “M,ﬁ4 W (7’/1;')}

Wi(&y) = jgl G1(1, 1) { [1+ O, — (OCM,-/OCkl,,-)gﬂ

O‘kz,,-[(l/(xL) 4 (1) — Wz(i/lzj)] + (OCkZJ_/O(ij)OCMf,g“' Wz(”/Zj)}. (14)

szz=nszzy 2;‘{ 3
(¢2) jgl (2, 112)) [1 +0(k,-_(<xMj/‘xk1,j)ﬁ4]

For simplicity, these equations can be written in the following form after some
arrangements:

Wié) =) [(C(llj)V[_/l(nlj) + C(ZIJ-)VT/z(Vlzj))Gl(iu n1j)1s
i=1

Wi(&) = ). [(C(lzj) Wi(ny) + C(ZZJ-)Wz(sz))Gz(fzs n2)1, (15)
i=1

where the following abbreviations are introduced:

o B — oot
) = Loar, B K, kw]_4 ’ o) =
L1+ o, — (oar, /ou, ) B

OckjaijOCL
[1+ oy, — (“Mj/“kl.,)ﬁ_‘l],

Ofk“/OCL (Ockz_j/ocku)OCMj/?4 — Ok,

Cc® = _ CcP = 2
Yo+ o, — (ota, /o, ) BT 4+ oy, — (ota, o, ) BT
ol = @ o = Msj ol = kl’j oL = kZ,j
i ky M myLy . E,1,/LY’ ¥ E,I,/L3’
L,
=—, j=12,...,n 16
o, L, J n (16)

Equations (15) represent displacement fields on the axes &; and &,. In order to find the
displacements at all the attachment points along the axes,

C1 = N1t Mizs o> Mims

€2 > M21sMa2s wev s Mams (17)
have to be substituted in equations (15). Thus, 2n equations are obtained for the 2n

unknowns W;(n;;) and Wi(n,;), j =1,2,...,n.
Using matrix notation,

Ax =0 (18)
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can be written, where

x' = {Wl (11)s Wl(ﬂ12)> ) W1(’11n)IWz(’721), Wz(’?zz), ) W2(’72n)}>

In _ C(l) | (1)
A:[____l_%_f_z__]' (19)

I,:n X n unit matrix,

[Cgl)]ij = C(li-)G.(l) [C(zl)]ij = C;?GFI) [C(lz)]ij = C;ZI-)G-(Z) [ng)]ij = C;ZI-)G.(Z)

ij ° ij ° ij ° ij °
Gi;n)é Gm(ﬂmi’ 77m;), la] = 1, 29 e, m= 1) 2 (20)

Here, [];; denotes an element of the corresponding matrix located at the ith row and the
jth column.

A non-trivial solution exists when the determinant of the coefficient matrix A vanishes.
Thus, the following frequency equation can be obtained:

det(A) = 0. (21)

The solution of equation (21) yields the non-dimensional frequency parameters f of the
system in Figure 1.

3. NUMERICAL RESULTS

This section is devoted to the numerical evaluations of the formulae established in the
preceding sections. As an example, the n = 1 case, i.e., one ss case is considered. Normally,
the classical approach of deriving the frequency equation based on the boundary value
problem formulation is fairly complicated even for the case of one ss which is presented in

TABLE 1
The first 10 dimensionless eigenfrequency parameters 5 of the system in Figure 2,
ie.n=1"

From equation (21) From equation (B1)
1-:07026286 1-:07026286
1-55878983 1-55878983
3-30959152 3-30959152
6-33425479 6:33425479
6:81983036 6:81983036
7-46938324 7-46938324
7-92595594 7-92595594

1066673582 1066673582
10-74697127 10-74697127
13-40231846 13-40231846

Ty =1, =05, 00, = 0tar, = 2, 04, = 0, = 1000 with all other dimensionless parameters set to one.
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reference [2]. Practically, as the number of the ss exceeds one, the solution of the problem
becomes nearly impossible and extremely tedious. Since the solution of the problem for
a number of the ss’s n, does not exist in the literature to the best of our knowledge, the only
way to prove the validity of the present formulation is to compare the present results with
obtained using a classical approach for one ss, i.e. n = 1, in Figure 2.

In Table 1, the first 10 dimensionless eigenfrequency parameters 8 of the described system
are given for the numerical values, taken from reference [2], ny =, = 05, apr, = oy, = 2,
o, = o, = 1000 with all other dimensionless parameters set to one. The values in the first
column are the roots of equation (21) derived via Green’s function method, whereas those in
the second column are values from the solution of equation (B1). It is seen clearly that the
values in the columns are identical and justify the lengthy and complicated expressions
obtained by the application of Green’s function method.

4. CONCLUSION

This study is concerned with the bending vibrations of a combined system consisting of
two clamped-free beams carrying tip masses to which several double spring-mass systems
are attached across the span. Using Green'’s function method, the frequency equation of the
system with n ss’s is established. Then in order to prove the validity of the expressions
derived, for a special system with n = 1, the results are compared with those obtained on the
basis of a boundary value problem formulation. The two results are in excellent agreement
which clearly indicates the validity of the formulae obtained via Green’s function method.
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APPENDIX A

The corresponding Green’s function for the clamped-free beam carrying a tip mass, is the
solution of the differential equation

d*G(x, 9

dx*

—B*G(x, ) =8(x — &) (A1)

subject to the following boundary conditions:

G0, =G'(0,8) =0 at the clamped end,
G'(L,§) =0 (A2)
G"(L, &) + AB*G(L, &) =0 at the free end.

where 4 denotes the ay,, for the first beam and a,,, for the second beam.

_ M, _ M,

&M = OUnp, = .
Yomy Ly ' myL,
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The solution G(x, &) satisfying the differential equation (A1) is Green’s function that is
looked for. Thus, G(x, &) can be found as

1
6. &) = 35 10u(lx — DH(x = &)+ BG"0. 0B + G0, BB, (A
where
i e -0 Lo 0)
0.6 = B2 . g :
_ ARBL(BL — &) — By(BL — &) By(BL) + AP4(BL)
1
djl L — _(DZ L — ¢
60,91 (L) §O:(B(L— ) |

BP4(BL) + AB*@5(BL)  — APPL(B(L — &) — P1(B(L — <)

A =2[1 + cosh fLcos fL + Af(sinh L cos fL — sin fL cosh SL)].

APPENDIX B

With the boundary value problem formulation, the characteristic equation of the system
with a single ss, i.e. n = 1, can be given as follows [2]:

R, R, R;3 Ry, Ris Rg 0 0 0 0 0 0 0
R,y Ry, Ryy Ryy Rys Ryg O 0 0 0 0 0 0
Ry, Ry Ryy Ry Rys Rye O 0O 0 0 0 0 0
Ry Riy Rius Ry Ris Ryg O 0 0 0 0 0 Ryis
RSI 0 R53 0 0 0 0 R58 0 RS 10 RS 11 RS 12 RS 13

0 0  Rg; Res Reo Reio Reir Reia O
0 0 0 0 0 R;; Rig Ryo Ryyo Riyy Rypn O
0 0 0 0 Rg7 Rgs Rgo Rgio Rgir Rgia O
0 0 0 0 0 Rog; Ros Roo Roio Roir Roiz Rois
0 Ripo 0 RypsRiosRi0s O 0 0 0 0 0 0
0 0 0 0 0 0 Riyzg 0 Rypio Rizan Ripaz 0
0 0 Ry;4Ri55R;6 O 0 0 0 0 0 0
0 0 0 0 0 0 Ryss 0 Rysio Ryzar Rizyz 0

(BI)

The non-zero elements of the frequency determinant above are as follows, where f3 is given
in (6):

Ry = Sin(ﬁ_’h) - Sinh(ﬁ_nl)a Ry, =— Sin(ﬁnl)o

Rz = COS(B”Il) - COSh(E”Il), R4 = — cos(fn1),
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Ris = —sinh(fny), Ry = — cosh(fny),

Ryy = cos(finy) — cosh(Biy),  Ray = — cos(fin),

Ry3 = —sin(Biny) —sinh(Bin1),  Ryq = sin(fiy),

Rys = —cosh(Bm), Ry = —sinh(fn,),

Ryy =sin(Bn) +sinh(Bn)).  Raz = —sin(Bm),

Ry3 = cos(Piy) + cosh(Biy),  Rsq = — cos(Bin),

Rys =sinh(Byy), Ry = cosh(fiy),

Ryy = cos(Bny) + cosh(Biy) + (o, /B*)(sin(By) — sinh(Byy)),  Raz = — cos(Biy),
Ry3 = —sin(Bny) + sinh(Biny) + (o, /B)(cos(Bni) — cosh(Bn1),  Raa = sin(fiy),
Rys =cosh(fni),  Rae=sinh(fn1),  Raiz=— oy /B

Rsy = (o, JooBH)Gin(Biny) — sinh(Bn1)), Rss = (o, /o f*)(cos (1) — cosh(Biy)),
Rsg = (ou, o4 /on ) sin@p),  Rs 1o = (o, % /otae f*) cos(sB),

Ry = (o, /o fY)sinh(WB), R 1z = (o, /ota f*) cosh (¥ ),

Rsys=1— oy (o + 1)/op f*,

Re; =sin(yf) —sinh(@B),  Reg = —sin(yf),

Reo = cos(yf) — cosh(B),  Re,10 = — cos(y/),

Rg 11 =—sinh(Yf), Rz = — cosh(yf),

R;7 = cos(yf) — cosh(Yf),  Rsg = — cos(y/fp),

R = —sin(y/f) —sinh(Yf),  Ry.10 =sin(yp),

R; 11 =—cosh(yf), Ry, = —sinh(yp),

Rg; =sin(yf) + sinh(f),  Rgg = —sin(yf),

Rgo = cos(f) + cosh(Yf),  Rg 10 = —cos(¥/p),

Rg 1y =sinh(f),  Rg > = cosh(yp),

Ro7 = cos(B) + cosh(yf),  Rog = — cos(Yf) + (o, /0> *)sin(yp),

Rgg = —sinh(f) + sinh(@B),  Ro,10 = sin(Yp) + (o,/0° B°) cos(yfp),

Ro,11 = cosh(Yff) + (o,/0° ) sinh (W), Ro,1z = sinh(Yff) + (ou,/0°B) cosh(p),

Ro 13 =— ak2/5353,
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Rio, = sin(ﬂ_), Rio.4 = cos (), Ryo,5s = — sinh(f), Rio,6 = — cosh(p),

Ry 5= sin(gg), Rii10= COS@B): Rij11=— sinh(gg), Rij12=— COSh(SE),

Ry, =~ Cos(ﬁ_) + &Mll?sin([?), Riz4= Sin(ﬁ_) + &Mlﬁ_cos(ﬂ_)a
R;, 5 = cosh(B) + &MIESinh(E)a Ry, =sinh(f) + &MIECOSh(ﬁ_),

Oy, 0 f5in(d ), Ri3.10 = sin( f) + dy, 0 fcos(0 ),

_l’_
Ry311 = cosh(8f) + dy,0Bsinh(0f),  Rys 12 =sinh(3f) + ay,d B cosh(dp).
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