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ATTENUATION OF STRESS WAVE PROPAGATION
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An exact viscoelastic analogous relation between a periodically layered elastic medium
and a homogeneous viscoelastic medium was introduced, based upon which a short-time
relaxation function was developed. Both the wave front decay and the spatial attenuation of
stress waves in a periodically layered medium were studied. It was shown that the spatial
attenuation of long waves propagating in a periodically layered elastic medium describes the
attenuation of the wave trailing the wave front, while the spatial attenuation of a short wave
characterizes the wave front decay. The e!ects of thickness ratio of the two constituent
layers, their mechanical properties, and the cell thickness on the attenuation of stress wave
propagation were examined. The results showed that the use of the short-time analogous
relaxation function is valid for the attenuation analysis of stress waves propagating in
a periodically layered elastic medium.

( 2001 Academic Press
1. INTRODUCTION

The behavior of wave propagation in layered media has been studied for decades. In his
study, Barker [1] "rst reported that there was an analogy between layered elastic media and
homogeneous viscoelastic media in terms of stress wave propagation, but he did not explain
the analogy in a rigorous manner. Starting from a periodically layered viscoelastic medium
in which a periodically layered elastic medium was a special case, Ting and Mukunoki
[2, 3] theoretically proved Barker's "nding. They showed that the analogy could be
established in di!erent ways. Ting and Mukunoki [2, 3] did not illustrate the wave
attenuation e!ect for wave propagation in layered media because of the viscoelastic
analogies. Christensen [4, 5] studied the same problem by using the perturbation method
and dielectric theory, and derived an approximate spatial attenuation factor, which
indicated the e!ect of viscoelastic analogy for only randomly layered media. Another work
close to this paper was done by Karal and Keller [6], who found a frequency-independent
attenuation factor for a randomly layered medium slightly di!erent from a homogeneous
elastic medium. Regardless of the correctness of the result presented in reference [6], its
application is certainly very limited because layered media are often highly heterogeneous
in practice.

In this paper, we intended to de"ne and demonstrate the attenuation e!ect implied by the
viscoelastic analogy of a periodically layered elastic medium. Layered media constituted by
two distinct elastic materials were studied. Wave front decay and spatial attenuation were
studied and di!erentiated from each other. The spatial attenuation for time harmonic stress
waves was introduced to explain the apparent attenuation phenomenon of the wave trailing
22-460X/01/240747#15 $35.00/0 ( 2001 Academic Press



748 C. HAN AND C. T. SUN
the wave front in the periodically layered elastic medium. The relationship between the
attenuation and the typical cell thickness and layer thickness ratio was examined. Di!erent
material combinations of layers were also investigated.

2. VISCOELASTIC ANALOGY

2.1. ANALOGY IN SOLUTION FORM

Consider a periodically layered elastic medium as shown in Figure 1. A typical cell of
thickness h consists of two constituent layers with distinct properties. The odd-numbered
layers (layers 1, 3, 5,2) are of material 1 with a layer thickness h

1
, density o

1
, and the LameH

constants j
1

and k
1
; and the even-numbered layers (layers 2, 4, 6,2) are of material 2 with

layer thickness h
2
, density o

2
, and LameH constants j

2
and k

2
. For plane waves propagating

normal to the layers, a stress analogy between such a layered elastic medium and
a homogeneous viscoelastic medium can be established by a relaxation function G(t)
expressed in the Laplace transform domain as GM (s) [2]:
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It is obvious that the analogous relaxation function (1) is dependent on both material and
geometry.

The stress solution in a homogeneous viscoelastic medium is given by Ting and
Mukunoki [2]

UM (s)"pN (s)eJ(os)@(G1 (s))x, (6)
Figure 1. A periodically layered medium.
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where UM (s) is the Laplace transform of the plane longitudinal stress in the homogeneous
viscoelastic medium; pN (s) is the Laplace transform of the initial stress condition at (x"0).
The analogy given by equation (1) is that the stress response of a homogeneous viscoelastic
medium with a relaxation function (1) is the same as the stress response of a periodically
layered medium at the correspondent positions, which are located at the mid-planes of the
odd-numbered layers (see Figure 1) given that the initial conditions are identical [2, 3]. To
make this analogy valid, x in equation (6) should be taken as n]h (n"0, 1, 2,2), so that
the simple form (6) can be used to "nd a stress response in a periodically layered elastic
medium. Solutions for arbitrary positions are also available in references [2, 3]. Since our
interest was the attenuation e!ect of wave propagation in a layered medium, we did not list
other solutions here for brevity.

2.2. ANALOGY IN WAVE FRONT DECAY

A wave front in a periodically layered elastic medium decays due to re#ection at the
interfaces. For a wave front having passed through a typical cell consisting of two
constituent layers, it can be shown by analyzing the re#ection and transmission of a wave
that its wave front intensity decays as

/"h~1/
0
, (7)

where / is the intensity of the output wave front after the passage of a typical cell, h is
de"ned by equation (2), and /

0
is the intensity of the incident wave front [2, 7]. If a wave

front passes through n typical cells, its intensity / is

/"h~n/
0
. (8)

The wave front in a homogeneous viscoelastic medium also decays but due to viscous
dissipation. Given a homogeneous viscoelastic medium represented by a relaxation
function G(t), it is shown in references [2, 8] that the wave front intensity U decays as

U"U
0
e~cx, (9)

where c is called the wave front decay factor and can be given as

c"!

GQ (0)

2c
0
G(0)

(10)

and c
0

is the speed of sound in the viscoelastic medium, GQ (0) is the derivative of G(t) with
respect to time t at t"0, and U

0
is the intensity of the incident wave front.

Comparing equations (7) or (8) and equation (9), the two wave front decays can be made
identical after the wave fronts propagate through the same distance in a periodically layered
elastic medium and in a homogeneous viscoelastic medium, respectively, if the following
holds:

c"
ln h
h

. (11)

Note that the analogy relation (1) was not used in the derivation of decay of the wave
front. Also note that the decay of the wave front is not in#uenced by the volume fraction
factor (i.e., geometry parameters such as h

1
and h

2
).



Figure 2. Schematic of a step stress wave propagating in three kinds of media.
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Figure 2 is an illustration of a step stress wave propagating in a homogeneous Maxwell
viscoelastic medium, a periodically layered elastic medium, and a homogeneous elastic
medium respectively. The wave motion in the periodically layered elastic medium,
except for the wave front, is di!erent from that in a homogeneous viscoelastic medium,
so it is di!erent from that in a homogeneous elastic medium. This suggests that the
analogy given by equation (1) describes the wave behavior in a periodically layered
elastic medium di!erent from that in a homogeneous viscoelastic medium. In the following
section the unique attenuation characteristics of periodically layered elastic media will be
found.

3. SPATIAL ATTENUATION

The di!erence of wave propagation in a periodically layered elastic medium and
a homogeneous viscoelastic medium was the wave response trailing the wave front. Such
a di!erence could be seen in the spatial wave pro"les in Figure 2. Thus, the analogy of
equation (1) needs further interpretations. As an attempt to di!erentiate the periodically
layered medium and its analogous viscoelastic medium, consider plane time harmonic
waves in a homogeneous viscoelastic medium, for which the displacement can be expressed
in the form [8]

u(x, t)"uL e~gxe*g*(x`ut@g*), (12)

where uL is the constant amplitude, g is the attenuation factor, g* is wave number (real), u is

frequency, and i"J!1. It can be shown that the spatial attenuation [8, 9] factor is given
by

g"uo1@2GIV/DG*D , (13)

where G*"G
1
#iG

2
is the complex modulus and GIV is given by

GIV"Im(JG*). (14)

To complete the analogy, we need to "nd G* and GIV for a layered medium.
The relaxation function in the time domain, G(t), can be obtained from equation (1)

numerically. Given G(t), the Kronig}Kramers integral relations [10] can be applied to solve



Figure 3. Illustration of the relaxation function of a layered medium (o
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for G
1

and G
2
. We have

G
1
"G(R)#uP

=

0

[G(t)!G(R)] sin(ut) dt, (15)

G
2
"u P

=

0

[G(t)!G(R)] cos(ut) dt. (16)

From equations (1) and (13)} (16), the spatial attenuation factor g can be obtained
numerically if not analytically.

It seems that based upon the analytical relaxation function (1), we should readily "nd the
attenuation factor. However, the computation yielded a vanishing attenuation factor. This
is because the analogous relaxation function G(t) de"ned by equation (1) does not
monotonically decrease with time as a conventional relaxation function in viscoelasticity
does [2, 3]. Figure 3 depicts a typical relaxation function of a layered elastic medium, which
was obtained numerically by using the method of Legendre polynomials discussed in
reference [11]. Although zero attenuation of a layered elastic medium sounds physically
correct (which means there is no energy dissipation overall), it does not help us to explain
the apparent attenuation near the wave front in a layered elastic medium.

From Figure 2, we note that a layered elastic medium behaves asymptotically as
a homogeneous elastic medium for the wave at a distance behind the wave front. The
di!erences in wave propagation occur at the wave front and its immediate waves. This
observation leads to the notion that the viscoelastic analogy or attenuation e!ect of
a layered elastic medium may be valid only for short-time responses.

The following is to derive a short-time analogous relaxation function for a periodically
layered medium from the exact relaxation function (1).

3.1. SHORT-TIME ANALOGOUS RELAXATION FUNCTION

Recall the relation between the time domain variable t and the transform domain
variable s in Laplace transform. Small t corresponds to large s, and vice versa. Considering
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a large value of s and using the approximate expression

cosh(s)"1
2

es#2, (17)

we obtain from edquation (1)

ehJos@GM (s)"hea4!(h!1)ebs. (18)

From equations (4) and (5), we have a*b. The equality case, a"b, indicates that the
layered medium degenerates into a homogeneous medium. Only the inequality case, a'b,
is considered.

Since s is very large and a!b'0, we simpli"ed equation (18) and obtained the
transformed relaxation function as

GM (s)"
h2os

(ln h#as)2
. (19)

The inverse transform of GM (s) is easily obtained as

G(t)"mA1!
t

qBe~t@q (20)

where

q"a/ln h, m"h2o/a2. (21)

Equation (20) represents an analogous relaxation function asymptotically approaching
the exact one when t is small. Since we were only interested in the short-time response, we
restricted the validity of G(t) given by equation (20) only to t)t

0
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0
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Figure 4 shows the comparisons of the short-time relaxation function (labelled as
&&short-time'') and the exact relaxation function (labelled as &&exact'') numerically obtained
for (a) a layered medium consisting of steel/PMMA with a typical cell thickness of 1)034 mm
and thickness ratio h

1
/h"0)24 and (b) a layered medium composed of ceramic/aluminum

with a typical cell thickness of 3 mm with thickness ratio h
1
/h"0)2. The material properties

are listed in Table 1. The symbols in Figure 4 are the values numerically calculated. It is
evident that the derived short-time relaxation function agrees with the exact one very well.

Another comparison was the wave propagation in a layered medium by using the exact
relaxation function (1) and by the short-time relaxation function (20). Figure 5 shows the
two stress responses at the mid-plane of the 11th layer (layer 11, material 1) of the
steel/PMMA medium subjected to a unit step stress loading. For case (a), h"1)034 mm,
h
1
"0)025 mm; and for case (b) h"1)034 mm, h

1
"0)25 mm. The curves labelled as

&&exact'' were obtained by using the exact relaxation function, while the ones labelled as
&&short-time'' were computed by the short-time relaxation function. It is evident that the
short-time relaxation function is able to characterize the behavior of a layered medium near
the wave front.

In the sequel, we used the short-time relaxation function to study the attenuation of the
wave trailing the wave front.



Figure 4. The exact relaxation function and the short-time relaxation function (*e* exact;*h*, short time).
(a) Steel/PMMA; (b) ceramic/aluminum.

TABLE 1

Material properties

Impedance
Material No. Material Density (kg/m3) k (GPa) j (GPa) ratio (no. 1/ no. 2)

1 Steel 7)89 79 110 14
2 PMMA 1)15 0 8)9

1 Ceramic 3)98 136 136 460
2 Rubber 1 0)0007 0)006

1 Ceramic 3)98 107 128 2)5
2 Al 2)7 21 40
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Substituting equation (20) into equations (15) and (16) and neglecting the contribution to
the integral after time t

0
, one can "nd the complex modulus. After lengthy algebraic

manipulations, we obtain
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0
, (24, 25)



Figure 5. A step-stress wave propagating in a layered medium (**, exact; , short time). (a) h"1)034 mm,
h
1
"0)025 mm; (b) h"1)034 mm, h

1
"0)25 mm.
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where
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Consider two extreme cases, namely, long wave (small u) and short wave (large u). If uP0,
the following approximations can be derived from equations (26)} (29):

C
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4
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t
0
qB e~t0@qD. (30)



Figure 6. Spatial attenuation factors obtained from the short-time relaxation function with and without the
long-wave assumption. (a) u"1 Hz (s, short time; , long wave); (b) u"1 MHz ( , short time; - - - -, long
wave).
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Substituting equation (30) into equations (24) and (25), and further simplifying, we have

G
1
(u)+G

=
, G

2
(u)+ut

0
(me~(t0@q)!G

=
). (31, 32)

Using equations (31) and (32) and noting G
1
(u)<G

2
(u) for small u, we obtained, from

equation (13), the spatial attenuation factor for long waves in a layered medium as

g"
u2o1@2t2

0
2(q!t

0
)G1@2

=

. (33)

Equation (33) is compared with the spatial attenuation factor computed based upon the
short-time relaxation function without the long wave assumption for frequencies 1 Hz and
1 MHz. Figure 6 shows that the two attenuation factors corresponding to these two
frequencies do not di!er much for the steel/PMMA medium with a thickness h of 1)034 mm
and various layer thick ratios (h

1
/h). In Figure 6, &&short time'' denotes the result without

involving the long-wave assumption (small u) and &&long wave'' denotes the result with the
long-wave assumption. The result indicates that the expression given by equation (33) is
valid not only for very low frequencies but also for relatively large frequencies (1 MHz). The
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valid range of frequency is related to the magnitude of t
0
. A small t

0
allows equation (33) to

be valid for high frequencies, while a large t
0

makes equation (33) valid for low frequencies.
Usually, t

0
is very small for a layered medium with thin layers.

The second extreme case is short waves with very large values of u. Letting uPR, we
obtain from equations (26) to (29)

uC
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Subsequently, from equations (24), (25) and (34), we "nd
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By using equations (35) and (36), we obtain, from equation (13), the attenuation factor for
short waves (uPR) as

g"o1@2C2!Ae~t0@q#
1

m
GaB cos ut

0DN(2qm1@2). (37)

Equation (37) gives an oscillatory attenuation factor with the frequency. The mean of the
attenuation factor given by equation (40) for short waves, g

mean
, is

g
mean

+

o1@2

qm1@2
. (38)

Using (21), the mean of the attenuation factor from (38) becomes

g
mean

"

ln h
h

. (39)

The above expression is identical to the wave front decay factor c given by equation (11).
Thus, the attenuation for short waves propagating in a layered medium is equivalent to its
wave front decay. This conclusion was stated in reference [4] without a proof.

3.2. EFFECT OF THICKNESS AND IMPEDANCE RATIOS

The short-time relaxation function (20) was used to study the relation between the spatial
attenuation factor and the typical cell thickness ratio as well as material properties. The
constituent layer thickness ratio (h

1
/h or h

2
/h) is a measurement of the volume fraction of

the constituent materials. For illustration purposes, two sets of material systems,
ceramic/aluminumand ceramic/rubber, were studied. The two material systems represented
a low impedance mismatch and a high impedance mismatch respectively. Their mechanical
properties are given in Table 1.

Figures 7 and 8 show the e!ects of the thickness ratio and the material impedance
mismatch on attenuation. The curves shown in Figures 7 and 8 represent ceramic/rubber
with an impedance ratio of 460 and ceramic/aluminum with an impedance ratio of 2.5
respectively. Since the formulation derived for long waves is valid for quite a large range of
frequency given that the typical thickness h is small, we therefore, choose the frequency u as
1 Hz for computational convenience.



Figure 7. E!ect of thickness ratios on the attenuation factor (- - - -, impedance ratio"460; , impedance
ratio"2)5).

Figure 8. E!ect of impedance mismatches on the attenuation factor ( , impedance ratio"460; - - - -,
impedance ratio"2)5).
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It is clearly shown in Figure 7 that there is a thickness ratio that gives the maximum
attenuation factor. The thickness ratio of maximum attenuation, (h

1
/h)

opt
, depends on the

impedance mismatch of the two constituent materials. Given a typical thickness h, (h
1
/h)

opt
is around 0)55 for ceramic/aluminum, while (h

1
/h)

opt
is about 0)78 for ceramic/rubber. In

other words, the layer with high impedance needs to be thicker in order to achieve the
maximum attenuation if the impedance mismatch of the two constituent materials is high. It
is also shown in Figure 7 that the attenuation factor vanishes as the thickness ratio (h

1
/h)

approaches the two extreme cases, i.e., h
1
/h"0 (a homogeneous medium of material 2) and

h
1
/h"1 (a homogeneous medium of material 1). A thickness ratio h

1
/h"0)5 gives an

attenuation factor close to the maximum.
Figure 8 shows the e!ect of impedance mismatch. It is seen that the attenuation increases

as impedance mismatch increases.
Note that the attenuation factor is frequency dependent. Nonetheless, additional

numerical results indicate that Figures 7 and 8 hold for a wide range of frequency up to the
order of 1 MHz for the given geometry and material systems.
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In the rest of this section, we veri"ed the maximum attenuation achieved in the previous
discussion by illustrations of stress wave propagation in a layered ceramic/aluminum
medium as an example.

Wave propagation was solved by using equation (6) for stress responses at the mid-planes
in the odd-numbered layers and its extensions for arbitrary positions based upon the exact
relaxation function (1) (see reference [2]). The method of inverse Laplace transformation
discussed in reference [12] was used in this computation. Layered media constituted by the
same materials with the same typical cell thickness h"3)0 mm but di!erent layer thickness
ratios (de"ned as h

1
/h) were examined. A unit step stress was applied at the mid-plane of the

"rst layer (layer 1) of the layered medium at time t"0. For demonstration purposes, three
representative thickness ratios were chosen, i.e., (h

1
/h)

opt
"0)55 which corresponds to the

maximum attenuation, h
1
/h"0)2 which is less than (h

1
/h)

opt
, and h

1
/h"0)8 which is larger

than (h
1
/h)

opt
. In order to compare the attenuation e!ect of waves in the layered media

properly, a comparison is made at the same spatial positions but equivalent time (when the
wave front propagates the same distance in di!erent media).

Figure 9 shows the wave fronts and their trailing pro"les of the stress responses in
a layered medium at three di!erent times (t"t

0
, t"t

0
#*t, and t"t

0
#2*t, where *t is

the time needed for a wave front to pass through a typical cell, calculated di!erently for each
medium) when the wave front reaches x/h"13, 14, and 15 respectively. To make the
comparison clearer, we incorporated the wave responses of the other two media into the
medium with a thickness ratio equal to (h

1
/h)

opt
, respectively [see Figure 9(a,b)]. The

marked points in Figure 9 represent the computed exact values of the stress wave at the
corresponding positions in time. The linking lines between markers are drawn for an
outlining purpose.
Figure 9. Wave fronts and their trailing pro"les in layered media with di!erent thickness ratios. (a) *e*,
h
1
/h"(h

1
/h)

opt
; and *n*, h

1
/h((h

1
/h)

opt
; (b) *e*, h

1
/h"(h

1
/h)

opt
; and *n*, h

1
/h'(h

1
/h)

opt
.
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Since the number of interfaces of all the three-layered media with di!erent thickness
ratios is identical in the comparison, the wave front decays in all the cases should be
identical as discussed in section 2.2. Figure 9 con"rms this point. The wave fronts in all the
three layered media are identical. However, the trailing waves do di!er. The medium with
a layer thickness ratio equal to (h

1
/h)

opt
always results in a #atter wave pro"le trailing the

wave front, indicating a greater spatial attenuation e!ect. This can be understood in this
way. Consider the two media subjected to the same unit step loading. After the stress wave
propagating the same distance, one of its wave pro"les becomes #atter than the other. The
one that has #atter wave pro"les must have experienced a higher attenuation in the course
of propagation through the given distance, or a higher spatial attenuation. In addition, by
checking the attenuation rate of the two corresponding positions (excluding the wave front
and its immediate neighborhood) from one typical cell to the next adjacent typical cell (with
time di!erence Dt), we found that the medium with the optimal cell thickness ratio (h

1
/h)

opt
has the highest attenuation rate. Thus, the medium with (h

1
/h)

opt
demonstrates the highest

spatial attenuation e!ect among the three media.
The following could be summarized in accordance with Figure 9.

f Di!erent thickness ratios result in di!erent spatial attenuations for stress waves
propagating in layered media with the same constituent materials and the same cell
thickness, h.

f The highest attenuation occurs in the layered medium with the thickness ratio (h
1
/h)

opt
,

which agrees very well with the results calculated by the attenuation factor derived from
equation (33).

It is worth pointing out that the propagation and attenuation of waves in a layered elastic
medium is di!erent from the propagation and attenuation of waves in a homogeneous
viscoelastic medium. The wave produced by a unit step stress in a layered elastic medium
can have an amplitude exceeding the input unit amplitude (which an the wave responses
beyond the trailing portion of a wave front, not shown in Figure 9), while the amplitude of
the wave produced by the same input in conventional homogeneous viscoelastic media can
never exceed the input magnitude [8, 13]. This is why the attenuation calculation is only
valid for a short time after the passage of the wave front.

3.3. EFFECT OF CELL THICKNESS

We considered the material system of ceramic/aluminum with the properties listed in
Table 1 and calculated the attenuation factor given by equation (33) to make a comparison
among three media with cell thickness equal to h

0
/2, h

0
, and 2h

0
, respectively, where h

0
is an

arbitrary thickness. For a given distance, a layered medium with thinner cells contains
more layers than a layered medium with thicker cells. For a frequency of 1 Hz
(wavelength+8000 m) and h

0
"3 mm, the calculated results are presented in Figure 10. It

is evident that the layered medium with thicker cells gives a larger spatial attenuation factor
than that with thinner cells. On the other hand, the wave front decay shows an opposite
trend. This behavior is easy to understand by noting that the wave front decay factor c only
depends on the number of interfaces it passes.

The above discussion was checked against the study of wave propagation in the ceramic/
aluminum layered medium. Two cell thicknesses were considered, i.e., h"h

0
, and 2h

0
, with

h
0
"3 mm. The thickness ratio h

1
/h was assumed to be 0)2 for both layered media. We

propagated a unit step stress wave at x"0 into the layered media and checked the stress
response at a certain position.



Figure 10. E!ect of the cell thickness on the attenuation factor (*s*, h"h
0
/2; *, h"h

0
; *n*, h"2h

0
).

Figure 11. Wave fronts and their trailing of a step stress wave propagating in two layered media with di!erent
cell thicknesses ( *n*, h"h

0
; *e*, h"2h

0
).
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Figure 11 shows the stress responses of the wave in the two media. The curves in Figure
11 are the wave front as well as its trailing stage at three di!erent times which correspond to
the wave front reaching x"12h

0
, 14h

0
, and 16h

0
respectively. The results indicate that the

medium of thinner cells (h"h
0
) provides a greater decay than the medium of thicker cells

(h"2h
0
) at the wave front. On the other hand, the slope of the trailing wave pro"le behind

the wave front in the medium with thicker cells is #atter. This agrees with the results depict
in Figure 10 which shows that a layered medium of thicker cells has a higher spatial
attenuation than a layered medium of thinner cells.

Based upon the above discussions, we note that there are two di!erent features in
the e!ect of cell thickness, i.e., wave front decay and spatial attenuation. For a layered
medium with thinner cells, the decay of a stress wave at the wave front is greater but its
rise to a certain amplitude is spatially shorter. The opposite is true for a layered
medium with thicker cells. An optimal design for a layered medium in the layer thickness
depends on the selection of wave front decay or the spatial attenuation as the objective
function.
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4. CONCLUSION

The wave front decay and the spatial attenuation of the trailing wave in an elastic media
consisting of alternating layers of di!erent materials have been studied. With the short-time
relaxation function model, it was shown that the short-wave attenuation characterizes the
wave front decay, while the long-wave attenuation is related to the spatial attenuation. The
proposed short-time relaxation function agrees very well with the exact one in describing
the wave front decay and the spatial attenuation for waves trailing the wave front. The
following conclusions have been reached.

(1) An analogy in the attenuation behavior between layered elastic media and homogeneous
viscoelastic media exists at the wave front and its immediate trailing wave.

(2) Given that other conditions are the same, the thickness ratio of the two constituent
layers can a!ect the attenuation of waves trailing the wave front in the periodically
layered elastic medium. In general, the attenuation e!ect decreases as the ratio of the
two constituent layer thicknesses (h

1
/h for example) approaches either 0 (homogeneous

medium of material 1) or 1 (homogeneous medium of material 2).
(3) The cell thickness a!ects the decay of the wave front and the spatial attenuation.

A thinner cell results in a greater decay of the wave front but in a smaller spatial
attenuation of waves trailing the wave front.

(4) A higher impedance mismatch between the two constituent materials leads to a higher
spatial attenuation of waves trailing the wave front and to a larger wave front decay for
the material systems studied.
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