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In the design of actively controlled structures, the determination of the actuators and
sensors location is a very important issue. In this way, the purpose of this paper is to propose
a new approach to "nd the optimal location of piezoelectric actuators and sensors on beam
structures. More precisely, "rst the optimization criteria are de"ned: it is proposed here to
"nd the optimal actuators location by minimizing the mechanical energy integral of the
system and the optimal sensors location by maximizing the energy of the state output. In the
two cases, a sensitivity method applied to the discrete equations is used. Several results are
presented. This methodology is used to "nd the optimal location of one actuator and one
sensor on a cantilever beam, and on a three-beam structure. When there are di!erent
optimal locations, several performance measures are considered in order to keep one
location.

( 2001 Academic Press
1. INTRODUCTION

Recent studies on structural control systems using piezoelectric materials have shown such
materials to be e!ective in vibration suppression of structures [1}4]. Piezoelectric materials
are applied in structural vibration control to take advantage of their fast response, of their
#exibility to be used as sensors and actuators in a large variety of applications, and the fact
that they provide a broadband frequency response. They are lightweight and can be bonded
(or embedded) to a variety of structures.

Some parameters, like location of actuators and sensors, have a major in#uence on the
performance of the control system [5]. Many studies have been developed on optimal
locations of actuators and sensors. Di!erent cost functions and performance measures have
been used. In the case of optimization of actuator location, Arbel [6], Hac [7] and Devasia
[8] proposed to maximize a controllability criterion using a measure of the gramian matrix.
This approach seeks to ensure active damping of all needed modes. A second usual
optimization cost function is a linear quadratic optimal framework. Dhingra [9], Kondoh
[10] and Yang [1] proposed a quadratic cost function taking into account the measurement
error and control energy. They used it simultaneously to "nd optimal location of actuators
0022-460X/01/250861#22 $35.00/0 ( 2001 Academic Press



862 I. BRUANT E¹ A¸.
and sensors. However, the most usual performance function for sensor location uses the
energy of the state output so as to maximize the information given by sensors. Baruh [11]
and Hac [7] rather proposed to maximize measures of the gramian observability matrix in
order to have optima without dependence on initial conditions.

In this paper, a methodology is proposed to "nd the actuators and sensors location to
increase control e$ciency. In order to simplify the optimization problem, it was decided to
search independently the optimal location of actuators and that of sensors.

Consequently, it is proposed here to obtain optimal actuators location by minimizing the
mechanical energy integral of the system. The optimal sensors location is found by
maximizing a measure of the observability gramian. This methodology is developed here for
beam structures, but it can be used for more complex structures (which is our future aim). It
uses mechanical and state equations of the structure.

In section 2, we point out the active vibration control equations for beam structures. The
control system is developed from a "nite element modelling, and uses a linear quadratic
control method including a state observer. Simulations in the case of a three-beam structure
show the in#uence of actuators and sensors location on the control e$ciency.

In section 3, we present the optimization problems of actuators location and those of
sensors location. They are solved independently by using a sensitivity gradient algorithm.
This method is based on the di!erentiation of the optimization criteria and equations of
motion with respect to the design variables. The derivatives of each criterion are detailed in
section 4.

Results of simulations are presented in section 5. We use the methodology to "nd the
optimal location of one actuator and one sensor on a three-beam structure and on
a cantilever beam. For some cases, the algorithm gives several optimal locations.

In order to select one location among the di!erent best obtained placements, we propose
several performance measures. In the case of the cantilever beam, we also examine the
optimal location of a second actuator and a second sensor.

2. INFLUENCE OF THE ACTUATORS AND SENSORS LOCATION

2.1. MODELLING

The active vibration control of #exible elastic beam structures using piezoelectric
actuators and sensors is considered. Figure 1 shows a three-beam example of such
Figure 1. A three-beam structure: , sensor; **h, actuator.
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a structure. Each actuator and sensor (each active device) is made up of a pair of
piezoelectric materials attached symmetrically.

It is assumed that a known and representative loading condition has been previously
chosen before starting the optimization process. It is not discussed here as to how to make
this choice and what its in#uence on the optimal location of active devices is.

The "nite element modelling of this kind of structure has been developed in reference
[12]. One has the discrete equations
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Assuming that the contribution of the highest modes is negligible, one keeps only the "rst
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where [W] (size Nddl]N) is the modal shape matrix.
Substituting equation (5) into equations (1) and (2) leads to the equations
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The input of the system is the voltage applied to the actuators and the output is the voltage
across the sensors. [A]

(2N,2N)
, [B]

(2N,2N1 a)
, [C]

(2N1 s,2N)
and MgN

(2N,1)
are the state, control

output and load matrices, given by
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Mx
0
N is the initial conditions vector.

2.2. CONTROL SYSTEM

In order to actively control vibrations, a linear quadratic control method, including
a state observer, is used. It consists in using a control law

MqUNa"![K]MxL N, (10)

which minimizes the cost function
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[MxL NT[Q]MxL N#MqUNTa [R]MqUNa] dt, (11)

where MxL N is the estimate of MxN. MxL N is obtained with the state Luenberger observer, and is
a solution of

d

dt
MxL N"[A]MxL N#[B]MqUNa#[¸] (MyN![C]MxL N), (12)

where [¸] is the observer gain matrix [4, 12, 14]. The choice of [Q] and [R] is detailed in
reference [15]. Here, [Q] is chosen so that MxNT[Q]MxN represents the mechanical energy.
[R] is chosen such that the maximum values of MqUNa are less than the maximum admissible
values of piezoelectric materials for the considered loads. In practice, once a maximum
admissible load is chosen, several simulations are done, using di!erent [R], to select an
admissible one.

2.3. SIMULATIONS

The control algorithm may be summarized by two main steps.

Step 1: the discretization of the structure using a "nite composite beam element [12] and
the determination of the state-space model of the system.

Step 2: the construction of the control and observer.

Step 1 has been developed in DYNADID2D [16] while step 2 has been done by using
SCILAB [17] (software developed at INRIA). Each active device is discretized using several
adjacent elements. Several simulations presented in references [12, 15] show the e$ciency
of the control system for di!erent structures. Considered here is a three-beam structure
(Figure 1) controlled by one actuator and one sensor. The geometrical and mechanical



TABLE 1

Characteristics of the three-beam structure

B
1

(m) (0, 0)
Length B

1
B
2

(m) 0)5
Length B

2
B
3

(m) 0)4
Length B

3
B
4

(m) 0)5
Location of actuator 1 (m) (0, 0)02)
Location of actuator 2 (m) (0)04, 0)5)
Location of sensor 1 (m) (0, 0)42)
Location of sensor 2 (m) (0)4, 0)46)

Length of each actuator (m) 0)06
Length of each sensor (m) 0)01
Natural frequencies (Hz) 1)48, 2)89, 7)99, 29)64

Width of elastic beams (m) 0)025
Thickness of elastic beams (m) 0)002

Mass density of elastic beams (kg/m3) 2700
Young's modulus of elastic beams (Pa) 7)3]1010

TABLE 2

Characteristics of piezoelectric PZ¹

Width (m) 0)01
Thickness (m) 0)001

Mass density (kg/m3) 7440
Young's modulus (Pa) 4]1010

Piezoelectric constant e
33

1)72]10~8
Piezoelectric constant d

31
(m/V) 230]10~12

Maximal admissible voltage (V) 250

Figure 2. The two di!erent actuator locations.
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properties of the system are detailed in Tables 1 and 2. The structure is subjected to a release
test derived from the load F"Fx, applied at B

4
and de"ned as

for t(0, F (t)"0)05 N,

for t*0, F (t)"0 N. (13)



Figure 3. In#uence of the actuator location. (a) Output sensor; (b) input actuator: ==, location 1; *,
location 2.
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Due to the nature of the excitation, only the four "rst eigenmodes are taken into account.
The active control of this structure is detailed in reference [12]. Here, the dependence of
control e$ciency on actuators and sensors locations is presented.



Figure 4. The two di!erent sensor locations.
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First, the sensor location is "xed at C
1
"(0, 0) and two locations are considered for the

actuator: A
1
"(0, 0)01) and A

2
"(0)4, 0)1) (see Figure 2). Comparing results for both

actuator locations in the case of a closed loop shows that the "rst location is better than the
second one: the sensor output vanishes in less than 10 s whereas for the second location it
requires more than 40 s. Also, the "rst location uses less electric energy than the second one
(see Figure 3).

The in#uence of sensor location on the e$ciency of the control can also be shown. Now,
the actuator location is "xed at A

1
"(0, 0)01) and two sensor locations are considered:

C
1
"(0, 0) and C

2
"(0)4, 0)05) (see Figure 4). Results for these two sensor locations, are

plotted in Figure 5. At the beginning, the amplitude of the output for case 1 is higher than
that for case 2: for the "rst location, the sensor gives better information and faster than that
located at C

2
. Thus, the control system reacts faster too. The maximum value of MqUNa in the

"rst case is higher than that of case 2: the control is more e$cient; the output decreases
quickly. Consequently, the "rst sensor location is better than the second one.

Simulations presented for the three-beam structure illustrate the in#uence of actuators
and sensors locations on the e$ciency of active control. Some locations of the actuators
may of course induce non-controllability while some locations of sensors may induce
non-observability. But even if controllability and observability are maintained, the
e$ciency of the control can be improved by choosing better locations and shapes for
sensors and actuators.

3. THE TWO OPTIMIZATION PROBLEMS

3.1. MODELLING

In order to develop a methodology for determination of actuators and sensors geometry
on structures, "rst the design variables have to be de"ned to describe shape, dimensions and
location. In the case of a rectangular actuator (or sensor) located on a plate, possible
variables are detailed in Figure 6. In the case of a beam structure, the optimization variables
can be a location a

1
and a length a

2
(see Figure 7). In the subsequent applications, beam

structures, are to be considered, but the following developments can be used for more
complex structures. Here, the shape of each actuator and sensor is assumed to be known
and its length is constant. The only design parameter is thus an abscissa a

i
.



Figure 5. In#uence of the sensor location. (a) Output sensor; (b) input actuator:00, location 1;*, location 2.

868 I. BRUANT E¹ A¸.
To sum up, the locations of some nodes of the "nite element discretization are described
by a set of design parameters. As a consequence, it is straightforward to calculate derivatives
of "nite element matrices and vectors with respect to design parameters: they are



Figure 6. Design parameters in the case of plates.

Figure 7. Design parameters in the case of beams.
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combinations of derivatives with respect to node locations which can be easily and
systematically calculated at the element level.

To simplify the optimization problem, "rst one can search independently for optimal
locations of actuators and sensors, and then assume that an observer is not needed. The
motivations for splitting the optimization problem into two independent ones are the
following: "rst, practically, an optimal transmission of power (optimal location of actuator)
is the priority. In another part, optimizing simultaneously the location of several active
devices would necessitate dealing with a constrained optimization problem in order to
avoid superposition of devices.

In practice, when using the "nite element method, each active device is modelled by a set
of elements. The shape of each element can be made dependent upon the location of nodes
(isoparametric elements for instance). Thus, the shape of the active device may be described
by the location of the nodes it is connected to. In the case considered here (see Figure 8),
each active device is modelled by a set of two-node beam elements. N

L
and N

R
are,

respectively, its left and right outer nodes.

3.2. THE OPTIMIZATION CRITERIA FOR ACTUATORS LOCATION

In the case of actuators location, as already described in the introduction, the goal is to
increase control e$ciency (i.e., suppress vibrations as quickly as possible). A more



Figure 8. During an iteration, only the left and right outer nodes of the active device move (assuming that the
length is constant).
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interesting study would be to minimize the time response for the sensor outputs to vanish.
As this criterion is not easy to use, one can decide to minimize the &&mechanical energy
integral'' of the system with respect to the actuators design variables, called a

i
: "nd a

i
,

i"1,2 which minimize

J
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i
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Also, the LQR method can be used to construct the control law; it consists in minimizing
JU given by equation (11) with respect to MqUNa .

Thus, in the case of actuators, two optimization problems have to be solved
simultaneously: the minimization of J

a
with respect to a

i
and the minimization of JU

with respect to MqUNa . The control law depends especially strongly on the location
of actuators. Consequently, it has been decided here to solve them iteratively. At each
step of optimization of J

a
, one minimizes JU and keeps constant the corresponding

matrix [K].

3.3. THE OPTIMIZATION CRITERIA FOR SENSORS LOCATION

In the case of sensors, the optimal location of sensors is usually found by maximizing the
energy of the system output J

y
, as well as the contributions of individual modes to the

output:
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When the system is released from the initial state MxN (t"0)"Mx
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N without active damping

(MqUNa"0 t*0), the output energy is [7]
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where [G
o
(¹ )] is the observability gramian matrix

[G
o
(¹ )]"P

T

0

e*A+Tt[C]T[C] e*A+t dt.

In the previous expression of J
y
, only [G

o
(¹ )] depends on the sensors location. Also as

initial conditions cannot be known, it is desirable to "nd the sensors location in such a way
as to maximize some measure of the matrix [G

o
(¹ )] [7, 11].

In the case of neglected damping, and for ¹ su$ciently large, [G
o
(¹ )] becomes diagonal

dominant [7, 11]: i.e.,
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Several measures of [G
o
] can be used: its determinant, its trace or the product of the

determinant with the trace. In order to ensure the observability of each mode, here it has
been decided to use the "rst one. The optimization problem now is to "nd the parameters of
the sensors location c

i
, i"1,2 which minimize
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where j
i
are the eigenvalues of [GI

o
]. The logarithm function in equation (15) is used to

decrease the value of the determinant of [GI
o
].

3.4. THE OPTIMIZATION METHOD

In order to minimize the optimization criteria J
a

and J
s
, one can choose to use a

gradient algorithm [18]. For optimizing a criterion J (p), where p is the design para-
meter, this method consists in "nding the solution p* by constructing a sequence pn

such that

pn`1"pn!e
LJ

Lp
(pn), J (p*))J (pn`1))J(pn), lim

n?=
J (pn)"J (p*),

where e is the step size of the algorithm. The use of this method needs the value of the
derivative LJ/Lp. Then, the derivatives LJ

a
/La

i
and LJ

s
/Lc

i
have to be calculated.

As stated before, in this work, we did not want to consider constrained optimization in
order to simplify the implementation of the algorithms. This is the reason why we search
only one location for each optimization problem in the proposed examples.
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4. DIFFERENTIATION OF THE TWO CRITERIA

4.1. ESTIMATION OF THE DERIVATIVES OF CRITERIA

In order to calculate derivatives, two methods can be used. The most common is the "nite
di!erence method, using the development

J (p#Dp)"J (p)#
LJ

Lp
Dp#o(p2)

which becomes
LJ

Lp
K

J (p#Dp)!J (p)

Dp
.

This common method has several disadvantages: it needs the calculus of J (p) and J (p#Dp)
which implies calculating one modal basis per parameter; it depends on the choice of Dp.

Thus, it is preferable here to di!erentiate the two criteria: this can be easily and
systematically implemented in a "nite element solver.

Let ML</LpN and [LM/Lp] be the derivatives of a vector M<N and a matrix [M] with
respect to a scalar p:
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Here, the model superposition (5) has been used. In the same way, the derivative of J
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These two expressions show that LJ
a
/La

i
depends on the derivatives of MaN, [W], [M

UU
] and
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], and LJ
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depends on the derivatives of [W], [u], [KUU]s
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]
s
. In the

following sections it is shown how each of them can be calculated.

4.2. DERIVATION OF THE VARIABLE MaN

The derivative LMaN/La
i
is obtained by di!erentiating the equations of motion (1) written
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Note that the "rst part of the dynamical equation satis"ed by LMaN/La
i
is the same as that of

the equation satis"ed by MaN. It is only the second part which is di!erent.
In the same way, the initial conditions are given by
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These equations depend on the derivatives of the matrices [M
UU

], [K
UU

] and [K
UU] and

the derivatives of the eigenvectors.
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4.3. DERIVATIVE OF EACH MATRIX, EIGENVECTORS AND EIGENVALUES

4.3.1. Derivative of each matrix

The derivative of each matrix ([M
UU

], [K
UU

],2) can be determined by using the "nite
di!erence method detailed previously. In the "nite element method, these global matrices
are obtained by the summation of all corresponding element matrices. Each element matrix
depends upon the location of the element nodes. The derivative of the matrix can then be
numerically calculated with respect to any node co-ordinate and stored once and for all. If
the location of these nodes is a known function of design parameters, it is very easy to get
the derivative of any element matrix with respect to any design parameter by using the chain
rule. Once this is done, the derivative of the global matrix is simply the summation of each
element contribution.

In the case considered here, only the two end elements are taken into account for each
active device (see Figure 8). The length ¸ being constant, the co-ordinates x

L
and x

R
of the

two end nodes N
L

and N
R

are connected to the same unique design parameter p concerning
the device: x

L
"p and x

R
"p#¸, and thus dx

L
/dp"dx

R
/dp"1. For a standard

two-node beam, the derivative of associated matrices with respect to nodes co-ordinates can
be obtained analytically by hand once and for all.

4.3.2. Derivative of eigenvectors and eigenvalues

The derivatives of the eigenvalues and eigenvectors with respect to a scalar p are obtained
by using the usual sensitivity method developed in reference [18]. They are obtained by
di!erentiating the equations of eigenvalue problems. Their expressions are

L (u2
r
)

Lp
"MWNT

r A
L[K]

Lp
!u2

r

L[M]

Lp BMW
r
N, (21)

LMW
r
N
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"

l
+
j/1

d
rj
MW

j
N#MW

r
NS for r"1,2N, (22)

where

MW
r
NS"[K]~1 A
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r
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[M]!

L[K]

Lp
#u2

r

L[M]

Lp B MW
r
N is a static correction term and

d
rj
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u2
r

u2
j

1

u2
r
!u2

j
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j
NT A

L[K]

Lp
!u2

r

L[M]

Lp BMW
r
N, rOj,

d
rr
"!

1

2
MW

r
NT

L[M]

Lp
MW

r
N, (23)

with

l3N, l*N.

The derivative of the eigenvector Mt
r
N is decomposed in two parts: the "rst one is

a decomposition in the truncated modal basis using the "rst l eigenvectors (l'N); the
second one is a static correction term which accelerates the convergence. In the
applications, the integer l has to be chosen su$ciently large.



Figure 9. Algorithm for the actuator location.
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5. APPLICATIONS

Here, the optimization algorithms are developed to "nd the optimal location of piezo-
electric actuators and sensors on beam structures. Then, several applications are presented.

5.1. OPTIMIZATION ALGORITHMS

The two optimization algorithms are presented in Figures 9 and 10. They have been
implemented in DYNANDID2D [16]. Each of them consists of three main steps: Step 1: the



Figure 10. Algorithm for the sensor location.
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reading of data; Step 2: the determination of the optimal solutions; Step 3: the study of the
results.

More precisely, in the second step, the optimal locations are obtained iteratively. For
iteration n, the structure location is de"ned by the design variables Man

i
N and the di!erent

steps are as follows:

f the construction of the geometrical discretization of the structure;
f the solution of the eigenvalue problem, and in the case of the optimization actuators

location, the construction of the input voltage;



Figure 11. The two optimal locations of the actuator.
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f the calculus of derivatives of matrices, eigenvalues and eigenvectors, and in the case of the
optimization of actuators location, the solution of the equations of motion satis"ed by MaN
and LMaN/La

i
;

f the calculus of the derivative of the criteria;
f the new design variables value: in the case of sensors location: cn`1

i
"cn

i
!e (LJ

s
/Lc

i
) (cn

i
),

in the case of actuators location: an`1
i

"an
i
!e (LJ

a
/La

i
) (an

i
).

For some design variables, the algorithm can "nd di!erent optimal solutions. In this case,
in order to keep only one of them, it is suggested to use several performance measures, for
example the necessary time for sensor output to vanish. In the following sections, these two
algorithms are used to "nd the optimal location of one actuator and one sensor on the
three-beam structure and on a cantilever beam. Lengths of actuators and sensors are
assumed to be constant.

5.2. THE THREE-BEAM STRUCTURE

In this section, the aim is to "nd the optimal location of the actuator and the sensor on
the three-beam structure shown in Figure 2 and studied in section 2.3. The structure is again
subjected to the release test. After several simulations, l used for the static correction term in
equation (22) is taken to be equal to 8.

5.2.1 Optimal location of the piezoelectric actuator

The objective here is to "nd the optimal actuator location to stop the vibrations very
quickly. The piezoelectric sensor is "xed at C

1
"(0, 0).

Using the optimization algorithm for the actuators location, two local minima are found:
A

1
"(0)00, 0)22) and A

2
"(0)40, 0)48) (see Figure 11). In order to stop the vibrations as

quickly as possible for each case, the matrix [R] in equation (11) is chosen to use a maximal
voltage input [15]. Then, several performance measures can be used to "nd the best location
between the two minima. Here, one can propose the following.

First, the homogeneity of the components of the vector [K]. The LQR method consists in
using a control law like MqUNa"![K]MxN. As the control law must take into account the
actual state of the structure as well as possible, the components of [K] have to be
homogeneous. For the two optima, the ratio Dmax

i
K

i
/min

i
K

i
D is calculated. The second

performance measure is the time required for sensor output to vanish.



TABLE 3

Determination of the optimal actuator location

Actuator location A
1

A
2

K
max

i
K

i

min
i

K
i K 8 20

Necessary time (s) 6 20

Figure 12. The optimal locations of the sensor.
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From the results in Table 3 for the two performance measures, the "rst actuator location
seems to be better than the second one. Consequently, it is considered as the optimal
placement of the actuator in the case of the release test.

5.2.2. Optimal location of the piezoelectric sensor

In the same way, one can use the optimization sensors location algorithm to "nd the
location of the piezoelectric sensor.

Five local minima are found: C
1
"(0)00, 0)00), C

2
"(0)00, 0)39), C

3
"(0)02, 0)50),

C
4
"(0)31, 0)50) and C

5
"(0)40, 0)48) (see Figure 12).

From the choice of the criterion J
s
, these maxima are independent of the initial

conditions. They ensure a good observability of all the modes, without especially taking
into account the most excited modes.

In order to get an optimal location ensuring an e$cient active control, one can propose,
two performance measures.

The "rst one is the homogeneity of the components of the vector [¸]. This vector
balances the output in equation (12). Then its components have to be homogeneous to take
into account the output of all modes. For each minimum, the ratio Dmax

i
¸
i
/min

i
¸
i
D is

calculated.



TABLE 4

Determination of the optimal sensor location

Sensor location C
1

C
2

C
3

C
4

C
5

K
max

i
¸
i

min
i

¸
i K 37 45 5)5 6)5 5)6

Necessary time (s) 6 10 10 10 6

Figure 13. A cantilever beam.

TABLE 5

Characteristics of the simple cantilever beam

Length of the beam (m) 1
Length of the actuator and the sensor (m) 0)06

Width (m) 0)02
Thickness (m) 0)002

Mass density (kg/m3) 2700
Young's modulus (Pa) 7]1010

Natural frequencies (Hz) 1)64, 10)29, 28)81, 56)46
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The second performance measure is the settling time of output. For each location, the
settling time of the output to come back to the zero state using a piezoelectric actuator
located in (0)001, 0)00), with maximal voltage input is determined.

Results are shown in Table 4. The location which seems to be the best for the two
performance measures in C

5
. Therefore, it is considered as the optimal location for the

piezoelectric sensor in the case of release test.
The two optimization algorithms have been used to "nd the optimal location of one

actuator and one sensor on a three-beam structure. Results show that these optimal
locations are not obviously de"ned. Also, they depend on the nature of the disturbance
applied to the structure. In the next section, the number of actuators and sensors needed in
the case of a cantilever beam is discussed.

5.3. A CANTILEVER BEAM

In this section, a simple cantilever beam is considered, whose length is 1 m (see Figure 13).
The geometrical and mechanical characteristics of the system are detailed in Table 5. Again
the "rst four modes are taken into account and l is to taken to be equal to 8.



TABLE 6

Determination of the optimal sensor location on the beam

Sensor location (m) 0 0)081 0)146 0)258 0)393 0)533 0)684

K
max

i
¸
i

min
i

¸
i K 20 5 100 10 35 20 8

Necessary time (s) 2)4 2)3 2)35 2)5 2)5 2)8 3)8

TABLE 7

¹he optimal location of the second actuator

Location of the second actuator (m) 0)17 0)78

K
max

i
K

i

min
i

K
i K 21 157

Necessary time (s) 2)2 3)3
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5.3.1. Optimal location for one actuator and one sensor

In the same way as in the previous section, the optimal locations of one actuator and one
sensor are determined when the vibrations come from a release test (F (t"0)"0)003 N
applied at the endpoint). In the case of the actuator, the optimization algorithm gives only
one minimum: at the "eld end A

1
. In the case of the sensor, seven local minima are obtained

(see Table 6). Using the two previous performance criteria, the optimal location of the
sensor is C

1
"0)081 m (see Figure 12).

These locations are optimal in the case of the release test.

5.3.2. Optimal location for a second actuator and a second sensor

Consider now the situation where a "rst optimization has been done to get good
behaviour in the case of the release test. The con"guration is kept and one can consider the
response of the active system to another kind of loading: i.e., a sinusoidal load equal to
F(t)"0)06 cos (80t), whose period is ¹

e
is applied at the beam end. As the load is harmonic,

the "nal time ¹ in equation (14) is chosen equal to N
e
¹
e
. N

e
3N is such that for t"¹ the

system is in steady state. For the optimal con"guration (see Figure 13) the system reaches
steady state in 3)9 s. In order to increase the e$ciency of the control when a sinusoidal load
is applied to the beam, one can put another actuator and another sensor on the beam. In
this way, one can consider the "rst actuator and sensor locations, called A

1
and C

1
, as "xed

and use again the two optimization algorithms to locate the second actuator and the second
sensor (locations called A

2
and C

2
). This can be considered as an optimal improvement of

the unchanged "rst choices.
The algorithm used for the second actuator location gives two minima (see Table 7).

Using the "rst performance criterion detailed previously and the necessary time for the
system to reach steady state, the optimal location for the second actuator is A

2
"0)17 m.

Then, with the two actuators, the system reaches steady state in less than 2)2 s. In the same



TABLE 8

Determination of the second sensor location

Location of the second sensor (m) 0)060 0)240 0)485 0)720

K
max

i
¸
i

min
i

¸
i K 3)5 19 18)5 36

Necessary time (s) 2)4 2)5 2 2)8
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way, using the optimization algorithm for sensors, one obtains four local minima for the
second sensor location (see Table 8). The performance measures give C

2
"0)485 m as the

optimal location for the second sensor. In this case, the system reaches steady state in 2 s.
Consequently, adding one actuator and one sensor gives a more e$cient active control in

the case of a sinusoidal load. As the "rst actuator and sensor locations have not changed,
the active control system is also e$cient for the release test.

The optimal additional sensors and actuators locations have been obtained for
considering successively, and in a given order, two particular loading conditions, release test
and sinusoidal load. It is clear that this process does not lead to the solution of "nding
optimal locations of two actuators (or sensors) for both release test and sinusoidal load: this
would imply considering simultaneously the two loadings and moving simultaneously two
actuators (and two sensors).

6. CONCLUSIONS

In this paper, a new approach is proposed to "nd the optimal location of piezoelectric
actuators and sensors on structures. In order to simplify the optimization problem, it has
been decided to search independently for the optimal locations of actuators and sensors.
The "rst ones are obtained by minimizing the mechanical energy integral of the system and
the second one by maximizing a measure of the gramian observability. This method is based
on the di!erentiation of the optimization criteria and equations of motion with respect to
the design variables.

In order to test the feasibility of the proposed method, the implemented optimization
algorithm was limited to only one design variable and could not take into account
constraints. This is the reason why only optimizations dealing with one parameter at a time
have been shown.

Optimal locations (or optimal new locations) are obtained for a given loading condition.
It is clear that the choice of this loading has, a priori, a signi"cant in#uence on the results.
This could be studied in future to show the sensitivity of the result to this choice.

This methodology has been developed here for beam structures by using results of
reference [12]. As it is implemented in an FEM code, some results are directly usable for
more complex structures, and the methodology can be extended to these cases.

Also, a new problem arises: how many actuators and sensors are necessary to have
e!ective active control?
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