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A calibration method for input impedance sensors which permits an accurate
determination of the calibration parameters is presented. The method is based on the
measurement of two closed tubes of di!erent lengths whose propagation constant is not
required to be accurately known. This method is shown to be applicable to most of the
impedance sensors in the literature and is extended to transfer impedance calibration which
is needed for multi-post characterization. The method is applied to an impedance sensor
using a half-inch microphone cartridge as a source of volume velocity. The attenuation
constant of a straight tube is measured and shown to be less than 3% larger than results
derived from theory of viscothermal dissipation. As an example of two-port
characterization, the calibrated sensor, complete with a microphone for transfer impedance
measurement, is used for the measurement of side hole parameters.
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1. INTRODUCTION

Calibration of impedance measurement set-ups has been the subject of very few papers
but has been discussed brie#y in some papers [1}7]. Yet this is a crucial step to reach a
high level of accuracy. Di!erent methods can be found in the literature which are often
limited to a partial determination of the calibration parameters. For analogue devices,
mostly only the "rst order response (see reference [8] for de"nition) is determined (see for
example references [6, 9]). For multi-microphone techniques mostly only the relative
response of the microphones is calibrated [10}14] and sometimes the wave constant in the
tube between the microphones is determined. On the other hand, Gibiat and LaloeK [3]
propose a complete calibration method for impedance sensors with three known loads
which leads to a large number of calibration parameters (three complex parameters for each
frequency).

In the present paper, a calibration method is proposed which was "rstly designed to
complete and improve the calibration of impedance sensors with volume velocity sources
[5]. The aim of the proposed calibration procedure is to obtain an accurate calibration with
a reduced number of calibration parameters. The proposed method is an improvement of
the one-tube method described in Part I. From a rough calibration using this method a "rst
evaluation of the reduced input impedance of a long tube is obtained which seems to be little
di!erent from the theory. This calibration may be considered to be su$cient but calculating
the hyperbolic arctangent function of both experimental and theoretical impedance
emphasizes the di!erence between the two curves (Figures 1 and 2). The result issued from
experiment can be used as an error function. It is shown, in section 2, how well chosen
0022-460X/01/230441#19 $35.00/0 ( 2001 Academic Press



Figure 1. Experimental value of a"Re[arctanh(Z
e
/Z

c
)]/l for a closed 1m tube of radius 0)01m versus reduced

frequency ka after an incomplete and inaccurate calibration.

Figure 2. Theoretical value of the attenuation constant a of a closed tube of radius 0)01m versus reduced
frequency ka.
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calibration parameters can be related to this error function and, in section 3, how these
parameters can be determined. A second, short, tube is measured to limit the errors due to
the temperature measurement. This allows the determination of the propagation constant
of the tube. To allow multi-port characterization, the calibration procedure is extended to
transfer impedance measurements (section 4). In section 5, the calibration is applied to
a sensor using a capacitive microphone cartridge as a source for input and transfer
impedance measurements [15]. An application to the determination of the series and shunt
inductances of the equivalent circuit of a side hole is presented (section 6).

2. THEORY

As discussed in Part I, an impedance set-up can be de"ned as a system with two entries
whose signals e and u are linearly related to pressure P and volume velocity; at the input
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of the measured system:
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The matrix (m
p

n
q
) which relates the two signals to the measured quantities is the &&response''

matrix.
In this section it is "rst shown, as an example, how calibration errors in#uence the

measured impedance of a calibration tube. By analogy with this example, an expression for
the &&response matrix'' of the sensor involving four parameters whose e!ects can be
separated is given (equation (10)). Finally, an expression for the arctangent of the measured
impedance as a function of the calibration parameters, on which the calibration method is
based, is derived (equation (14)).

2.1. CASE OF TWO IDEAL SENSORS ON A STRAIGHT TUBE

Consider a sensor made with two ideal transducers: one for pressure and one for volume
velocity. If both are located at the reference plane, the representative matrix of the sensor is
given by
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where R
e

and R
u

are the response of the pressure transducer and the volume velocity
transducer respectively.

With such an ideal sensor the measured impedance Z
mes

is given by

Z
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If the calibration of the transducers is not perfect there is a slight di!erence between the
estimated value of R

e
and R

u
and their exact value. This leads to

Z
mes

"XZ, (4)

where X is a complex number (possibly frequency dependent) which is, if the calibration is
not too poor, close to unity. This, applied to a tube of length ¸ closed with an in"nite
impedance (see Appendix B), leads to

Z
mes

"XZ"XZ
c
coth (C¸). (5)

Assuming X to be a real number larger than unity, the maxima of Z
mes

are larger than the
maxima of Z (&&resonances'') which could be interpreted as the consequence of a lower
damping ((a¸)

mes
:Z

c
/Z

mes
"Z

c
/(XZ):a¸/X). Also, the minima of Z

mes
are larger than

the minima of Z (&&antiresonances'') which could be interpreted as the consequence
of larger damping ((a¸)

mes
:Z

mes
/Z

c
"XZ/Z

c
"Xa¸). When plotting (a¸)

mes
"Re(arc-

tanh(Z
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/Z
c
)) versus frequency the curve appears to oscillate between a¸/X (resonances)

and Xa¸ (antiresonances). In the same way, if X is complex the argument of X will imply
oscillations on (k¸)

mes
"Im(arctanh(Z

c
/Z

mes
)).

Consider now that both transducers are on a straight tube whose characteristic
impedance and propagation constant are Z

c
and C, respectively, but not exactly on the same



Figure 3. Schematic drawings and notations for an impedance sensor with pressure and volume velocity
transducers at di!erent abscissae.
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plane. Pressure P
mid

and volume velocity;
mid

at an equal distance ¸
1
from both transducers

are related to pressure P
e

and volume velocity ;
u

on the transducers by the following
equations (see Figure 3):

P
e
"cosh (C¸

1
)P

mid
#Z

c
sinh(C¸

1
);

mid
,

(6)
;
u
"!sinh(C¸

1
)P

mid
/Z

c
#cosh (C¸

1
);

mid
.

Setting the origin at equal distance from both transducers leads to the following response
matrix of the transducer:
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Measured impedance Z
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e
/;

u
"R

e
e/R

u
u of a closed tube of length ¸ is then given by
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Measured resonance frequencies (frequencies for which DZ
mes

D is maximum) correspond to
a length ¸!¸

1
and, similarly, measured antiresonance frequencies (frequencies for which

DZ
mes

D is minimum) correspond to a length ¸#¸
1
. Consequently, when plotting
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"Im(arctanh(Z
c
/Z

mes
)) versus frequency the curve appears to oscillate between

k(¸!¸
1
) (resonances) and k(¸#¸

1
) (antiresonances).

Finally, if the reference plane is considered to be at a distance ¸
2

from the mid point
between the two transducers (see Figure 3), the response matrix is given by
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It is easy to understand that changing the reference plane does not induce oscillations
because it simply adds k¸

2
to Im(arctanh(Z

c
/Z)).
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2.2. RELATION BETWEEN THE AMPLITUDE OF THE OSCILLATIONS AND

THE CALIBRATION PARAMETERS

Equation (9) is interesting because it separates errors on the location of the transducers
from transducer responses. It can be generalized to every transducer, ¸

1
and ¸

2
being

considered as complex and frequency-dependent quantities. Finally, the representative
matrix can be arbitrarily written (although this is justi"ed a posteriori) as follows:
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The term 1/Jcos 2d has been introduced to compensate for the determinant of the second
matrix of the right term which is not equal to unity. The response matrix and its inverse
matrix have then a similar form.

The aim is now to obtain the calibration parameters R
e
, R

u
, b and d. For a straight closed

tube of length ¸ terminated by the admittance >
t
, the input impedance is given by:

Z"Z
c
coth(C¸#arctanh(Z

c
>
t
)) where >

t
is the termination admittance (see Appendix B).

Setting H"e/u and z
r
"Z/Z

c
and using equation (10), it can be rewritten as
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For the calibration tube, z@
r
is given by

z@
r
"coth(C¸@) with C¸@"C¸#arctanh(Z

c
>
t
)#b. (12)

KZ
c
is obtained from a "rst determination of R so that g is not too large. In practice, it is

su$cient that the magnitude of K is such that the minima of H/KZ
c
expressed in dB are

negative and the maxima are positive and in the same manner the minima of the argument
of H/KZ

c
are negative and the maxima are positive. The parameter b is complex and

frequency dependent. As the real part of b/C can be interpreted as a length correction, the
choice of the origin of the longitudinal co-ordinate in#uences the value of this term.

It can be demonstrated (see Appendix C) that H can be approximated, if g@1 and d@1,
by

H:KZ
c
coth [C¸@!d cosh (2C¸@)!1/2g sinh (2C¸@)], (13)

where

C¸@"C¸#arctanh(Z
c
>
t
)#b.

Writing C¸@"jk¸@#a¸@ and assuming that a¸@@1 (this approximation is not necessary
but is used here for clarity; exact equations (C1a) and (C1b) are given in Appendix C) it can
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be written that

ReAarctanhA
H

KZ
c
BB:a¸@!Re(d) cos (2k¸@)#

1

2
Im(g) sin (2k¸@) (14a)

and
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2
Re(g) sin (2k¸@) . (14b)

Periodic oscillations appear in plotting the real and imaginary parts of arctanh(H/KZ
c
)

against frequency (see Figure 1 for the real part). The amplitude of these oscillations is
proportional to d and g and their period, in the frequency domain, is related to the
frequency and to the equivalent length of the tube ¸@.

3. DESCRIPTION OF THE METHOD

After a "rst approximate calibration and the measurement of a long closed tube the
quantity H/KZ

c
(crude measured impedance) is obtained. Then real and imaginary parts

of the hyperbolic arctangent are calculated (equations (14a) and (14b) in which oscillations
can be detected. The complex amplitude of these oscillations can be determined using
a synchronous demodulation. This consists of multiplying these quantities by estimates of
sin (2k¸@) and cos(2k¸@) and then using a low-pass "lter. The real part of d and the
imaginary part of g are then obtained from equation (14a). The imaginary part of d and the
real part of g are obtained from equation (14b). If a¸@ is not small this is more complex but it
can be solved. The low-pass "lter will be e$cient if at least one period of the oscillations is
considered (this is su$cient because an iterative process is used). So the number of
calibration points is proportional to the length ¸ of the tube. This is especially important for
low-frequency calibration because the "rst calibration point will correspond approximately
to the "rst resonance frequency of the tube f"c/2¸. For example, with a 2m tube the "rst
calibration point is obtained for approximately 80 Hz. The estimate of k¸@ can be obtained
from a low-pass "ltering of the imaginary part of the hyperbolic arctangent of H/KZ

c
. As

equation (13) is an approximation assuming d to be small compared to unity and as
synchronous detection, because of the windowing associated to the low-pass "lter, does not
give the exact amplitudes, parameters obtained are not exact. An iterative process is then
needed: from the "rst evaluation of d and g, a new evaluation of the reduced impedance
z@
r
(H/KZ

c
being the "rst evaluation) is deduced, from which corrective terms Dd and Dg are

deduced which, added to the previous evaluation of d and g, give their new evaluation and
so on. The process is stopped when Dd and Dg are small enough. In practice, 10 steps are
enough. At the end of the process an estimation of parameters d and g is obtained.

The parameter b remains to be determined. It could be deduced theoretically from the
theoretical evaluation of the wave constant C

theo
and of the hyperbolic arctangent of the

reduced termination admittance Z
c
>
t
: b"arctanh(z

r
)!C

theo
¸!arctanh(Z

c
>

t
). For a rigid

wall, Z
c
>

t
can be ignored to a good approximation. This method may not be accurate

enough in practice because the theoretical determination of the wave constant depends on
the temperature. So an error in the temperature evaluation implies an error in
b proportional to the tube length. For example, using a tube of length ¸"1m, a 13C error
in temperature implies an error of 1)7 mm on the equivalent length correction Re(b/C); that
is an error of 1)7 mm on the reference abscissa of the measurement. For some measurements
this error may be too large. Another solution is to measure a short tube of length l and the
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same diameter. The parameter b is then deduced by writing

b#arctanh(Z
c
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t
)"

¸ arctanh (z@
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(l))!l arctanh (z@
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¸!l
, (15)

where z@
r
(¸)"coth [C¸#arctanh(Z

c
>
t
)#b] and z@

r
(l)"coth[Cl#arctanh(Z

c
>
t
)#b]

are the experimental evaluations of z@
r
for tubes of lengths ¸ and l respectively.

It is not necessary to measure the absolute value of the temperature, but its stability must
be checked during the measurements. Nevertheless, the accuracy is better than with the "rst
method even if some undetected temperature #uctuations occur during measurements. For
example, a 13C change in temperature between the two measurements implies an error in
the equivalent length correction Re(b/C) of 0)15 mm for ¸"1m and l"0)085 m.

It must be pointed out that the determination of parameter b implies that the termination
admittance is known. As this admittance is small for a closed tube it can be replaced by its

theoretical evaluation for a rigid wall, namely Z
c
>

t
"9)6]10~6Jf (1#j) at 203C, with

good accuracy ( f is the frequency in Hz; see for example reference [16] p. 242 with
numerical values from reference [9]). The imaginary part corresponds to an equivalent
length of 0)05 mm for a 10 mm radius tube at 100 Hz and the real part is equivalent to the
dissipation on a length of 3 mm for a tube of 10 mm radius. Thus, it can be understood that
assuming Z

c
>

t
"0 is su$cient for most applications.

This method also permits the determination of the propagation constant which is given
by

C"

arctanh(z@
r
(¸))!arctanh(z@

r
(l))

¸!l
. (16)

As an application the measurement of the wave constant of a cylindrical tube is given in
section 5.2.

To achieve the calibration, the function K is deduced from KZ
c

if Z
c

is known. The
assumption here is that if the di!erence between the theoretical and the experimental wave
constant C is small then the di!erence between the theoretical and the experimental
characteristic impedance Z

c
is also small. Thus, the theoretical expression of Z

c
can be used.

This assumption seems reasonable because both C and Z
c
are related to the same quantities:

C"JZ
v
>

h
and Z

c
"JZ

v
/>

h
where Z

v
and >

h
are, respectively, the series impedance and

the shunt admittance per unit length (see for example reference [9]).
Since the calibration procedure gives at most only one calibration point for each

resonance frequency of the tube, the question is how to deduce a calibration function from
the discrete determination of the calibration parameters. A linear interpolation between two
successive calibration points can be done but it is more e!ective to "t the points with
a polynomial function or with a function deduced from a theoretical modelling of the
calibrated sensor. This last solution is probably the best way. In the present work, because
a complete theoretical model is not available, a polynomial "t of the parameters is chosen. It
is done at every step of the iteration process because it has been found that results are better
than when the "tting is done at the end of the process. It is clear that the polynomial "tting
will be e$cient only if calibration functions vary slowly with frequency. This limitation does
not exist if "t functions are deduced from a theoretical modelling of the sensor. However, if
the "t functions are not e$cient, remaining oscillations will appear on the real and
imaginary parts of the hyperbolic arctangent of H/KZ

c
.

The main advantage of the method is that it is not necessary to know exactly the wave
constant and the temperature. Speci"cally the speed of sound, which is very dependent on



448 J.-P. DALMONT
the temperature, and the attenuation constant, which may depend on the wall
characteristics, need not be known. A limitation is that the calibration cannot be achieved
below the "rst resonance frequency of the main calibration tube. For a low-frequency
calibration very long tubes are needed which is inconvenient. The calibration procedure is
not absolutely general because parameters b and d should not be too large. However, it can
be used for most of the known volume velocity source set-ups and also for the
two-microphone method (see Part I) and probably for many other techniques.

4. CALIBRATION PROCEDURE FOR TRANSFER IMPEDANCE MEASUREMENTS

The measurement of a N-port is classically done with N impedance sensors "xed on each
port of the element to be measured. For a N-port N(N!1) transfer functions are needed.
Besides calibration of each impedance sensor the relative response R

ei
/R

uj
of pair of

transducers of two di!erent ports i, j is also needed. A method is now presented based on the
measurement of the transfer impedance of a tube which allows the calibration of this
relative response. Considering two given ports 1 and 2, the four signals e

1
, u

1
, e

2
, u

2
of the

two impedance sensors are linearly related to the transfer matrix by the relation:
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where
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n
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p
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B

are the calibration matrices of the two sensors and

A
A

C

!B

!DB
is the transfer matrix of the measured element using a symmetrical orientation for the ports
(see Appendix A).

To determine the calibration parameters a straight tube of length ¸ is placed between the
two sensors.

Using equation (10) for both ports 1 and 2, it can be derived, after setting u
2
"0, that
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with z@
1r
"coth(C¸#b

1
#b

2
#d

2
), the transfer matrix being given by

A
A

C

!B

!DB"A
coshC¸

sinh C¸/Z
c

!Z
c
sinh C¸

!coshC¸ B . (19)

The left-hand side of equation (18) is similar to equation (10) except that the term tanh d
1

is not present in the numerator. However, a procedure similar to the previous one can be
applied to (e

2
/u

1
cosh(C¸#b

1
#b

2
#d

2
) with only two calibration functions instead of

three. Thus, only a long tube measurement is needed. This procedure uses the previous
determination of the quantity C¸#b

1
#b

2
#d

2
which is deduced from the calibration of
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the impedance set-ups of ports 1 and 2. The response R
e2

/R
u1

Jcosh2d
1
cosh 2d

2
/cosh d

1
is

then obtained, and R
e2

/R
u1

can be deduced knowing d
1
and d

2
. Parameter d

1
can be checked

with the "rst determination.
For symmetrical and reciprocal two-ports measurements the calibration procedure can

be simpli"ed: Z
11

and Z
12

are su$cient to characterize the two ports. In that case there
is no need to have two impedance sensors. Only a second microphone is necessary instead
of the second impedance sensor. In that case and if the microphone is small enough it can
be assumed that d

2
and b

2
are equal to zero. This amounts to assuming the impedance of the

microphone to be in"nite. This can be checked by comparing the input impedance of
the tube closed by a rigid cap and the input impedance of the tube closed by a rigid cap with
the microphone in it.

5. CALIBRATION OF A SENSOR

Calibration results are now shown for an input impedance sensor, complemented for
symmetrical two port measurements, with a microphone placed at the closed end of the
element to be measured.

5.1. DESCRIPTION OF THE APPARATUS

The sensor used is the one described by Dalmont and Bruneau [15]. It uses a half-inch
electrostatic microphone cartridge (condenser microphone) as a source of volume velocity
and two small electret microphones as pressure sensors, only one of which may be used, as
in the following experiments, or both simultaneously. The source microphone cartridge and
the two electret microphones are "xed in a metal plane which constitutes the reference plane
for the measurements. Microphone and source are placed as close as possible to the
reference plane but some small extra volumes remain between microphones membranes and
this plane. The use of a microphone cartridge is attractive because its frequency response is
rather #at for frequencies above 100 Hz which simpli"es the calibration and also because its
mechanical impedance is relatively high. The limitation of this kind of source is that,
assuming a constant input voltage, the volume velocity is proportional to the frequency and
then at lower frequencies tends to zero with frequency. Measurements for low frequencies,
typically lower than 100 Hz, remain di$cult for large tubes except around resonance
frequencies.

For both excitation and demodulation a dual-phase lock-in ampli"er with a sine
source is used. An ampli"er (BK 2713) whose frequency response is #at for frequencies
above 100 Hz and allowing capacitive loads is placed between sine output and source. The
two measured signals for input impedance measurements are, respectively, the microphone
signal e

1
(after a preampli"cation) measured with the lock-in ampli"er and the amplitude of

the reference signal u
1

which is for convenience taken constant. A consequence is that the
impedance sensor includes the ampli"er. As the ampli"er has a #at response for high
frequency this will not be a problem. However, the low cut-o! frequency has to be
determined and corrected before using the calibration procedure. This was done because the
calibration procedure is not very e$cient for low frequencies. In that case the ampli"er was
calibrated.

Calibration measurements consist of the measurement of a long brass tube of 1 or 2 m
long and a short tube of 0)085m long both of 20 mm I.D. and 1 mm wall thickness (standard
tubing from a hardware shop). They are terminated with a thick PVC cap which is assumed



Figure 4. Schematic drawing of the set-up for symmetrical two-port measurement.
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to be perfectly rigid. Calibration is valid only for this diameter input because higher modes
amplitudes depend on the diameter (see Part I and reference [15]. Both tubes are "xed on
the measurement set-up with the same guiding tube of length 30 mm and I.D. 22 mm, which
is not removed between measurements (see Figure 4). When transfer measurements have to
be made the cap is replaced with another cap with a hole in the centre in which
a microphone is "xed. Measurements are made in an anechoic chamber. Temperature is
frequently checked. The tubes are placed in the anechoic room at least one day before
measurements and are manipulated with gloves. For convenience, when transfer impedance
and input impedance are both required quantities are measured over the whole frequency
range successively (not simultaneously).

5.2. CALIBRATION RESULTS FOR INPUT IMPEDANCE

Since the procedure is inaccurate for low frequencies, the low-frequency response of the
sensor which can be modelled as a "rst order low-pass cut-o! frequency, cannot be
accurately determined using the proposed procedure. This cut o! is then determined using
the short tube as a cavity: the cut-o! frequency can be deduced from the phase shift. For the
present sensor it is found to be approximately 15 Hz.

The approximation K of the "rst order response for higher frequencies is determined
using the procedure described in Part I; i.e., from the input impedance of a long tube the
mean line of a dB plot of the amplitude gives the amplitude response (DKD) and the mean line
of the phase gives the phase response (Arg (K)). The complex response is related to the
response of the microphone cartridge as shown in reference [15].
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Since low-frequency response has been determined separately, the calibration parameters
were "tted with a polynomial function with positive exponent which is little in#uenced by
low-frequency variations. It appears that for frequencies lower than 4 kHz the amplitude
response (in dB, which corresponds to real part of g lnKZ

c
), is parabolic without a linear

term (second order "lter due to the spring}mass e!ect of the membrane), the phase response
(imaginary part of g lnKZ

c
) is linear (i.e., a pure delay) together with corrective e!ects due to

higher modes (i.e., a subtracted mass e!ect) and impedance of the source (equivalent
volume). Real parts of b and d are reasonably well approximated by a square root of
frequency. This leads to only nine calibration parameters. For higher frequencies (typically
beyond 4 kHz, the high cut-o! frequency of the tube being approximately 10 kHz for
a 20 mm diameter tube) this is no longer valid mainly because the "rst higher mode e!ect
becomes more important and can no longer be approximated as a subtracted mass e!ect at
the input of the tube. Higher modes a!ect not only parameters b and d but also the response
g. However, the total number of parameters for the three complex calibration functions do
not exceed 25 for a calibration from 0 to 8 kHz.

Reproducibility is good when measurements are made the same day but less so when
measurements are repeated after a few days. For accurate measurements, a calibration must
be done for every series of measurements. Since this takes less than 30 min this is not
a problem.

After calibration, the validity of the measurements can be veri"ed. The measured
impedance, i.e., the measured input pressure computed with the calibration function, of
a closed tube can be compared with the theoretical expression of the input impedance of the
tube. In fact, the quantity obtained initially is the reduced impedance z

r
"Z/Z

c
. As this is

theoretically given by equation (B2) the propagation constant can be deduced (Figure 5)
and compared to its theoretical expression (see Appendix B) plotted in Figure 2. The
comparison with the real part of C shows that the di!erence between the theoretical and
experimental values is approximately 3% for f(5 kHz (see Figure 6). As the theoretical
value of a is not known with an accuracy better than 2% these results can be considered as
acceptable. This result shows that the theoretical expression of C can be used in
computation of pressure measurements in tubes when the metal tubes are not too large and
su$ciently sti!.
Figure 5. Experimental value of the attenuation constant a for a closed 1m tube of radius 0)01 m versus reduced
frequency ka after a complete calibration.



Figure 6. Ratio of experimental and theoretical value of the attenuation constant a of a 1 m tube of radius
0)01m.
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5.3. CALIBRATION RESULTS FOR TRANSFER IMPEDANCE

In the description of the method applied to symmetrical two-port elements, it is assumed
that the termination impedance with a microphone is in"nite. If not, this impedance has to
be determined. This can be deduced from the input impedance measurement of a short tube
with this termination where the calibration is made with the same tube terminated with
a rigid cap without a microphone. It appears that there is no signi"cant di!erence between
the two measurements other than a possible 0)1mm length di!erence which can be ascribed
to di!erences in the geometry of the caps.

The function K was taken to be identical for both input and transfer impedances, but
response g

2
appears to be di!erent from response g

1
. This may be explained by the

di!erence in sensitivity of the two receiver microphones (approximately 6 dB). The
frequency dependence of these two parameters is also slightly di!erent. The evaluation of
the parameter d

1
is very close (as it should) to the one obtained from the input impedance.

The transfer impedance as well as the input impedance can be compared to theory and
the propagation constant can be deduced. Results are very similar to those deduced from
the input impedance but are much more noisy (Figure 7). This can be explained by the fact
that when Z

12
is close to unity an error e on Z

12
implies an error of J2e on arg

cosh(Z
c
/Z

12
)"C¸ which is much larger than e. Despite this, results can be considered as

satisfactory and measurements of Z
12

can be considered to be quite accurate.

6. APPLICATION TO THE MEASUREMENT OF AN OPEN SIDE HOLE

The theory of a branched tube, initiated by Keefe [17, 18] has recently achieved a high
degree of accuracy [19, 20]. This accuracy is needed especially for the modelling of
woodwind instruments whose resonance frequencies are dependent on the side hole
characteristics. A short-branched tube can be considered as a two port and characterized
by its transfer matrix (A

C
B
D
) or an equivalent electrical circuit (see Figures 8 and 9). This

transfer matrix cannot be determined directly because the side hole cannot be considered
alone but has to be incorporated in a piece of tube. For the measurements the side hole was
positioned in the middle of a closed tube of length 2¸. The system being symmetrical the



Figure 7. Experimental value of a" Re[arg sinh(Z
c
/Z

t
)]/l for a closed 1m tube of radius 0)01m versus

reduced frequency ka after a complete calibration.

Figure 8. Dimensions de"nition for a side hole in a cylindrical tube.
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measurement of the input impedance Z
11

and of the transfer impedance Z
12

is su$cient to
determine the transfer matrix of the system (see equation (A1) in Appendix A). The transfer
matrix of the side hole itself is then obtained by multiplying, left and right, the transfer
matrix of the system by the inverse matrix of a tube of length ¸. Measurements have been
carried out with the sensor described above for a side hole of radius a"10 mm and height
t"10)25 mm on a closed tube of same diameter and length 2¸"100 mm (see Figure 8).
The side hole was terminated with a &&normalized'' #ange because the corresponding
impedance is in that case accurately known (see reference [21] for description and
discussion). Results for the imaginary part of 1/C and B are given in Figure 10. Results can
be compared with theoretical results. As 1/C"Z

i
#Z

o
, according to Nederveen et al. [19]

and Dubos et al. [20] Z
i
"jZ

c
kt

i
and Z

o
"jZ

c
tan [k(t#t

m
#d )] where t"1)025a is the

height of the cylindrical part of the branched tube, t
m
"0)15a is the ratio of the matching

volume between the main tube and the branched tube to the cross-section of the branched
tube (see Figure 8 and references [19, 20] for the calculation of this volume), d is the



Figure 9. Equivalent electrical circuit for the side hole.

Figure 10. Imaginary parts of terms B (lower) and 1/C (upper) of the transfer matrix of an open side hole of
10)5 mm long and radius 10 mm ended with a normalized #ange on a tube of radius 10 mm versus reduced
frequency ka: 222, experiment; - - - - - - - -, theory.
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radiation length correction and is given in reference [21] to be for the normalized #ange:

d"0)81aC1#
(0)77 ka)2

1#0)77kaD
~1

and t
i
is the inner length correction which is given to be t

i
"0)17a by both references

[19, 20] B"Z
a
[1#Z

a
/4(Z

t
#Z

0
)]+Z

a
where Z

a
/Z

c
"jkt

a
with t

a
given to be

t
a
"!0.28a by both references [19, 20]. Experimental results are in a good agreement with

theory for the present hole diameter. It must be noted that results for C are not accurate
when sin(k¸)+0. In that case, the side hole shunt impedance does not come into play
because of the pressure antinode in the middle of the tube. For these frequencies another
measurement con"guration would be needed. This is a subject for further experiments.

7. CONCLUSIONS

The proposed calibration method is a powerful tool for improving the accuracy of
acoustic impedance sensors by optimizing their calibration. It determines second order
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e!ects which are often neglected. However, the number of constants to be determined in this
calibration method leads to a reduced number of parameters. Moreover, the calibration
method is shown to be valid for most of impedance sensors. A major advantage is that the
wave constant of the calibration tubes does not need to be known exactly, making the
measurements less sensitive to temperature measurement errors. Apart from that the
method allows the determination of the propagation constant of which the real part is, for
a standard plumbing tube, shown to be less than 3% higher than predicted by theory. This
method has been applied to a sensor using a half-inch microphone cartridge as a source of
volume velocity and this calibrated set-up has been used already for input impedance
measurements of wind instruments [22, 23]. In a companion paper, it is used as well for
radiation impedance measurements [21]. The extension to impedance matrix
measurements has been successfully realized, giving the opportunity to measure the
characteristics of multi-port systems. For example, the method is applied to side hole
measurements and is shown to be su$ciently accurate to deduce the characteristics of such
lumped elements.
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APPENDIX A: RELATION BETWEEN IMPEDANCE AND TRANSFER MATRICES
FOR A TWO-PORT

The impedance matrix relates the pressure vector to the volume velocity vector for a two
port:

A
P
1

P
2
B"A

Z
11

Z
21

Z
12

Z
22
BA
;

1
;

2
B . (A1)

Note that the volume velocity is considered positive when entering the system (symmetrical
orientation).

The transfer matrix for a two port relates pressure and volume velocity on port 1 (the
input) to pressure and volume velocity on port 2:

A
P
1
;

1
B"A

A

C

!B

!DBA
P
2
;

2
B (A2)

for a symmetrical orientation. It is often convenient to consider both the volume velocity
going into the input and the volume velocity going out from the output (antisymmetrical
orientation) to be positive. In that case, the transfer matrix is (A

C
B
D
).

It is easy to derive

A
A

C

B

DB"A
Z

11
/Z

21
1/Z

21

(Z
11

Z
22
!Z

12
Z

21
/Z

12
)

Z
22

/Z
21

B . (A3)
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For a reciprocal system: Z
12
"Z

21
8AD!BC"1 and for a symmetrical system,

Z
11
"Z

22
8A"D.

APPENDIX B: CHARACTERISTICS OF A STRAIGHT TUBE

For a straight tube of length ¸ the transfer matrix is given by

A
A

C

B

DB"A
coshC¸ Z

c
sinhC¸

sinhC¸

Z
c

coshC¸ B , (B1)

where Z
c
is the characteristic impedance and C the propagation constant. C is given, for

a circular tube with rigid wall, by

C"jk#(1#j)a,

where k"u/c"2n f/c is the wave number. a is the attenuation constant and is given
accurately by

a"
1

aS
u
2c

(Jl
v
#(c!1)Jl

h
)

with a radius of the tube (see for example references [24}26]).

This formula is valid for aJu/cl
h
A1. In the air in standard condition is [9]

c"331.45S1#
t

¹
0

m/s with ¹
0
"273)15K,

l
v
"3)986]10~8 (1#4)73]10~3t)m,

l
h
"5)61]10~8 (1#5)13]10~3t)m,

c"1)4024(1!2)1]10~5t) m.

At 203C this leads to a"2)96]10~5Jf/a with f in Hz and a in metres. Z
c
is given by

Z
c
"

oc

S
(1#(1!j )b/k)

with b"1/aJu/2c (Jl
v
!(c!1)Jl

h
).

At 203C this leads to b"0)82]10~5J f/a with f in Hz.
At 100 Hz, for a 10 mm diameter tube, b/k"0)004 and is most often neglected. Note that

with the same data aJu/cl
h
+100 which is su$cient to consider the previous formulae as

accurate with an error lower than 1% for frequencies larger than 200 Hz.
When there is no source on port 2, it can be assumed that ;

2
/P

2
">

t
where >

t
is the

admittance at the end of the tube. The input impedance is then given by

Z"

P
1
;
1

"Z
c

cosh(C¸)#Z
c
>
t
sinh(C¸)

sinh(C¸)#Z
c
>
t
cosh(C¸)

"Z
c
coth [C¸#arctanh(Z

c
>
t
)]. (B2)
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The impedance matrix is given by

Z
11
"Z

22
"Z

c
coth[C¸] and Z

12
"Z

21
"Z

c
/sinh[C¸].

It can be veri"ed that, when >
t
"0, Z"P

1
/;

1
"Z

11
and Z

tr
"P

2
/;

1
"Z

21
.

APPENDIX C: PROOF OF EQUATION (13)

It is shown here how equation (13) is derived from equations (11 and 12)
(1) Write zA

r
"(z@

r
#tanh d )/ (1!z@

r
tanh d) and attempt to "nd an expression for

C¸A"arctanh (1/zA
r
).

Expressing z@
r
"coth(C¸@) and tanh d with exponential functions it can be shown that

zA
r
"

e#(C¸@#d)
#e!(C¸@#d)

e#(C¸@!d)
!e!(C¸@!d) .

C¸A is then given by

C¸A"arctanh(1/zA
r
)"

1

2
lnA

zA
r
#1

zA
r
!1B"C¸@#

1

2
lnA

1!e~2C¸@ tanh d

1#e`2C¸@ tanh dB .

Assuming d@1 a "rst order development leads to

C¸A+C¸@!d cosh (2C¸@).

(2) Write H/KZ
c
"z@@@

r
"egzA

r
and attempt to "nd an expression for C¸@@@"arctanh (1/z@@@

r
).

Expressing zA
r
"coth (C¸A) with exponential functions it can be shown that

z@@@
r
"

e#(C¸A#g)
#e!(C¸A!g)

e#(C¸A)
!e!(C¸A ) .

C¸@@@ is then given by

C¸@@@"
1

2
lnA

z@@@
r
#1

z@@@
r
!1B"C¸A#

1

2
lnA

1#e!2C¸@ tanh(g/2)

1#e#2C¸@ tanh(g/2)B .

Assuming g@1 a "rst order development leads to

C¸@@@+C¸@@!
g

2
sinh (2C¸A).

(3) Finally,

C¸@@@+C¸@!d cosh (2C¸@)!
g

2
sinh (2C¸A).
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For simplicity, in the previous expression, C¸A can be assumed to be equal to C¸@. By
writing C¸@"jk¸@#a¸@ :

ReAarctanhA
H

KZ
c
BB: a¸@!CReA

g

2B sinh(2a¸@)#Re(d ) cosh(2a¸@)D cos(2k¸@)

(C1a)

#CImA
g

2B cosh(2a¸@)#Im(d ) sinh(2a¸@)D sin(2k¸@ )

and

ImAarctanhA
H

KZ
c
BB: k¸@!CImA

g

2B sinh(2a¸@)#Im(d ) cosh(2a¸@ )D cos(2k¸@ )

(C1b)

!CReA
g

2B cosh(2a¸@)#Re(d) sinh(2a¸@)D sin(2k¸@).
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