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The paper discusses the absorption of non-homogeneous thin macro-porous materials. In
particular, the acoustic absorption performance of three-dimensional (3-D) porous media
made up from thin porous patches, with di!erent acoustic properties, is investigated using
a numerical model. The presented model considers the con"guration wherein the material is
bonded onto the hard-walled termination of a semi-in"nite rectangular waveguide. It
couples a "nite element description for the porous material to a modal description in the
waveguide and uses a power balance approach to accurately quantify the absorption
performance of the material. Experimental results are presented to validate the model in the
special case of a macro-perforated porous material. Using this model a parameter study is
presented. It is shown that absorption may be increased at low frequency by using
non-homogeneous patch-works.

( 2001 Academic Press
1. INTRODUCTION

The acoustic absorption performance of porous materials is poor at low frequencies.
For a given thickness, this performance may be improved by using strati"ed media [1]
and/or special con"gurations such as membrane resonators. For simple strati"ed media,
analytical methods (e.g. transfer matrix method: TMM) may be used to evaluate the
acoustical properties in the context of the Biot theory [1}3]. For thin layers at low
frequencies the Biot theory can be replaced by simpler models where the porous frame is
motionless [4], and the air in the porous medium is replaced by an equivalent complex
#uid. Nevertheless, these formulations are limited to one-dimensional (1-D) propagation
and cannot be used to investigate more complex 3-D con"gurations that may present
a priori improved performances. The recent venue of "nite element based numerical
formulations [5}7] for porous materials opens the way for the modelling of such
con"gurations.

Atalla et al. [8] compared an approximate general method of predicting the surface
impedance at low frequencies for non-homogeneous thin porous layers, based on
a non-propagative representation of the acoustic "eld in the layer, to a "nite element based
method, for di!erent three-dimensional porous patchworks. They found comparable results
and concluded that propagative phenomena in sound absorption for non-homogeneous
0022-460X/01/240659#20 $35.00/0 ( 2001 Academic Press
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thin porous layers are not important. However, their theoretical model was approximate
and neglected in particular the possible interaction between the di!erent patches. In the
present paper, a more accurate model is presented and validated experimentally. It consists
of a non-homogeneous porous material, made up from thin porous patches, bonded onto
the hard termination of a in"nite rectangular waveguide. Each thin patch is assumed to
behave as an equivalent #uid, that is, the frames of the porous media are assumed
motionless. The coupling between the porous material and the waveguide is accounted for
explicitly using the modal behavior of the waveguide. Using a power balance approach the
performance of the porous material is investigated in terms of its absorption coe$cient and
acoustic powers dissipated by thermal and viscous mechanisms. Using this model, the
absorption performance of media with double porosity is studied.

Acoustics of media with double porosity was "rst studied by Auriault et al. [9]. Using the
periodic structures homogenization method (HSP) applied to multiscales materials, they
showed that the macroscopic behavior highly depends on the interscale ratio of
characteristic sizes identi"ed in the materials. In the case of rigid porous materials, Boutin
et al. [10] identi"ed a case of particular interest which exhibits a partial coupling between
the pores and the micro-pores: the pressure in the micro-porous domain is not uniform and
the pressure di!erence in the pores and in the micro-pores satis"es a di!usion equation,
at the "rst order of approximation. The problem raises a characteristic frequency separating
the total coupling frequency domain (low frequencies) and the no-coupling frequency
domain (high frequencies). This characteristic frequency is related to the mesoscopic
geometry and to the porosity and the static #ow resistance of the micro-porous media.
A more general description, obtained via the HSP method, has been recently proposed in
order to clarify the possible behaviors of double-porosity media [11, 12]. It appears that the
macroscopic behavior is highly dependent on the permeabilities contrast between the
macro-pores and the micro-pores. Agreement between proposed models and experimental
results are very good in the case of perforated porous panels. They also showed that the
absorption coe$cient could be increased in a given frequency band by "xing the di!usion
frequency properly. However, this model is currently limited to air-"lled macro-pores and
laterally in"nite materials. The proposed model goes beyond these two limitations. It is used
in the present paper to investigate the e!ects of macro-porosity, distribution and nature of
the macro-pores on acoustic absorption.

The organization of the rest of the paper is as follows. Firstly, the "nite element
formulation of the problem is presented together with a detailed discussion of the
calculation of di!erent acoustic indicators that will help explain the governing absorption
mechanisms. Secondly, experimental results are presented to validate the soundness of the
model in the special case of a macro-perforated porous material. Finally, a numerical
parameter study is presented to illustrate the absorption mechanisms and performance for
di!erent three-dimensional macro-porous materials.

2. THEORY

2.1. DESCRIPTION OF THE PROBLEM

The geometry of the problem is depicted in Figure 1. It consists of a three-dimensional
patchwork inserted in a semi-in"nite rectangular waveguide. The system is excited by an
incoming plane wave propagating in the waveguide. Each 3-D patch is rectangular and is
made from a homogeneous porous material modelled as an equivalent #uid. The density
and sound speed in the waveguide are denoted by o

0
and c

0
respectively. In the following,

a temporal dependency e+ut for all the "elds is assumed.



Figure 1. Geometry of the problem.
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2.2. THE EQUIVALENT FLUID MODEL

As mentioned in the introduction, for thin layers at low frequencies, the porous frame
may be assumed motionless. In this case, the porous material is equivalent to a #uid. Its
acoustical properties are completely de"ned with a set of two acoustical characteristics, for
instance, o8

22
and RI where o8

22
is the modi"ed Biot's density of the #uid phase accounting for

viscous dissipation and RI may be interpreted as the bulk modulus of the air occupying
a fraction / of a unit volume aggregate [1]. The equation of propagation in an equivalent
#uid is given by [1, 3]

Dp#u2
oJ
22
RI

p"0, (1)

where p is the pressure in the equivalent #uid.
The associated weak integral form is given by

PXp C
/2

u2o8
22

$p )$dp!
/2
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pdpD dX!PLXp

/2

u2o8
22

Lp

Ln
dpdS"0 ∀dp, (2)

where dp is an arbitrary admissible variation of p. Lp/Ln is the normal derivative of p with
respect to the unit normal vector n external to the bounding surface LXp enclosing the
porous material volume Xp. The volume integral represents the sum of the work, developed
in the virtual displacement "eld associated with dp, by internal and inertia forces in the
porous medium. Given the chosen boundary conditions, the surface integral in equation (2)
is only non-zero on the porous-air interface. The surface integral represents the virtual work
done by the internal pressure at the boundary of the acoustic domain due to an imposed
motion on its surface.

2.3. WAVEGUIDE MODELLING

Let pa denote the acoustic pressure in the waveguide represented in Figure 1. At the
porous}air interface (x

3
"0), the pressure and normal displacement are continuous:

p"pa,
(3)
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Thus, the boundary term in equation (2) takes the form

PLXp

/2

u2oJ
22

Lp

Ln
dpdS"PLXp

1

u2o
0

Lpa

Ln
dpdS (4)

To calculate ua
n
"(1/o

0
u2) Lpa/Ln, the pressure pa is written as the sum of the blocked

pressure p
b

satisfying Lp
b
/Ln DLX

p
"0 and the pressure p

rad
radiated from the surface of the

patch-work media:

pa"p
b
#p

rad
. (5)

For a normal mode excitation of amplitude p
0
, p

b
reduces to 2p

0
. The radiated pressure may

be expressed in terms of the orthogonal normal modes u
mn

in the waveguide:
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are modal amplitudes obtained from the mode

orthogonality properties:
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which leads to
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where
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is the norm of mode (m, n).
Using equations (6) and (9) the normal displacement at the patch-work}air interface,

x
3
"0 can be written in the form
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n
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, (10)

where A is the following admittance operator:
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Substituting expression (10) for ua
n
"(1/o

0
u2) (Lpa/Ln) in equation (4) leads to the following

expression for the boundary coupling term:
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This form has the advantage of depicting the coupling with the waveguide in terms of
radiation admittance and blocked-pressure loading. Note that at low frequencies (below the
cut-o! frequency of the waveguide), higher modes lead to a purely imaginary admittance
operator of an inertance type.

Finally, the weak integral form of the equations governing the porous layer coupled with
the modal behavior of the waveguide is obtained from equations (2) and (12):

PXp C
/2
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22

$p )$dp!
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For a given number of normal modes kept u
mn

in the waveguide, equation (13) is discretized
using the "nite element method and solved for the pressure variable in the porous medium.

2.4. DISSIPATED POWERS IN THE POROUS MEDIA

In this section, expressions for the powers dissipated through the di!erent mechanisms
governing dissipation in the porous}rigid media are derived. Following the classical steps
leading to the weak integral form equation (2) with the following particular choice for the
admissible function: !jup*, one obtains
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This provides the following power balance equation:

P
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"0, (15)

where P
int

, P
iner

represent the power developed by the internal and inertia forces in the
interstitial #uid, respectively and P

trans
represents the power #owing into the

waveguide}porous interface. P
trans

can be written in turn in terms of incident and re#ected
powers.

The time-averaged power dissipated within the system is given by
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It can be subdivided into contributions from powers dissipated through viscous and
thermal e!ects: P
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e!ects is obtained from, P
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, namely
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2.5. ABSORPTION COEFFICIENT

To characterize the absorption performance of the 3-D studied patch-works, one de"nes
its power absorption coe$cient:

a"P
diss

/P
inc
"(Pv

diss
#P t

diss
)/P

inc
, (19)

where P
inc

is the incident power. In the case of a plane wave excitation, of amplitude p
0
, the

incident power is given by

P
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"S Dp

0
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0
c
0
, (20)

where S is the cross-section of the waveguide. Note that at low frequencies (i.e. below the
cut-o! frequency of the waveguide), only the (0, 0) order mode contribute to the real part of
the admittance and a simpli"ed expression for the dissipated power can be obtained using
equations (10) and (11):
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, (21)

where P
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is the re#ected power given by
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and p
avg

is the surface-averaged pressure.
Strictly speaking, for a non-homogeneous patch work a surface impedance is

meaningless: the patch-work cannot be considered locally reacting; there is a transverse
variation of the pressure and the normal velocity at the surface of the patch-work. This
means in turn that keeping only the propagating plane wave mode (0, 0) is not su$cient to
correctly solve the problem; higher evanescent modes must be accounted for in equation (6).
However, in a Kundt tube, an average impedance can be measured by standard methods.
As a consequence, one can also de"ne a space-averaged surface impedance at a distance
d down the waveguide by
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The pressure and the normal velocity are calculated from equations (3, 5, 6) and (8) at
a distance d from the material surface. The surface impedance, Z

s
is next calculated using

the classical plane wave relationship:

Z
S
"
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0
sin (kd)

Z
0
cos (kd)#jZ
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(24)

with Z
0
"o

0
c
0
.

3. EXPERIMENTAL VALIDATION

The presented method has been validated "rst by considering homogeneous porous
media. Next, an experimental validation has been performed in the case of a
double-porosity material. The tested sample consists of a mineral wool with periodic
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cylindrical holes (referred to as macro-pores). Such a material is denoted as having double
porosity. Figure 2 represents a simpli"ed schematic of the tested sample. In this "gure, the
macro-pores are depicted to have a square cross-section. This simpli"cation has been used
to simplify the meshing process required for the numerical simulations of the experiment. It
is seen in Figure 2 that the tested sample consists of a periodic lattice made up of several
periods of a generic cell. The generic cell consists of a square (¸

c
]¸

c
) mineral wool sample

from which a center square hole with dimension (a]a) has been cut out. The porosity of the
wool and the porosity associated with the holes will be denoted by micro-porosity /

m
and

macro-porosity /
p
respectively. The macro-porosity /

p
corresponding to the con"guration

of interest is given by

/
p
"a2/¸2

c
. (25)

The tested sample is made from 1 generic cell: ¸
c
"0)085m and a cylindrical macro-pore of

radius equal to 0)016 m. The acoustic properties of the material are given in Table 1.
Measurements have been performed using a Kundt tube of (0)085m]0)085m) square
section (¸

1
"¸

2
"¸"¸

c
). A single microphone transfer function method has been

employed to determine normal acoustic surface impedances of the samples excited with
a sinusoidal pseudorandom noise signal. For the numerical simulations, "rst note that in
the case of normal incidence, because of symmetry it is possible to reduce the study of the
arrangement depicted in Figure 2 to one cell. Indeed at the boundary between two cells, the
velocity components perpendicular to the boundary are equal to zero. The pressure "eld at
the cell's face is given by

p (x
1
, x

2
, 0)"+

m,n

C
mn

cos A
2nm

¸
c

x
1B cos A

2nn

¸
c

x
2B (26)

since in this special symmetric case, modes with odd indices are not excited. Consequently,
the presented numerical results have been obtained by modelling one generic cell.
Figure 2. Double-porosity material.



TABLE 1

Physical properties and dimensions

Material 1: Rock-wool
Flow resistivity p

m
"135 000Nm~4 s

Porosity /
m
"0)94

Tortuosity a
=
"2)1

Viscous characteristic length K"49]10~6m
Thermal characteristic length K@"166]10~6m
Poisson's ratio l"0
In vacuo Young's modulus E"4400 000Pa
Loss factor g"0)1
Solid-phase mass density o

s
"2167 kg/m3

Material 2: Rigid glass-wool (RG=)
Flow resistivity p

m
"9000Nm~4 s

Porosity /
m
"0)99

Turtuosity a
=
"1

Viscous characteristic length K"192]10~6m
Thermal characteristic length K@"384]10~6m
Poisson's ratio l"0
In vacuo Young's modulus E"440 000Pa
Loss factor g"0)1
Solid-phase mass density o

s
"1630 kg/m3
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The dimension of the hole cross-section has been adjusted to a"0)0283m to conserve the
macro-porosity of the tested sample. Finally, the number of kept modes and the
corresponding lateral mesh have been checked for convergence.

Figure 3 shows the comparison between simulation and measurements for two
thicknesses: (a) 5)75 and (b) 11)5 cm. Excellent agreement is found, validating the proposed
method. To re-emphasize the importance of evanescent modes, Figure 4 shows the number
of kept (evanescent) modes necessary to reach convergence in the case of 11)5 cm thick
material. Figure 5 presents the comparison of the surface impedance between prediction
using equation (23) and measurements for a 11)5 cm thick double-porosity material
(/

p
"0)11). The comparison is acceptable keeping in mind that because of the variation of

the pressure in the transverse direction, only an averaged surface impedance is calculated.
This calculation is acceptable when a global indicator such as the absorption coe$cient is
needed. Indeed, the absorption coe$cient calculated from the averaged surface impedance
and the power balance are the same. However, the interpretation of the averaged surface
impedance must be handled with care. The authors believe that in such cases of
non-homogeneous materials only the global absorption coe$cient and the dissipated
powers calculated from the power balance of the system are meaningful. These are the
indicators that will be used in the following numerical results.

4. NUMERICAL RESULTS

As mentioned in the Introduction, for a double-porosity material, the pressure in the
micro-porous domain is not uniform and the pressure di!erence in the pores and in the
micro-pores satis"es a di!usion equation. The absorption performance of such materials is
linked to a characteristic frequency referred to as the di!usion frequency. The di!usion
frequency for a double porosity material is given by [12]

u
d
"8P

0
/p

m
/
m
M

d
K2

d
, (27)



Figure 3. Comparison between prediction and measurements for a double-porosity rock-wool: (a) 5)75 cm thick;
(b) 11)5 cm thick: **, simulation; ***, measurement.
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where p
m

is the #ow resistivity of the porous material, P
0
"101300 Pa, M

d
is a shape factor

which depends on the hole shapes and on the macro-pores distribution. This coe$cient has
been introduced by Olny [12] and reads:

M
d
"8D

eq
/K2

d
(1!/

p
) , (28)

D
eq

is a function which depends on the geometry of the hole lattices, K
d
is a characteristic

length associated to the di!usion process. It is related to the ratio of the volume and the
surface of the macro-pores in contact with the porous material. For a square hole with size



Figure 4. E!ects of evanescent modes on the absorption coe$cient. h} } }, (m, n)"(0, 0); *s*, (m, n)"(2, 2);
*n*, (m, n)"(4, 4); *£*, (m, n)"(6, 6).

Figure 5. Comparison of the measured and predicted average surface impedance*s!*, simulation: real part;
*n}*, simulation: imaginary part; *£*, measurement: real part; *e*, measurement: imaginary part.
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a in a porous cell of size ¸
c
and thickness h, K

d
is given by

K
d
"

(¸2
c
!a2)h

(4ah#(¸2
c
!a2 ))

"

(1!/
p
)

((1!/
p
)/h#4/

p
/a)

. (29)



HETEROGENEOUS POROUS MATERIALS 669
Note that M
d
can only be calculated analytically for porous materials with in"nite thickness

and simple geometry hole lattices [12]. For "nite thicknesses, M
d
can only be determined

experimentally from the knowledge of K
d

and u
d
. u

d
is found by "tting the analytical

impedance model to experimental data.
For double-porosity materials, it is seen that the acoustic behavior of the whole material

is governed by three important parameters: the size of the hole, the macro-porosity and
a shape factor. Using the proposed model, the next sections are devoted to a numerical
study of the in#uence of these parameters on the absorption coe$cient and the powers
dissipated in a macro-porous material. In particular the following cases are investigated:
(1) the e!ect of the macro-porosity keeping the hole size constant; (2) the e!ect of the hole
size keeping the macro-porosity constant; (3) the e!ect of the shape factor for constant
macro-porosity and cell sizes; (4) the e!ect of the #ow resistivity of the micro-porous
material; and (5) the e!ect of the nature of the material in the macro-pores. Finally,
a comparison between a classical double-layer material and an equivalent heterogeneous
material is presented. In the following, all numerical simulations are performed on a 11)5 cm
thick rock-wool whose characteristics are speci"ed in Table 1.

4.1. INFLUENCE OF THE MACRO-POROSITY

Figure 6 presents one section of the con"guration of interest. The size of the hole (in light
grey in the "gure) is kept constant equal to 2)83 cm while the macro-porosity is increased
from 0)04 to 0)51. Figure 7 shows the evolution of the absorption coe$cient as the
macro-porosity is increased. For porosities larger than 0)04, it is seen that a slight loss of
absorption "rst occurs at very low frequencies followed by an important gain over the rest
of the spectrum. At high frequencies the absorption of all the materials become comparable
(not shown on the "gure). For double-porosity material, a "rst peak occur in the frequency
range 250}500 Hz according to the value of the macro-porosity. The higher the
macro-porosity, the higher the frequency of this peak. This peak increases as the value of
macro-porosity increases from 0)04 to 0)18, but tends to be damped for higher values of
macro-porosity, until it disappears for large macro-porosities (/

p
*0)51). However, for

high macro-porosity, a second peak appears at frequencies higher than 1000 Hz. It is
therefore seen that the macro-porosity can be chosen in order to achieve a maximum
absorption in a given frequency range. At low frequencies, a small macro-porosity gives
better results whereas a higher macro-porosity allows to control the absorption at high
frequencies. Figure 8 shows the contribution of the thermal and viscous dissipation
mechanisms, respectively, to the absorption coe$cient for each case described in Figure 6. It
is clearly seen that both thermal and viscous dissipation increase in the non-homogeneous
con"guration; the strongest contribution is due to the viscous dissipation.

4.2. INFLUENCE OF THE HOLE SIZE

Figure 9 describes one section of the con"guration of interest. The macro-porosity is kept
constant equal to 0)11 while the size of the hole (in light grey in the "gure) is varied from a/4
to 2a where a"2)83 cm. Figure 10 presents the corresponding absorption coe$cients. It is
seen that for all hole sizes, the absorption coe$cient has a distinct peak at low frequencies.
The frequency position and the bandwidth of this peak increase with the hole size. For small
hole sizes, the absorption coe$cient has a second distinct peak. The height of the "rst peak
increases with the hole size while the inverse is observed for the secondary peak. The



Figure 6. Con"gurations of interest
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averaged surface impedance, not shown here, con"rms this behavior. The imaginary part of
the impedance equals zero at the "rst peak, attains a positive maximum at the drops of the
absorption coe$cient and passes through zero again at the second peak. When the hole size
passes a certain limit, the maximum of the imaginary part of the impedance #attens and
only one distinct broad absorption peak is observed. Finally, note that the absorption
coe$cient remains larger than that of the homogeneous material for all hole sizes. In
consequence, the hole size may be used to control the bandwidth of the absorption peak.

4.3. INFLUENCE OF THE MACRO-PORES DISTRIBUTION

Figure 11 depicts one section of the con"gurations used to study the in#uence of the
macro-pores distribution (in light grey in the "gure). The macro-porosity is kept a constant
equal to 0)18. The cell of interest is of size ¸"6)6 cm and is subdivided into seven di!erent
elementary cells which amounts to a hole size of 0)94 cm. Figure 12 present the e!ects on the
absorption coe$cient. It indicates that the largest absorption coe$cient at low frequencies
are obtained for cases (e) and (k), that is for a center square hole and a slot-like hole.
However, cases (l), (m), (n) provide better results at higher frequencies, random case (l)



Figure 7. E!ects of macro-porosity on the absorption coe$cient: h} } }, /
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Figure 8. E!ects of viscous and thermal dissipation mechanisms on the absorption coe$cient for several
macroporosities and a"2)83 cm. h} } }, /
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yielding intermediate performance between cases (m) and (n). In cases (e) and (k), the shape
factor is about the same but the characteristic length K

d
is higher than in cases (l), (m), (n)

and therefore u
d
is smaller. A smaller di!usion frequency induces a larger bandwidth of the



Figure 9. Con"gurations of interest.

Figure 10. E!ects of the hole size on the absorption coe$cient (/
p
"0)11). h} } }, /

p
"0;*s*, a/4; *n*, a/2;

*£*, a ; 2e2, 2a.
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absorption peak at low frequencies as pointed out by Olny [12]. This can be noticed in
Figure 12.

4.4. INFLUENCE OF THE DOUBLE-POROSITY MATERIAL FLOW RESISTIVITY

In this section, the e!ect on the absorption coe$cient of the #ow resistivity of the
micro-porous material constituting the double-porosity material of the previous sections
(/

p
"0)11; h"11)5 cm) is investigated. To keep the resulting materials realistic, the viscous

and thermal characteristic length are varied as well in order to keep the viscous and thermal



Figure 11. Con"gurations of interest.

Figure 12. E!ects of the macro-pores distribution on the absorption coe$cient (/
p
"0)18). }} } , case (e);*h*,

case (k); *s*, case (l); *n*, case (m); *m*, case (n).
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shape factors constant. The other parameters remain unchanged. Figure 13 shows the
in#uence of the #ow resistivity on the absorption coe$cient. Five #ow resistivities are
compared (p

0
"135 kNm~4 s; p

1
"80 kNm~4 s; p

2
"40 kNm~4 s;p

3
"20 kNm~4 s;



Figure 13. In#uence of the #ow resistivity of the microporous material on the absorption coe$cient (/
p
"0)11).

*s*, p
0
; *n*, p

1
; *£*, p

2
; *e*, p

3
; *]*, p

4
.
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p
4
"400 kNm~4 s). The main e!ect is that the frequency position of the peak increases with

decreasing values of p. Also it seems that the peaks becomes wider. As expected at higher
frequencies best results are found for small values of p. However, compared to the
homogeneous cases, the best improvement is obtained in the case of large p as seen in Figure
14. In consequence, macro-perforations work better for materials with a large #ow resistance.

4.5. MACRO-PORES FILLED WITH A POROUS MATERIAL

In this paragraph, the e!ect of the #ow resistivity of material inserted in the hole on the
absorption performance of the system is investigated. A rigid glass wool (see Table 1 for
measured properties) is used to "ll the central hole of the 11)5 cm thick rock-wool
elementary cell depicted in Figure 2, instead of air. The macro-porosity (de"ned here as the
volume of the hole to the total volume) is kept constant to 0)11. Figure 15 shows the results
for several #ow resistivities (for each #ow resistivity, the characteristic lengths are calculated
in order to keep the shape factors constant). It is seen that in all cases, there is an
improvement compared to the homogeneous con"guration. The best results are obtained
for cases with the largest contrast between the #ow resistivities of the two constitutive
materials. The larger the contrast, the lower the frequency position of the absorption peak.
However, using a moderate #ow resistivity allows for a much wider peak and an improved
performance over the entire frequency range.

4.6. ABSORPTION OF A NON-HOMOGENEOUS POROUS MATERIAL

Finally, a multi-layered material made up from a 5 cm thick layer of the rock-wool used
in the previous sections and a 1 cm thick layer of a low resistivity rigid glass wool (RGW)



Figure 14. In#uence of the #ow resistivity of the microporous material on the absorption coe$cient.
Comparison between the homogeneous and the double-porosity material (/

p
"0)11) for: (a) p

3
"20 kNm~4 s;

(b) p
4
"400 kN m~4 s. *s*, /

p
"0; *n*, /

p
"0)11.
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(see Table 1 for properties) are considered. The rock-wool layer is bonded onto the
hard-walled termination of the waveguide. Figure 16, compares the sound absorption of the
multi-layer to a non-homogeneous con"guration in which the RGW is randomly
distributed within the material while keeping the ratio of the volume occupied by the two
materials constant. It is shown that a better absorption coe$cient is attained in the
non-homogeneous case. This result con"rms that the di!erent patches do interact and
a better sound absorption can be achieved using the non-homogeneous con"guration.



Figure 15. E!ects of the #ow resistivity contrast on the absorption coe$cient for holes "lled with a porous
material. *s*, /

p
"0; *n*, p

p
"2000; *£*, p

p
"15000; *e*, p

p
"30000; *]*, p

p
"80000.

Figure 16. Comparison of a two-layers material to an equivalent non-homogeneous material:*s*, two-layers;
*n*, double porosity.

676 N. ATALLA E¹ A¸.
5. CONCLUSION

The absorption coe$cient of non-homogeneous porous layers has been predicted from
a 3-D numerical "nite element model where each patch is modelled as an equivalent #uid.
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An experimental validation has been presented and proved the accuracy of the presented
model. Based on a numerical parameter study, it is shown that surrounding patches interact
together and better performances are obtained for non-homogeneous materials than for
homogeneous simple layered materials. In particular, it has been shown that properly
designed macro-perforated porous materials allow for an important increase of the
absorption performances at low frequencies without any loss at higher frequencies.
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APPENDIX A: NOMENCLATURE

g a vector
g a tensor
$ Nabla operator
$g gradient of g
$ ) g divergence of g
g* complex conjugate of g
¸
1
, ¸

2
lateral dimensions of the waveguide

x"(x
1
, x

2
, x

3
) vector locating a point in space

o
0

density of the #uid in the waveguide
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c
0

sound speed of the #uid in the waveguide
u circular frequency
/ porosity
o8
22

e!ective #uid density of the porous media
RI e!ective bulk modulus of the porous media
p pressure in the equivalent #uid
Xp volume of the porous material
LXp bounding surface enclosing Xp

n unit normal vector external to LXp

L/Ln normal derivative
dp arbitrary admissible variation of p
pa acoustic pressure in the waveguide
ua
n

normal particular displacement associated to pa

p
b

blocked pressure
p
rad

pressure radiated in the waveguide by the surface of the patch-work media
p
0

amplitude of the excitation mode
B
mn

, C
mn

modal amplitudes of mode (m, n) for variable p
rad

and p respectively
u
mn

(x
1
, x

2
) mode (m, n) of the waveguide; for a rectangular cross-section u

mm
(x

1
, x

2
)"

cos ((nm/¸
1
)x

1
) cos ((nn/¸

2
)x

2
)

k
mn

tangential wave number of mode (m, n); k2
mn
"k2!(mn/¸

1
)2!(nn/¸

2
)2

k"u/c
0

wave number in the waveguide
S"¸

1
]¸

2
area of the waveguide cross-section

N
mn

norm of mode (m, n)
A (x, y) admittance operator
P

int
power developed by the internal forces in the interstitial #uid

P
iner

power developed by the inertia forces in the interstitial #uid
P

trans
power #owing into the waveguide-porous interface

P
diss

time-averaged power dissipated within the system
Pv

diss
time-averaged power dissipated through viscous e!ects in the porous material

Pt
diss

time-averaged power dissipated through thermal e!ects in the porous material
P

inc
time-averaged incident power

a absorption coe$cient
P

ref
time-averaged re#ected power

p
avg

surface-averaged pressure
Z

d
space-averaged surface impedance at distance d from the material

Z
s

surface impedance
Z

0
"o

0
c
0

characteristic impedance of the #uid in the waveguide
d distance from the material surface
¸
c

lateral dimension of a generic cell
a size of the hole
/
m

porosity of the porous material
/
p

porosity associated to the holes
h thickness of the macro-perforated material
u

d
di!usion circular frequency for a double-porosity material

p
m

#ow resistivity of the porous material
D

eq
function depending on the geometry of the hole lattices

P
0
"101 300 Pa ambient pressure

M
d

shape factor depending on the hole shapes and on the macro-pores distribution
K

d
characteristic length associated with the di!usion process
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