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The goal of the present paper is to improve our understanding of the response of the
in-plane loaded rectangular plates containing initial geometric imperfection. Besides the
frequency responses and FFT curves, which were used as diagnostic tools in previous
investigations, the temporal response and the phase diagram have been added to better
study the transition zones between two kinds of vibration modes. The phase portrait shows
that the plate response has a number of &&unusual and perhaps chaotic'' characteristics in the
transition from one mechanism of vibration of another, which distinguished it from the more
classical periodic response. Moreover, the e!ect of one particular spatial mode of
imperfection on a di!erent mode of vibration has been investigated for the "rst time. It was
found that the maximum amplitude of forced vibrations is large when vibration and
imperfection are in the same mode while the "rst mode of vibration is always excited
whatever the mode of imperfection is. ( 2001 Academic Press
1. INTRODUCTION

In the particular "elds of aerospace, aeronautics and transportation, the search for
structures that could travel more rapidly, consume less energy and o!er better comfort and
security, has obliged engineers to use light materials and build thin-walled structures. As the
e!ort to make such structures lighter and thinner is increasing, there is a growing concern
among scientists and researchers about the mechanical behavior and reactions of such
structures whenever they are exposed to a static or dynamic loading.

In particular, when a plate is subjected to an out-of-plane sinusoidal loading it exhibits
a well-known forced resonance. However, when the plate is subjected to in-plane loading,
the problem becomes more complicated and the plate response prediction is quite di$cult
because of the lateral instability (buckling) induced by such in-plane loading. When the
in-plane loading is dynamic (for example, of the form N

YO
#N

YT
cosK¹), the plate may

exhibit a lateral instability over certain regions of the (N
YO

, N
YT

, K) parameter space and
several kinds of vibrations could take place (forced, parametric, etc.) [1]. The studies of
Ostiguy and Nguyen [1}3] thoroughly explain the plate behavior whenever it vibrates with
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a parametric mechanism of instability. Such a resonance occurs when the excitation
frequency K is approximately equal to twice the natural frequency X

i
(K"2X

i
) of the mode

number i. The parametric resonance is characterized by a double-sided motion and an
abrupt entrance in the instability zone.

In the presence of an initial geometric imperfection (initial lateral de#ection under zero
inplane loading), the stability problem becomes much more complicated. Indeed, such
unavoidable imperfections are found to be responsible for the following:

f The increase of resonance frequencies [4].
f The change of the non-linear vibration behavior from the familiar hard spring to the

soft-spring type for small vibration amplitude [5].
f The existence of forced vibrations, which occurs when the excitation frequency K is equal

to the natural frequency X
i
(K"X

i
). This resonance is also characterized by a one-sided

oscillating motion with a small vibration amplitude (compared to parametric resonance)
and a gradual entrance into the instability zone [5, 6].

When the forced and parametric vibrations are well separated, the response of the plate can
be evaluated without ambiguity. However, when both of them are partially or totally
overlapping, the global response of the plate becomes unpredictable. Experimental evidence
of simultaneous and combination resonances, due to the interaction of forced and
parametric vibrations, presented by Ostiguy [1], Ostiguy et al. [3], constitutes an original
and signi"cant contribution.

To the best of our knowledge, the "rst explanation of what could happen if, for a certain
excitation frequency, forced and parametric vibrations exist simultaneously, was given by
Ostiguy and Sassi using an analytical asymptotic approach [5, 6]. More recently, Sassi et al.
[7] implemented a direct integration method on a computer to solve numerically the
di!erential equations of motion. In addition to verifying results previously obtained with
the asymptotic method, it was possible to go beyond and verify experimental results not
modelled with the asymptotic method and bring to light the coalescence phenomenon that
had not previously been observed. The simulation results were also used to explain modal
interactions between forced}forced, parametric}parametric and forced}parametric
resonances.

The recent studies of Ostiguy and St-Georges [8, 9], using also a direct integration
method by a second-order Adams}Bashforth integrator, show that only the stable part of
the resonance curve can be obtained. They also found that the temporal response obtained
for parametric vibrations in non-symmetric relative to the static position of equilibrium.
The predominantly &&inward'' de#ection response (as viewed from the center of curvature) of
an imperfect plate is con"rmed. Moreover, for a structure with a su$ciently large initial
imperfection, the well-known hard-spring behavior of the principal parametric resonance
curve becomes a soft-spring behavior for small vibration amplitudes. However, for large
vibration amplitudes, the curve exhibits the usual hard-spring behavior. This kind of
resonance curve is characterized by a jump phenomenon at the beginning of the parametric
resonance. The soft-spring behavior is in#uenced by the size of the imperfection, the
vibration mode, the size of the static force, the aspect ratio of the plate and the boundary
conditions.

The goal of the present paper is to improve our understanding of the response of the
in-plane loaded rectangular plates containing initial geometric imperfection. Emphasis will
be put on the study of instabilities in the transition zones between two kinds of vibration
modes. To better explain these phenomena, in addition to the frequency responses and FFT
curves used in the previous analysis, the temporal response and the phase diagram have
been added.
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2. CONCEPTUAL MODEL

Because the conceptual model was presented in detail in a previous paper by Sassi et al.
[7], only the key elements are presented in this paper. The study is performed for a thin
rectangular plate of uniform thickness &&h''with initial geometric imperfections. The material
is elastic, homogenous and isotropic. The plate analyzed is considered to be &&stress free'' and
the edges are free to move in the plane of the perfect undeformed plate. The plate is
subjected to the action of in-plane forces uniformly distributed along two opposite edges.
The loading is achieved with a static component superposed with a periodic component
whose excitation frequency is K, as shown in Figure 1.

The temporal di!erential equations describing the motion of this plate, are expressed as
follows [7]:
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In the non-dimensional equation (1), kn
m

represents a loading parameter, C
m

is the
coe$cient of viscous damping, XM

m
is the free vibration frequency of the imperfect

rectangular plate loaded by a constant component of the in-plane force, Mqrs
v

and Hqsl
v

are
the coe$cients of the non-linear coupling terms, I

n
"(=

0n
#d

0n
) is the total static

de#ection,=
0n

is the initial geometric imperfection, and d
0n

is the initial de#ection caused
by the static component of the applied in-plane load.
Figure 1. Plate parameters (dimensions, coordinates, boundary conditions and load con"guration).
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It is obvious that the more the terms that exist in the expansion of the transverse
displacement, the more accurate is the solution. However, to keep the resolution
manageable, only the "rst three terms are kept. The continuous system is reduced to
a three-degree-of-freedom model.

Moreover, because of the complexity of equation (1) and in order to simplify our
investigation, the interaction between the three modes of vibrations will be studied with
only two modes at a time (modes i and k) in the presence of only one spatial mode of
imperfection (mode k). Therefore

=
i
O0, =

0i
"0, =

k
O0, =

0k
O0. (2)

Equation (1) is reduced to the following two equations corresponding respectively to modes
i and k:
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This set of non-linear di!erential equations has been solved by direct numerical integration
using the SIMULINK toolbox of MATLAB as thoroughly explained before [7]. However,
with this method, only the stable part of the resonance can be obtained, exactly like the
physical system, but it gives enough information to predict and understand the behavior of
the real physical system.

3. RESULTS AND DISCUSSION

The parameters and material constants of the rectangular plate for which the simulation
has been conducted are listed in Table 1. In order to increase gradually the complexity of
TABLE 1

Speci,cations of plate parameters

Dimensions, a]b]h (mm)"293]508]1
Aspect ratio, R (b/a)"1)734
Modulus of elasticity, E"2)385 GPa
Poisson's ratio, l"0)45
Density, o"1200 Kg/m3

Damping, D"2nC/XM
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the problem, the plate dynamic response in the presence of initial imperfection is analyzed
"rst in the case of a single mode of vibration. This simpler case is also convenient to
illustrate more easily the use of the di!erent graphical outputs to understand the plate
response mechanism. This is done for an imperfection in the same mode as the vibration.
Then the e!ect of choosing a di!erent imperfection mode is investigated. Finally, the plate
response is modelled using two modes and the results are interpreted in the same way as in
the case of the single mode.

3.1. DYNAMIC RESPONSE OF THE PLATE FOR A SINGLE MODE OF VIBRATION

In this part, we have considered that both the vibration and the imperfection are in the
same mode, which is mode 1. The imperfection value is=

0
"(0)2, 0, 0) and represents &&0)2

times the thickness of the plate'' in this "rst mode. The numerical integration graphical
outputs in Figure 2 show respectively the global and "ltered responses. The forced
resonance is located around 9)73 Hz, whereas the parametric resonance is located between
17)40 and 34)26 Hz.
Figure 2. Simulation results in the case of a single mode of vibration; (a) global results; (b) "ltered response of
mode 1 forced; (c) "ltered response of mode 1 parametric.=
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"0)2.



Figure 3. Global simulation results (Phase diagram and FFT) at the excitation frequency of: (a) K"9)68 Hz;
(b) K"17)22 Hz; (c) K"17)36 Hz; (d) K"17)40 Hz. =

0
"(0)2, 0, 0), D"0)2, N

YO
"0)5, N
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"0)2.
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Figure 3(a) presents phase diagrams, and FFT magnitudes for an excitation frequency
(K"9)68 Hz) which is located in the forced zone. The analysis of these "gures reveals that,
for this case, the plate vibrates purely in the forced regime. Indeed, the FFT curves show
that the frequencies of excitation and response are exactly the same. One should note that
the amplitude of vibrations [in the frequency response curve of Figure 2(a)] increases in
a progressive manner until it reaches a maximum after which it drops suddenly. This limit,
localized at 9)73 Hz, corresponds to the end of the forced instability zone (after this limit,
forced vibrations continue to exist but their amplitude is small).

Figures 3(b)}4(b) clarify the di!erent responses for some excitation frequencies in the
parametric zone and especially the changes of behavior at the entry and at the exist of such
a zone. The sequence of FFT magnitude curves shows that the parametric resonance



Figure 4. Global simulation results (Phase diagram and FFT) at the excitation frequency of: (a) K"17)45 Hz;
(b) K"34)17 Hz; (c) K"34)26 Hz; (d) K"34)31 Hz. =

0
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appears and disappears in a sudden manner and can reach much larger amplitudes than the
forced ones. These two principal characteristics of parametric resonance make it a very
harmful type of resonance. It should also be noted that, when crossing the entry limit of the
parametric zone, there is not only an increase of the movement amplitude but also a switch
of the vibration frequency to half of the excitation value.

The entry of the plate in the parametric instability zone is accomplished as follows.
f At 16)50 Hz, the response is forced.
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f At 17)22 Hz (Figure 3(b)), the forced-parametric transition has already taken place. The
phase diagram presents two major loops. The FFT curve presents two peaks: one at
17)22 Hz of large amplitude and the other at 8)61 Hz of small amplitude, indicating clearly
the existence of two periodic movements: a strong forced vibration with the beginning of
a parametric vibration.

f As the frequency of excitation increases, the competition between forced and parametric
mechanisms favors more this latter one. Indeed, at 17)36 Hz (Figure 3(c)), the FFT curve
shows an equal energy distribution between the two peaks. But at 17)40 Hz (Figure 3(d)),
the peak at 8)7 Hz dominates the one at 17)40 Hz and the response becomes mainly
parametric.

Starting at 17)45 Hz (Figures 4(a) and 4(b), the response is purely parametric and the
amplitude of the movement increases considerably. The phase diagram shows an evolution
of the circular pattern. There is shrinkage in one direction and expansion in the other. From
a practical standpoint, this means that, during a peak-to-peak motion, the acceleration level
of the plate is low through the middle position and high toward the extreme positions. The
plate will preserve its parametric behavior until the end of the parametric instability zone
located at 34)26 Hz, after which there is a sudden drop of the amplitude to a nearly
null value. Since it is not prepared beforehand for this change, the plate will pass through
a state of dwell, characterized by an irregular shape of the phase diagram, when the
excitation is in the vicinity of 34)26 Hz (Figure 4(c)). Above this frequency, the plate regains
its &&stability'' and continues to vibrate with a forced mechanism of very small amplitude
(Figure 4(d)).

3.2. EFFECT OF THE IMPERFECTION MODE AND AMPLITUDE ON THE FORCED

VIBRATION AMPLITUDE

As already mentioned in previous papers [6, 7], the forced vibration existence is mainly
due to the existence of initial geometrical imperfections in the plate and the maximum of
amplitude is also related to the imperfection amplitude. However, no information was
found about the relationship between the maximum of forced oscillations and the
imperfection amplitude, whenever the imperfection and vibration modes are di!erent. To
establish this relationship, the present work has considered the case where the imperfection
mode is di!erent from the vibration mode. In Figure 5 are plotted the maximum amplitudes
of forced vibrations ( just before the drop point) for the "rst three modes against the value of
imperfection for one of the three modes. These plots show that the amplitude of forced
vibration is particularly large when vibration and imperfection are in the same spatial
mode. One can see also that the "rst mode of vibration is easily excited in the presence of
any mode of imperfection. Its amplitude grows rapidly when the imperfection increases.
However, things are quite di!erent when the mode of vibration is symmetric and the mode
of imperfection is anti-symmetric or vice versa. In this case, the imperfection acts against the
vibration.

3.3. DYNAMIC RESPONSE OF THE PLATE FOR TWO MODES OF VIBRATION

The numerical simulation of the dynamic behavior of an imperfect rectangular plate
modelled with two degrees of freedom (the "rst and the second spatial modes) is computed
and presented in the following section. The plate possesses an initial imperfection of &&0)2



Figure 5. E!ect of imperfection on the maximum amplitude of forced vibrations. (a) Mode 1 of imperfection; (b)
mode 2 of imperfection; (c) mode 3 of imperfection. ==, Mode 1 of vibration; } } } }, mode 2; ) ) ) ) ) , mode 3;
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"0)5, N

YT
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times the plate thickness'', "rst in its "rst mode (Figures 6 and 7) represented by=
0
"(0)2,

0)0, 0)0), and then in its second mode (Figure 8) represented by =
0
"(0)0, 0)2, 0)0).

For the particular conditions of Figure 6, the two natural frequencies of the "rst and the
second spatial modes are respectively 9)14 and 14)41 Hz. Consequently, one would have to
expect theoretically: a forced resonance of the "rst mode (1F) located around 9)14 Hz,
a forced resonance of the second mode (2F) located around 14)41 Hz, a parametric
resonance of the "rst mode (1P) located around 18)28 Hz, and a parametric resonance of the
second mode (2P) located around 28)82 Hz. The zones of instability of these di!erent
resonance are close to each other and especially the two zones (2F) and (1P) which lead to
a possible interaction between them. If each mode is studied separately, the forced
resonance (2F) would start at 14)41 Hz and drop before 15 Hz (Figure 7(b)). However,
because of the modal interaction, the forced instability zone will be stretched to 18)66 Hz
which is an unexpected new limit (Figure 7(a)).



Figure 6. E!ect of imperfection of mode 1 on the interaction between forced and parametric modes of vibration.
(a) Global response; (b) mode 1 forced; (c) mode 2 forced; (d) mode 1 parametric; (e) mode 2 parametric.=
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Figure 9, relative to 15)99 Hz, shows that the two spatial modes of vibrations are excited
and both of them show a forced instability mechanism clearly identi"ed by a peak located at
the same frequency as the excitation. However, mode 2 is the one that dominates the
response. Its amplitude is larger, its behavior is more regular and its phase diagram is more
smooth. The full domination of the forced mode (2F), not only excludes the mode (1P) but
also indirectly excites the mode (1F). This phenomenon of resonance of di!erent modes with
the same frequency is called &&coalescence'' and is an intrinsic characterization of non-linear
problems.

The understanding of the plate vibratory behavior excited at the particular frequency of
18)66 Hz (frequency of transition) is as interesting as the knowledge of its behavior before
and after this frequency. The di!erent aspects of the plate response are plotted in Figure 10.
At the beginning, the plate exhibits a well-identi"ed hesitation between vibrating in one or



Figure 7. E!ect of imperfection of mode 1 on the interaction between forced and parametric modes of vibration.
(a) Coupled modes; (b) uncoupled modes.=
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Figure 8. E!ect of imperfection of mode 2 on the interaction between forced and parametric modes of vibration.
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the other regimes. Finally, it "nishes by converging to a stable state dominated by
parametric vibrations. During this transition, a transfer of energy is observed from
the forced mode (2F) to the parametric mode (1P) while the vibration amplitude is nearly
null.



Figure 9. Global simulation results at the frequency excitation of 15)99 Hz. (a) Phase diagram of mode 1;
(b) phase diagram of mode 2; (c) FFT of mode 1; (d) FFT of mode 2; (e) temporal response of mode 1; (f ) temporal
response of mode 2. =
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Figure 11 shows the vibratory behavior of the plate for an excitation frequency
K"18)73 Hz. For all the frequencies located after 18)66 Hz, one can note that
spatial mode 1 oscillates with a purely parametric resonance (1P) while mode 2 oscillates
with both forced and parametric resonances (2F) and (2P) but with a net domination of the
parametric one. Hence the plate will vibrate at two di!erent frequencies (K and K/2)
although it is excited at a single frequency (K). The forced oscillations of mode 2 (2F)
continue to exist with small amplitudes although the region is dominated by parametric
vibrations.



Figure 10. Global simulation results at the frequency excitation of 18)66 Hz. (a) Phase diagram of mode 1;
(b) phase diagram of mode 2; (c) FFT of mode 1; (d) FFT of mode 2; (e) temporal response of mode 1; (f ) temporal
response of mode 2. =
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The mode (1P) will dominate the response of the plate until the excitation frequency
reaches 28)82 Hz which is the starting point of mode (2P). The modal interaction between
the two modes (1P) and (2P) will induce a sudden drop of the amplitude at 29)61 Hz after
which an hesitation phenomenon is clearly observed. The sequences of phase diagram and
FFT curves taken at di!erent frequencies around this critical value of 29)61 Hz show how
sudden was this switch in the response. As indicated in Figures 12 and 13, the phase portrait
of mode 2 is quite convoluted and di$cult to understand. When the limit of 29)61 Hz is
crossed (Figures 13}18), mode 1 is also driven into this agitation. The steady state response
of the plate will have a number of &&unusual or perhaps chaotic'' characteristics which



Figure 11. Global simulation results at the frequency excitation of 18)73 Hz. (a) Phase diagram of mode 1;
(b) phase diagram of mode 2; (c) FFT of mode 1; (d) FFT of mode 2; (e) temporal response of mode 1; (f ) temporal
response of mode 2. =
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distinguished it from the more classical periodic response. This steady state response has the
following characteristics.

f It is aperiodic, never repeating itself, even though the excitation is periodic.
f There is some broadband frequency content, indicating a certain degree of randomness.

Observing again Figure 6, the global frequency response shows that the mode (2P)
disappears also after the excitation frequency reaches 34)26 Hz, which is the upper limit of
mode 1 parametric instability. On the contrary, Figure 8 shows that the mode (2P) is present



Figure 12. Global simulation results at the frequency excitation of 29)46 Hz. (a) Phase diagram of mode 1;
(b) phase diagram of mode 2; (c) FFT of mode 1; (d) FFT of mode 2; (e) temporal response of mode 1; (f ) temporal
response of mode 2. =
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in the response of the plate because the mode of imperfection is exactly the same as the
vibration. In the previous case, the fact that the imperfection was in the "rst mode made the
vibration of the plate in the second mode more di$cult to obtain. From a practical
standpoint, one can say that the interaction between di!erent vibration modes manifests
itself in di!erent ways, depending not only on the loading conditions, on the relative
positions of the resonance frequencies and on the degree of overlap of their corresponding
instability zones as mentioned before [7] but also on the respective nature (symmetric or
anti-symmetric) of spatial modes of imperfection and vibration. Because of all these



Figure 13. Global simulation results at the frequency excitation of 29)61 Hz. (a) Phase diagram of mode 1;
(b) phase diagram of mode 2; (c) FFT of mode 1; (d) FFT of mode 2; (e) temporal response of mode 1; (f ) temporal
response of mode 2. =
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considerations the long-term prediction of the detailed behavior of the system states is
impossible unless a numerical simulation like the one presented here is used.

4. CONCLUSIONS

The dynamic response of imperfect plates subjected to in-plane loading has been further
investigated using a simulation based on a direct numerical integration procedure. This
investigation used new graphical outputs, the temporal response and the phase diagram. It
con"rmed the previous analytical and numerical results and brought to light some
interesting details about modal interaction.



Figure 14. Global simulation results at the frequency excitation of 29)68 Hz. (a) Phase diagram of mode 1;
(b) phase diagram of mode 2; (c) FFT of mode 1; (d) FFT of mode 2; (e) temporal response of mode 1; (f ) temporal
response of mode 2. =
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Although the plate dynamic behavior is modelled using a standard di!erential equation,
using a fully deterministic model the resulting motion can have a random nature. The
simulation phase diagrams and temporal responses show clearly that the plate can undergo
some &&unusual or perhaps chaotic'' motion in the transition from one kind of resonance to
another.

In addition, the simulations have been used to establish the mechanism of interaction
between one particular spatial mode of imperfection and the same or a di!erent mode of
vibration. It was found that the maximum amplitude of forced vibrations is large when the



Figure 15. Global simulation results at the frequency excitation of 29)75 Hz. (a) Phase diagram of mode 1;
(b) phase diagram of mode 2; (c) FFT of mode 1; (d) FFT of mode 2; (e) temporal response of mode 1; (f ) temporal
response of mode 2. =

0
"(0)2, 0, 0), D"0)2, N

YO
"0)5, N

YT
"0)2.

520 S. SASSI E¹ A¸.
vibration and the imperfection are in the same mode and that the "rst mode of vibration is
always excited whatever the mode of imperfection is.

More generally, this present study has completed the previous ones in demonstrating that
the global response of an imperfect plate described by two modes is certainly not the simple
superposition of the individual responses of the two modes studied separately. The
mechanism of modal interaction was found to be depending not only on the loading
conditions, on the relative positions of the resonance frequencies and on the degree of
overlap of their corresponding instability zones but also on the nature of the modes
(symmetric or anti-symmetric).



Figure 16. Global simulation results at the frequency excitation of 29)82 Hz. (a) Phase diagram of mode 1;
(b) phase diagram of mode 2; (c) FFT of mode 1; (d) FFT of mode 2; (e) temporal response of mode 1; (f ) temporal
response of mode 2. =
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Figure 17. Global simulation results at the frequency excitation of 29)89 Hz. (a) Phase diagram of mode 1;
(b) phase diagram of mode 2; (c) FFT of mode 1; (d) FFT of mode 2; (e) temporal response of mode 1; (f ) temporal
response of mode 2. =
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