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The problem of dynamic and kinematic control of the spatial movements of a #exible
multi-link manipulator, mounted on a platform freely moving in cosmic space, is de"ned.
Allowance for distributed properties of elasticity and inertia of the manipulator links is
made, based upon the design model of the Euler}Bernoulli beam on the assumption that
each element is in compound motion. A technique for the numerical construction of
solutions for an essentially non-linear hybrid-type system of constituent equations is
proposed. Examples of computer simulation of the dynamics of a two-link cosmic robot,
manipulating a useful body, are considered. Comparisons are made between the results of
calculations and data on the dynamic behaviour of a rigid cosmic manipulator with
equivalent geometrical and inertial parameters. ( 2001 Academic Press
1. INTRODUCTION

The design of technically reliable multi-link robots and manipulators for cosmic
assignments requires mathematical models of the dynamics of mechanical systems with
variable con"gurations, which include interconnected solid and elastic parts. Taking into
account the distributed properties of elasticity and inertia of the elongated links of cosmic
manipulators enables the in#uence of elastic oscillations, induced by their fast manoeuvring,
on the dynamics of the systems studied to be investigated and the precision of their
positioning to be improved. However, in this case, a number of di$culties of a theoretical
character arise. Elements of elastic links comprising a kinematic chain undertake several
forms of motion simultaneously and gyroscopic interaction between the rotary and linear
components of these motions complicates their isolation and separate analysis. At the
manipulator con"guration variation, a change in its inertial characteristics also takes
place, which is accompanied by evolution of its spectrum of frequencies and modes of
free vibrations and provides the system with an opportunity to self-tune to the
resonant interactions between partial modes of motions and the external disturbance in
separate intervals of its motion trajectory. The necessity for mobility of the carrying
platform, on which the manipulator is established, and the presence of cyclic coordinates in
the system engender additional di$culties for theoretical modelling of the cosmic robots
dynamics.
0022-460X/01/240641#17 $35.00/0 ( 2001 Academic Press
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In this connection, the attempts to construct design models of the dynamics of robots
with elastic beam links are restricted, as a rule, to cases of elementary structures of one- and
two-link industrial manipulators [1}9]. Their "nite d.o.f. models are based on the special
assumptions of the inertia and rigidity properties of links and modes of their deformation.
A review of the modern approaches to the study of peculiarities and regularities of
dynamical behaviour of the controlled cosmic manipulators is presented in reference [10].
Examples of their applications for calculation of an elastic one-link manipulator with a tip
concentrated mass are presented. Elastic models of multi-link manipulators of cosmic
basing are considered in references [11, 12].

The computing di$culties when simulating the dynamics of real manipulators with the
distributed parameters, are associated with the necessity to solve the evolutionary problems
via partial di!erential equations. In references [1}6] the procedures of spatial discretization
of elastic displacements were overcome with the help of spectral expansion, and methods of
"nite di!erence and "nite element are also used.

The application of methods for immediate mathematical modelling is considered to be
most convenient for the study of program-controlled motions of multi-link #exible cosmic
robots. In this paper, the mathematical model of the dynamics of an elastic multi-link
controlled cosmic manipulator as a system with distributed parameters, and which is
in#uenced by the action of inertial forces of relative elastic vibrations and compound
motion, is proposed. A set of non-linear di!erential hybrid-type equations with the ordinary
and partial derivatives of the required variables bound by the conditions of connection at
the joining hinges is constructed. A step-by-step algorithm for the construction of solutions
of these equations is developed. This allows, at each step of the computing procedures, the
non-linear part of the problem of determination of the angles of relative slewing in the
hinges of the adjacent links to be separated from the linear multipoint-like boundary value
problem of determination of relative elastic movements of the links as a whole pivotal chain.
The problems of dynamic and kinematic control of the elastic robot are set up. The
technique developed for the speci"ed problem-solving is based on the joint use of the
method on initial parameters [13, 14], the algorithm of discrete orthogonalization [13], the
implicit "nite-di!erence scheme by Houbolt, and the one- and multi-step-by-step methods
of numerical integration [15].

2. MATHEMATICAL MODEL OF DYNAMICS OF THE MULTI-LINK COSMIC
ROBOT-MANIPULATOR

Let the cosmic robot-manipulator consist of a chain of N rectilinear elastic rods of length
l
n
(n"1,2, N), joined together by ideal cylindrical hinges, which is attached to a mobile

platform (see Figure 1). This system of spatial motion can be either dynamically or
kinematically controlled. The links are numbered in the order of their connection to each
other, assuming the "rst one to be pivoted to the mobile platform. Introduce the inertial
reference frame OXYZ. Let the local system of co-ordinates O

n
x
n
y
n
z
n

with the orthogonal
triad of the unit vectors in , jn , kn be connected with the nth (n"1,2, N) link in such a way
that its origin O

n
coincides with this rod's initial end, the axis O

n
x
n

is coincident with its
axial line and the corresponding axes O

n
y
n

and O
n
z
n

of all the links are parallel, when the
whole kinematic chain of the manipulator is extended in one direct line and the axes O

n
x
n

are aligned and parallel to the axis OX. Every axis of the cylindrical hinges connecting the
adjoining links is considered to be in line with one of the axes of the local frame of reference.
The angles of rotation of the subsequent nth link around one of the axes O

n
x
n
, O

n
y
n
or O

n
z
n

of the preceding one are designated u
n
, t

n
or 0

n
respectively. The angle is considered to be



Figure 1. Mechanic model of a space multi-link robot manipulator.
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positive, if from the end of the corresponding axis of rotation it is seen occurring against the
course of an hour pointer.

In the case of dynamical control of the robot the prescribed controlling moments
Me

n
"Me

n
(t) (n"1,2, N) are applied to the links in the hinges. The moments are assumed

to be positive, if they tend to slew the links in the positive directions. The angles of relative
slewing of the links are considered to be required. At the kinematic control of the system, the
set of N functions u

k
"u

k
(t), t

l
"t

l
(t), 0

m
"0

m
(t) (kOl, lOm, mOk) are given and the

moments at hinges are to be computed.
Let the nth (n"1,2 , N) link of the manipulator be conventionally separated. Using the

d'Alembert principle, one can write the equations of the link dynamical equilibrium as
follows:
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Here u
n
, v

n
, w

n
are the functions of elastic displacements of the moving rod along the axes

O
n
x
n
, O

n
y
n
, O

n
z
n
respectively; c

n
is the torsion angle; E

n
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n
, E

n
J
zn

, E
n
J
yn

, G
n
J
pn

are the tensile,
bending and torsional sti!ness factors; N

x,n
(x

n
)"E

n
F
n
Lu

n
/Lx

n
, the internal longitudinal
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force; o
n

is the material density; F
n

is the cross-section area; a
x,n

, a
y,n

, a
z,n

are the
components of the vector of an absolute acceleration of the rod element; e

x,n
, e

y,n
, e

z,n
are the

components of the vector of an absolute angular acceleration of the rod element.
It is considered that each element of the rod is in the state of compound motion so its

absolute acceleration a
n
(x

n
) may be represented as [16]
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where ae
n
(x
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), ac
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(x
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), ar

n
(x

n
) are the vectors of translational, Coriolis and relative

accelerations respectively.
The acceleration ae
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n
) is calculated with the formula
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where a
n
(O) is the absolute acceleration of the point O

n
; x

n
(O), e

n
(O) are the angular velocity

and angular acceleration vectors of the movable system of coordinates O
n
x
n
y
n
z
n

relative to
the reference frame OXYZ. For the calculation of ae

n
(x

n
) the assumption of in"nitesimal

elastic displacements of the rod elements in comparison with its geometrical sizes, accepted
in the geometrically linear theory of rods and permitting one to neglect the speci"ed
displacements in the calculation of the radius vectors of the rod elements, has been used.

The acceleration ac
n
(x

n
) is represented in the form
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It is worth noting that at real values of the angular velocity x
n
(O) and small elastic

displacements u
n
, v

n
, w

n
this one may be disregarded.

The relative acceleration ar
n
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n
) is de"ned as
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According to reference [16], the absolute angular velocity x
n
(x

n
) of an element of a rod,

participating simultaneously in several rotational motions, can be presented by the equality
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and its absolute angular acceleration e
n
(x

n
) can be obtained by di!erentiation of expression

(6) in the movable system of co-ordinates O
n
x
n
y
n
z
n
:
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In formula (5) the "rst summand is associated with longitudinal vibrations of rods, which
happen with higher frequency in comparison with the lateral ones and occur with small
amplitudes. Therefore, the process of longitudinal perturbations propagation in the rod
may be conceived to be instantaneous for the considered dynamic phenomena, the
acceleration L2u

n
/Lt2 may be neglected and the longitudinal force N

x,n
(x

n
) can be counted

from the "rst equation of system (1), which for the assumptions adopted takes on
a quasi-static form. The structure of system (1) fourth equation, in which the inertial forces
of torsional vibrations of the rod elements are not taken into account, is de"ned with the
same reasoning.
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With allowance made for equations (2)}(5) and (7) system (1) is reduced to the form
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In the statement of the boundary conditions for system (8) it is necessary to take into
account that their total order equals 12. Furthermore, six unknown functions of time
a
x,n
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y,n

(O), a
z,n

(O), e
x,n

(O), e
y,n

(O), e
z,n

(O) describing the acceleration of the origin O
n

of
the movable co-ordinate system O

n
x
n
y
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z
n

and its angular acceleration are included in the
equations, besides the unknown "eld variables u

n
(x

n
, t), v

n
(x

n
, t), w

n
(x

n
, t), c

n
(x

n
, t). Therefore,

for the closure of system (8) it is necessary to formulate 18 equations for the joining of the
(n!1)th and nth links.

3. BOUNDARY AND INITIAL CONDITIONS

Without reducing the generality of the problem statement, it is accepted for de"niteness,
that the (n!1)th and nth rods are connected by a cylindrical hinge, the axis of which
coincides with the axis O

n
z
n
.

As the system O
n
x
n
y
n
z
n

is rigidly connected with the nth rod edge at x
n
"0, one has the

following equalities:
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Here the prime designates di!erentiation with respect to x
n
.

The following equations stem from the condition of a pin joint of the (n!1)th rod end
with nth rod beginning.

The equation of opposite directions of the reaction vectors equal in modulus,

R
n~1

(l
n~1

)"!R
n
(O), (10)

where R
n~1

(l
n~1

)"N
x,n~1

(l
n~1

) i
n~1

!Q
y,n~1

(l
n~1

) j
n~1

!Q
z,n~1

(l
n~1

)k
n~1

and R
n
(O)"

!N
x,n

(O) i
n
#Q

y,n
(O) j

n
#Q

z,n
(O) k

n
are respectively the reactions at the end x

n~1
"l

n~1
of the (n!1)th rod and at the beginning x

n
"0 of the nth rod.

The equation of opposite directions of the reaction moment vectors equal in modulus,
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The equation of equality of the absolute acceleration vectors,
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and the equation, following from the relation between angular accelerations of the
co-ordinate systems O

n~1
x
n~1

y
n~1

z
n~1

and O
n
x
n
y
n
z
n
, may be written down in the way

described for the rods joint as
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where D is some linear operator; the dots denote derivation with respect to the time t.
For the representation of equation (10) in the scalar form both its members are projected

on the axes of the O
n
x
n
y
n
z
n

reference frame:

KK
!N

x,n
(O)

Q
y,n

(O)

Q
z,n

(O) KK!BT
n~1,n KK

!N
x,n~1

(l
n~1

)

Q
y,n~1

(l
n~1

)

Q
z,n~1

(l
n~1

) KK"0. (14)

Here B
n~1,n

"AT
n
A

n~1
is the matrix of transition from the basis i

n~1
, j

n~1
, k

n~1
to the basis

i
n
, j

n
, k

n
; A

n
"Ean

ij
E (i, j"1,2 , 3) is the matrix of direction cosines an

11
"cos(X, x

n
),

an
12
"cos (X, y

n
) ,2, an

33
"cos(Z, z

n
).

Equality (9) is analogously transformed to the form
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The matrix B
n~1,n

structure is so designed that at the chosen orientation of the cylindrical
hinge axis the third equality of system (15) results in two equalities,
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where Me
n

is the external controlling moment in the nth joint.
For obtaining the "nal form of boundary equations (14)}(16) it is necessary to use the

following di!erential relationships:
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After corresponding projection equality (12) gives
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By using relations (2)}(5), the above system is reduced to the form
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For representing equations (13) in an explicit form the equality
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resulting from the theorem of addition of angular velocities at compound motion [16] is
constructed. Here x
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(O) is the vector of angular velocity of the basis i
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The system of three equations
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is obtained by di!erentiating both parts of this equality with respect to t.
The equations of motion of the platform and tip load considered as solid bodies are used

as boundary conditions for the "rst and the latter links. By way of example, these relations
for the case of rigid connection of the load to the end x

N
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N
of the Nth link are written in

the form of di!erential equations of motion of a free solid body [16]:
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is the mass of the solid body; I
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The initial equations at t"0 stem from the condition of the mechanical system's initial
con"guration,

u
k
(O)"u

k,0
, t

l
(O)"t

l,0
, 0

m
(O)"0

m,0
, u

n
(x

n
,O)"u

n,0
(x

n
),

v
n
(x

n
, O)"v

n,0
(x

n
),w

n
(x

n
,O)"w

n,0
(x

n
), c

n
(x

n
, O)"c

n,0
(x

n
),

(22)

and its initial state of motion,

u5
k
(O)"u5

k,0
,tQ

l
(O)"tQ

l,0
, 0Q

m
(O)"0Q

m,0
, u5

n
(x

n
, O)"u5

n,0
(x

n
),

v5
n
(x

n
,O)"l5

n,0
(x

n
), w5

n
(x

n
, O)"w5

n,0
(x

n
), c5

n
(x

n
, O)"c5

n,0
(x

n
).

(23)

Equations (22) and (23) provide closure of system (8), (9), (14)}(16), (18), and (21).

4. STATEMENT OF PROBLEMS OF DYNAMIC AND KINEMATIC CONTROL

Firstly, the problem of dynamic control of system (8), (9), (14)}(16), (18), and (21)}(23) will
be set up. Let the program law of variation of controlling moments Me

n
(t) (n"1,2 , N)

applied to the connecting pin joints be given. It is required to determine the law of the
system motion (N angles of rotations u

k
"u

k
(t), t

l
"t

l
(t), 0

m
"0

m
(t) (kOl, lOm,mOk))

and the functions of elastic displacements of the links u
n
(x

n
, t), v

n
(x

n
, t), w

n
(x

n
, t), c

n
(x

n
, t)

(n"1,2, N).
The problem of the system kinematic control is set up as follows. Let the program law of

N angles u
k
"u

k
(t), t

l
"t

l
(t), 0

m
"0

m
(t) (kOl, lOm,mOk) variation be given. It is

necessary to determine the system motion (the functions of the links elastic displacements
u
n
(x

n
, t), v

n
(x

n
, t), w

n
(x

n
, t), c

n
(x

n
, t) (n"1,2,N) and also to "nd the controlling moments

Me
n
(t) (n"1,2,N) in hinges, providing realization of the given relations u

k
"u

k
(t),

t
l
"t

l
(t), 0

m
"0

m
(t) (kOl, lOm, mOk).

Thus, in the case of dynamic control, system (8) for the nth rod is closed by 19
boundary equations (9), (14)}(16), (18) and (21), which, however, contain the additional
unknown function 0$

n
. At the kinematic control, the function 0$

n
is considered to be given

and equation (16) is used for determination of the moments Me
n
(t) (n"1,2 , N) in the

connecting hinges.

5. TECHNIQUES FOR CONSTRUCTION OF THE MOTION EQUATIONS SOLUTIONS

The essential non-linearity of the hybrid-type equations obtained and their implicitness
relative to the higher derivatives with respect to time cause signi"cant di$culties of
a theoretical and computing nature in the construction of the solutions of the problems set
up of dynamic and kinematic control. In the present work a step-by-step algorithm is
proposed for the solution construction. At each step of discretization in time it permits one
to reduce problem (8), (9), (14)}(16), (18), and (21)}(23) to a sequence of linear multipoint-like
boundary value problems for the ordinary di!erential equations with respect to the spatial
co-ordinate, containing, however, the additional unknown algebraic values representing the
magnitudes of the linear (a

x,n
(O), a

y,n
(O), a

z,n
(O)) and angular (e

x,n
(O), e

y,n
(O), e

z,n
(O))

accelerations required at the time step considered. In doing so the implicit "nite-di!erence
scheme of the Houbolt method is used for the system (8) integration in time, according to
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which the derivatives dX/dt, d2X/dt2 of any function X with respect to time t at the time
moment t#Dt are replaced by their "nite-di!erence analogues:

XQ (t#Dt)"XQ
t`1

"(11X
t`1

!18X
t
#9 X

t~1
!2X

t~2
)/6Dt,

X$ (t#Dt)"X$
t`1

"(2X
t`1

!5X
t
#4X

t~1
!X

t~2
)/(Dt)2.

(24)

Here Dt is the step of integration in time, X
t`1

"X(t#Dt), X
t
"X(t),

X
t~1

"X(t!Dt), X
t~2

"X(t!2Dt). As usual the time step Dt value is chosen on the basis
of the calculation accuracy practical convergence.

With allowance made for equations (24) at the moment of time t#Dt, system (8) of partial
di!erential equations for the nth link is replaced by the sequence of the ordinary di!erential
equations written for every step of the time discretization in the form

E
n
F
n

d2u
n

dx2
n
K
t`1

"o
n
F

n
a
x,n

(O) D
t`1

!o
n
F
n
(u2

y,n
(O)#u2

z,n
(O))x

n
D
t`1

,

E
n
J
zn

d4v
n

dx4
n
K
t`1

!N
x,n K

t

d2v
n

dx2
n
K
t`1

!

dN
x,n

dx
n
K
t

dv
n

dx
n
K
t`1

#

2o
n
F
n

Dt2
v
n K

t`1

"!o
n
F
n
a
y,n

(O) D
t`1

!o
n
F
n
x
n
e
z,n

(O) D
t`1

!o
n
F
n
x
n
u

y,n
(O)u

x,n
(O) D

t`1

!

o
n
F
n

Dt2
[!5v

n
D
t
#4v

n
D
t~1

!v
n
D
t~2

],

E
n
J
yn

d4w
n

dx4
n
K
t`1

!N
x,n K

t

d2w
n

dx2
n
K
t`1

!

dN
x,n

dx
n
K
t

dw
n

dx
n
K
t`1

#

2o
n
F
n

Dt2
w

n K
t`1

"!o
n
F
n
a
z,n

(O) D
t`1

#o
n
F
n
x
n
e
y,n

(O) D
t`1

!o
n
F
n
x
n
u

z,n
(O) u

x,n
(O) D

t`1

!

o
n
F
n

Dt2
[!5u

n
D
t
#4u

n
D
t~1

!u
n
D
t~2

],

G
n
J
pn

L2c
n

Lx2
n
K
t`1

"o
n
J
pn

e
x,n

(O) D
t`1

. (25)

Similar transformations are executed also on the basis of formulas (24) for the boundary
conditions, containing partial derivatives with respect to time t.

The peculiarity of system (25) consists in the fact that the equations composing it are not
coupled explicitly and the mutual dependence of the variables included in them comes only
through the boundary conditions.

It is considered that the states of the manipulator at the moments of time t, t!Dt, t!2Dt
are known; then in system (25) the functions u

n
(x

n
), v

n
(x

n
), w

n
(x

n
), c

n
(x

n
) and the values of

variables a
x,n

(O), a
y,n

(O), a
z,n

(O), e
x,n

(O), e
y,n

(O), e
z,n

(O) at the moment t#Dt turn out to be
unknown. The presence of the last ones is associated with the hybrid type of equations (8).
For their determination a special modi"cation of the transfer matrix method is used. As the
boundary value problem for equations (25) contains not only unknown boundary
conditions but also the mentioned unknown linear and angular accelerations, the special
designations for the missing initial values of the derivatives of desired functions and for the
unknown parameters of accelerations in the right members of equations (25) for the types of
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control considered are introduced. In the case of the kinematic control of the system they
are as follows:

C
1
"du

n
(O)/dx

n
, C

2
"a

x,n
(O), C

3
"d2v

n
(O)/dx2

n
, C

4
"d3v

n
(O)/dx3

n
,

C
5
"a

y,n
(O), C

6
"e

z,n
(O), C

7
"d2w

n
(O)/dx2

n
, C

8
"d3w

n
(O)/dx3

n
,

C
9
"a

z,n
(O), C

10
"e

y,n
(O), C

11
"dc

n
(O)/dx

n
, C

12
"e

x,n
(O). (26)

At dynamic control all the indicated notations are conserved, but the constant C
3

becomes
a known quantity, which acquires the value C

3
"Me

n
/E

n
J
zn

. Here and further, the
subindexes t#1 at the desired variables are omitted.

According to the transfer matrix technique the system (25) solution is represented in the
form of a combination of particular solutions multiplied by the unknown constants C

i
:

u
n
(x

n
)"u1

n
(x

n
)C

1
#u2

n
(x

n
)C

2
#uq

n
(x

n
),

v
n
(x

n
)"v3

n
(x

n
)C

3
#v4

n
(x

n
)C

4
#v5

n
(x

n
)C

5
#v6

n
(x

n
)C

6
#vq

n
(x

n
),

w
n
(x

n
)"w7

n
(x

n
)C

7
#w8

n
(x

n
)C

8
#w9

n
(x

n
)C

9
#w10

n
(x

n
)C

10
#wq

n
(x

n
),

c
n
(x

n
)"c11

n
(x

n
)C

11
#c12

n
(x

n
)C

12
#cq

n
(x

n
). (27)

Here uq
n
(x

n
), vq

n
(x

n
), wq

n
(x

n
), cq

n
(x

n
) are the particular solutions of the Cauchy problems for

equations (25) under homogeneous initial conditions and a
x,n

(O)"a
y,n

(O)"a
z,n

(O)"0,
e
x,n

(O)"e
y,n

(O)"e
z,n

(O)"0; u1
n
(x

n
) ,2 , c12

n
(x

n
) the particular solutions of the Cauchy

problems for equations (25), reduced to such form and under such initial conditions, that for
each ith solution only one of the desired variables of group (26), appropriate to the constant
C
i
, obtains unit value and all the remaining parameters and right members of equations (25)

obtain zero values.
Possessing the matrix of the transfer functions u1

n
(x

n
) , , cqn (xn

) for each of the N elastic
links, it is possible, using the 13 conditions of conjugation (14)}(16), (18), and (21) for each
pair of the adjacent links and also the conditions at the origin x

1
"0 of the "rst link and at

the end x
N
"l

N
of the last one, to count the 13N parameters, embracing the 12N constants

C
i
and the N angular accelerations uK

k
, tG

l
, 0G

m
of relative slewing of the contiguous links in

the case of dynamic control or the N external moments Me
n
(n"1,2 , N) in the case of

kinematic control. Note that as at small steps Dt of the integration in time the coe$cients of
the terms of equations (25), containing the small values Dt2 in their denominators, become
very large, system (25) can turn out to be rigid and contain rapidly increasing functions
among its particular solutions. Therefore, the Runge}Kutta fourth-order method together
with an orthogonalization procedure is used for this system numerical integration and the
mentioned particular solutions construction [13, 15].

On determining the elastic manipulator state at the moment of time t#Dt, it is possible
to pass to the next step of the computing process and to determine the system state at the
moment t#2Dt. For this purpose "rstly on the basis of the found values u

k
, t

l
, 0

m
, u

x,n
(O),

u
y,n

(O), u
z,n

(O), e
x,n

(O), e
y,n

(O), e
z,n

(O), calculated at every node for the time moments t#Dt,
t, t!Dt, t!2Dt, their values for the moment t#2Dt are computed with the help of the
Adams}Bashforth predictor}corrector method [15]. Then at the same step the matrices
B
n~1,n

, BQ
n~1,n

are calculated. Depending on the orientation of a cylindrical hinge axial line
it is possible to separate the three cases of these matrices calculation.
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Case 1. Let u
n
"u

n
(t#2Dt), u5

n
"u5

n
(t#2Dt), t

n
"0

n
"0, tQ

n
"0Q

n
"0; then

B
n~1,n

"KK
1 0 0

0 cosu !sinu

0 sin u cosu KK , BQ
n~1,n

"KK
0 0 0

0 !sinu ) u5 !cosu )u5

0 cosu )u5 !sinu )u5 KK . (28)

Case 2. Let t
n
"t

n
(t#2Dt), t5

n
"t5

n
(t#2Dt), u

n
"0

n
"0, tQ

n
"0Q

n
"0; then

B
n~1,n

"KK
cos t 0 sint

0 1 0

!sint 0 cost KK , BQ
n~1,n

"KK
!sint )tQ 0 cost )tQ

0 0 0

!cost )tQ 0 !sint )tQ KK . (29)

Case 3. Let 0
n
"0

n
(t#2Dt), 0Q

n
"0Q

n
(t#2Dt), u

n
"t

n
"0, u5

n
"tQ

n
"0; then

B
n~1,n

"KK
cos 0 !sin0 0

sin0 cos0 0

0 0 1 KK , BQ
n~1,n

"KK
!sin0 )0Q !cos0 )0Q 0

cos0 ) 0Q !sin0 )0Q 0

0 0 0 KK . (30)

By employing the matrices B
n~1,n

, the matrices

A
n
"B

0,1
)B

1,2
2B

n~1,n
(31)

are computed.
Thereafter, possessing the system states at the time moments t!Dt, t, t#Dt, it is possible

by using the scheme described above to determine its state at the moment t#2Dt and so on.
Note that this approach permits one to avoid the discretization of the constitutive (8) and

reduced (25) equations in the spatial co-ordinates. Its advantage over the formulations
employing mode shapes ab initio lies in the fact that the chosen motion modes are not
imposed on the elastic system. It is likely that the advantage is more evident for spatial
multilink robots with intricate regimes of motions.

6. NUMERICAL SIMULATON AND DISCUSSION OF RESULTS

The approach described was used for the numerical simulation of the dynamics of
coplanar controlled motion of an elastic two-link manipulator, established on a freely
driven platform of mass M

p
"5]103kg and principal moment of inertia I

zP
"1.083]

104kgm2. The manipulator links represent tubular rods of length l
1
"6m, l

2
"3.5m

accordingly with identical outside diameters D
1
"D

2
"1]10~1m and internal ones

d
1
"d

2
"5]10~2m. The material densities o

1
"o

2
"2)7]103 kg/m3, the moduli of

elasticity E
1
"E

2
"6)8]1010 Pa. The load transferred by the manipulator represents

a spherical body of radius r
L
"0)4m, mass M

L
"2103 kg and principal moment of inertia

I
zL
"134)592 kgm2 for the case of dynamic control and r

L
"0)25m, M

L
"513)8kg and

I
zL
"12)845 kgm2 for the case of kinematic control.
In the calculations the time step value Dt was varied and based upon the results for

practical convergence it was chosen to be Dt"5]10~2 s for dynamic control and
Dt"2)5]10~2 s for the kinematic control.

It is assumed that the manipulator motion takes place in the plane XO> of the inertial
system of reference and at the initial immovable state axes of the co-ordinate system O

0
x
0

y
0



Figure 2. Functions of dynamic behaviour of the space robot manipulator at dynamic control (**, elastic
model; } } }, rigid model).

652 V. I. GOULIAEV AND T. V. ZAVRAZHINA
bound with the platform are aligned with the corresponding axes of the system OX>.
The platform mass centre coincides with the point O

0
, the point O

1
of the hinged

connection of the "rst link beginning at the platform is o!set along the axis O
0

x
0

by the
distance O

0
O

1
"0)5m from the point O

0
. At the initial state the axes OX, O

0
x
0

are collinear and the axes O
1

x
1
, O

2
x
2

are turned in relation to the axis OX through the
angle n/2.

The dynamically controlled motion of the manipulator came about as a consequence of
variation of the external moments Me

1
(t), Me

2
(t), changing under the set harmonic laws

Me
1
(t)"!150 sin(0)3t)N m, Me

2
(t)"150 sin(0)3t)Nm [see Figures 2(a) and (b)]. The

system motion was studied for three periods 0)t)63 s of the controlling action.
The kinematically controlled motion was carried out as a consequence of variation of the

angles 0
1
(t), 0

2
(t) under the set law for 24 s. The diagrams of their second derivatives 0$

1
(t),

0$
2
(t) are shown in Figures 3(a) and (b). The maxima of their absolute values equal

D0$
1
(t) D

max
"0)01091 s~2, D0$

2
(t) D

max
"0)00818 s~2; thus, the total angles of rotations were

0
1
(24)"603, 0

2
(24)"453. The system motion was investigated in the time interval

0)t)28 s.
For comparison and veri"cation of the calculations' precision, the statements of the

problems of dynamic and kinematic control of the manipulators with geometrically and



Figure 3. Functions of dynamic behaviour of the space robot manipulator at kinematic control (**, elastic
model; } } }, rigid model).
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inertially equivalent elastic and absolutely rigid links were considered. In the case of the
rigid links the system had "ve degrees of freedom and was described by the Lagrange
10th-order ordinary di!erential equations possessing "rst integrals. In the diagrams of
Figures 2 and 3 the appropriate functions for the rigid manipulator motion are shown by
the point-like curves, and the corresponding functions for the elastic manipulator are
represented by the solid lines. In the segments where the corresponding functions practically
coincide they are presented by the thinner continuous lines.

The functions X
0
(t), Y

0
(t) of the carrying platform centroid C displacements relative to the

inertial reference frame OXY are demonstrated in Figures 2(c) and (d) respectively for the
case of the dynamic control. As the calculations testify, in the time interval 0)t)32 s the
functions X

0
(t), Y

0
(t) values, found for the elastic and rigid statements of the problem,

coincide with a precision of three signi"cant digits. The links elastic pliability has rendered
an appreciable in#uence on the motion of the carrying platform mass centre from the time
moment t"32 s.

The speci"ed functions are presented in Figures 3(c) and (d) for the case of kinematic
control. It is possible to notice that in this situation the e!ect of the links elastic pliability on
the platform motion is insigni"cant and the corresponding functions, obtained in the study
of the elastic and rigid models of the manipulator, practically coincide.
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The angles of rotations a
1
(t), a

2
(t) of the reference frames O

1
x
1

y
1

z
1
, O

2
x
2

y
2

z
2

connected
to the links relative to the inertial co-ordinate system OX> at the dynamic control are
displayed in Figures 2(e) and (f ). The values found of the angles a

1
(t), a

2
(t) for the elastic and

rigid statements coincide with a precision of three signi"cant digits only in the interval
0)t)32 s. At subsequent moments of time the distinction between the angles values for
the speci"ed statements becomes easily discernible visually [see Figures 2(e) and (f )]. At
kinematic control the angles of rotations a

1
(t), a

2
(t) of the local co-ordinate systems are

presented in Figures 3(e) and (f ). Contrary to the angles 0
1
(t), 0

2
(t), which vary under the set

laws and do not depend on the elastic pliability of the links, the former ones include also the
angles of elastic bendings. Presented in Figures 3(e) and (f ) are the dependences of these
angles on time; these point to appreciable in#uence of the rods elastic deformations on their
values in the regime of controlled motion (0)t)24 s). It becomes more distinct in the
stages of the manipulator acceleration and retardation. Due to this, the graph of the
function a

1
(t) possesses the most complicated character, where the "rst link high-frequency

elastic oscillations are preserved even after removal of the controlling action, taking place
t'24 s.

The above noted tendencies in the behaviour of the system considered are largely
conditioned by the process of the manipulator links elastic deformation in time. Consider
now Figures 2(g) and (h) and Figures 3(g) and (h), where the functions of variation in time of
the elastic displacements v

1
(l
1
), v

2
(l
2
) of the links ends are represented accordingly for the

cases of dynamic and kinematic controls. Firstly, analyze the functions v
1
(l
1
, t), v

2
(l
2
, t),

obtained at the dynamic control. It is easy to see that in the interval of time 0)t)32 s
these functions are smooth and the process of the manipulator links deformation proceeds
quasi-statically. However, despite the smoothness of the controlling action, in the
subsequent moments of time some separate sections of nearly discontinuous variation of the
functions v

1
(l
1
, t), v

2
(l
2
, t) in the compressed time scale used take place. These e!ects appear

to be induced by the rapid change of the system mass geometry accompanying folding of its
links. In response to the decrease of inertia moments of the system's separate parts they
acquire large accelerations. Similar behaviour occurs at a sharp change in the carrying
platform trajectory curvature [see Figures 2(c) and (d)]. In the neighbourhood of the
speci"ed states the functions maximal values are attained. For example, at the moment of
time t"35 s the elastic displacements of the links reach the values
v
1
(l
1
)"!5)24]10~3m, v

2
(l
2
)"3)12]10~3m. At kinematic control the curves v

1
(l
1
, t),

v
2
(l
2
, t) outlines [see Figures 3(g) and (h)] are constituted by superposition of elastic

high-frequency oscillations on the pro"les of the curves, which are close to the pro"les of the
set functions of angular accelerations 0$

1
(t), 0$

2
(t), taken with the opposite signs. On

completion of the motion control (t'24 s) the elastic displacements v
1
(l
1
), v

2
(l
2
) of the links

ends become rather small and their in#uence on the system motion as a whole appears
rather inappreciable.

The values of the angles 0
1
(t), 0

2
(t) calculated during analysis of the manipulator

dynamic control are indicated in Figures 2(i) and ( j). The graphs of these functions,
constructed for the elastic and rigid statements, have essential di!erences only at t'32 s,
when the process of deformation of elastic links of the manipulator has a dynamic nature
and exerts an in#uence on the dynamics of the whole system. In this case the calculations
based on the use of a rigid model result in essential overestimation of the angles 0

1
(t), 0

2
(t)

values.
In Figures 3(i) and ( j) the diagrams of the functions of the controlling moments Me

1
(t),

Me
2
(t) determined by solution of the problem of kinematic control are presented. The

pro"les of these curves for the rigid manipulator are close to the pro"les of the functions of
angular accelerations 0$

1
(t), 0$

2
(t). The allowance made for the manipulator links #exibility



Figure 4. Modes of dynamic bending of the "rst (a) and second (b) links of the manipulator at dynamic control.
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results in appreciable alteration of the functions Me
1
(t), Me

2
(t), which di!er from zero at

t'24 s as well.
During the motion considered of the manipulational system the incessant evolution of

modes of the links axial lines v
1
(x

1
), v

2
(x

2
) takes place.

In Figure 4 the modes 1}10 of dynamic bending, the "rst (a) and second (b) links at the
moments of time t

1
"49)5 s, t

2
"49)55 s,2, t

10
"49.95 s, obtained in the case of the

system dynamic control, are given. For the case of kinematic control, the modes 1}10 are
shown in Figures 5(a) and (b) accordingly at the moments of time t

1
"12)425 s,

t
2
"12)45 s,2 , t

10
"12)525 s. Their analysis testi"es that they represent a superposition

of at least the "rst two partial modes of free vibrations.
Thus, the comparison of the results of the cosmic manipulational system study obtained

on the basis of its rigid and elastic models, allows one to make the conclusion that the elastic
pliability of links has an essential in#uence on the calculated dynamic characteristics of the



Figure 5. Modes of dynamic bending of the "rst (a) and second (b) links of the manipulator at kinematic control.
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system as a whole and on the motion of the useful load displaced by it. The allowance made
for the distributed properties of elasticity and inertia of the links permits one not only to
describe more precisely the dynamics of real-space robots (in particular, the angles of their
links slewing), but also to give a quantitative estimation of amplitudes of elastic oscillations
of their actuators. Hence, even at smooth controlling actions it is expedient to investigate
the dynamics of such systems on the basis of the mathematical model of an elastic
continuum system.

In conclusion it should be emphasized, that for the selected ways of system control the
equations of the manipulator motion, both with #exible and with absolutely rigid links,
possess cyclic integrals. Therefore, the cyclic variables determining the co-ordinates of the
manipulator centroid, should conserve their values, and the angular positions of all the links
and terminal bodies after termination of the control process and the angular motion
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slowdown should coincide for both types of the manipulators with the precision of small
displacements induced by the relative elastic oscillations.

In the numerical calculations these integrals can be employed for exclusion of some
desired variables and reduction of the d.o.f. number, though in this case the constituent
equations become much more cumbersome. Therefore, in our calculations the cyclic
co-ordinates were not excluded and were used for veri"cation of the computations
accuracy. In all the cases the "rst integrals were satis"ed with high precision.
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