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In this paper, Hamilton's principle and "nite element method are employed to formulate
the new dynamic equation of a tall building subjected to earthquake excitations.
A tuned-mass-damper (TMD) system is installed at the top to absorb the earthquake-
induced vibrations. First, the non-linear governing equations in the axial and transverse
directions are obtained by the Euler-beam theory. Secondly, the simple-#exure beam model
is employed to reduce the system as a linear one. The energetic analyses of these two beam
theories are provided. It is found that the rigid-body motion of the TMD and the transversal
vibrations of the tall building are coupled and energy is transfered between them. Finally, the
e!ects of several parameters on the rigid-body motion and transversal vibrations are
presented and discussed.
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1. INTRODUCTION

In recent years, more and more of supertall constructions have been built. While the top of
a building is over and above some degree, the dynamic behavior of this building is parallel
to a beam with several lumped masses. The vibration problems of high-rise tall buildings
subjected to certain dynamic loadings, such as earthquake loads or wind loads, have
attracted the interest of investigations in this area. The "nite element method and
Hamilton's principle were usually used to formulate and analyze the dynamic behavior
of tall buildings. The earlier studies [1, 2] recommended that for increasing the levels of
structural safety, integrity and occupant comfort, it is necessary to reduce the levels of
earthquake- or wind-induced displacements and accelerations in tall buildings.

As a result, various control schemes*passive as well as active*have been developed to
reduce the building vibrations due to these environmental disturbances. One of the earlier
investigations in the application of theoretical control methods to civil engineering
0022-460X/01/260123#14 $35.00/0 ( 2001 Academic Press
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structures was reported by Yang [3], in which the optimal control strategies were used for
tall buildings, which were modelled as shear beams and subjected to wind loads. In another
noteworthy study [4], stochastic wind model was employed to examine the performance of
the tuned passive vibration absorbers to damp out excessive vibration levels. The active
control of tall buildings using aerodynamic appendages has been of interest to several
researchers [5}7] because the energy needed to generate the control force is provided by the
wind.

In this paper, the model of a tall building is considered as a continuum that is di!erent
from the previous studies [1}8] of the lumped parameter system. In fact, the civil structure
in itself is a continuum having in"nite degrees of freedom and comprising several
concentrated masses. In this paper, the non-linear Euler-beam theory and the simple-#exure
beam model are employed to model a tall building with many masses of #oors and a TMD
installed at its top. First, the transversal vibrations of the tall building coupled with the
rigid-body motion of the TMD are formulated by Hamilton's principle. The TMD is
designed to absorb the transversal vibrations of the tall building. It is found that the
dynamic responses of the tall building are e!ectively reduced when the TMD frequency is
tuned to be the same as that of the building. Secondly, the whole system is formulated by the
"nite element method. Some observations from the coupled governing equations and
boundary conditions are made. Finally, numerical results via the "nite element method are
compared for the linear and non-linear systems.

2. DYNAMIC FORMULATION

A schematic drawing of an n-story-building model subjected to earthquake motion b(t)
and a TMD system installed at its top #oor is shown in Figure 1(a). The tall building is
modelled by the elastic beam theory with uniform #exibility. The n concentrated masses m

i
are located at x

i
, i"1, 2,2, n respectively. The TMD is a passive energy-absorbing system

and is shown in Figure 1(b), which consists of a mass M
G
, and a spring with a constant

sti!ness k. The purpose of this device is to absorb the earthquake-induced vibrations of the
tall building. It is assumed that the contact surface between the tuned mass M

G
and the top

#oor m
n
is dry. The friction force opposing their relative motion is called Coulomb damping

and its magnitude is denoted by kM
G

g, in which k is the so-called kinetic coe$cient of
friction.

2.1. KINETIC AND POTENTIAL ENERGIES

Since the tall building is subjected to earthquake, the "xed (OX>) and moving (oxy)
co-ordinates are adopted to describe the whole system. The tall building has length
l density o, uniform cross-sectional area A, modulus of elasticity E, and moment of inertia I.
In Figure 1(b), m is the displacement of mass M

G
relative to the nth #oor.

The displacement "eld of the tall building modelled by the Euler-beam theory is

r"u (x, t) i#v (x, t) j, (1)

where u (x, t) and v(x, t) represent the axial and transverse de#ections respectively. i and j are
the unit vectors of the moving co-ordinate (oxy). The position vector of an arbitrary point
after deformation is

R"[x#u (x, t)] i#[v(x, t)#b (t)] j . (2)



Figure 1. Schematic diagrams. (a) The tall building with the TMD system; (b) the TMD device.
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Therefore, the total kinetic energy of the whole system including a uniform beam, n #oors
and the TMD device is

¹"P
l

0

1

2
oAMuR 2#(vR#bQ )2N dx#P

l

0

n
+
i/1

1

2
m

i
MuR 2#(vR#b)2Nd (x!x

i
) dx

#

1

2
M

G
MuR 2(l, t)#[vR (l, t)#bQ #mQ ]2N. (3)



Figure 2. Free-body diagrams. (a) The TMD system; (b) the top #oor.
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It is assumed in equation (3) that the center distance between the tuned mass M
G

and the nth
#oor is too small compared with the beam length l. Thus, the location of mass M

G
is

regarded to be at x"l.
The Lagrangian strains of the tall building in the corresponding directions are

e
xx
"u

x
!yv

xx
#1

2
v2
x
, e

xy
"0, e

yy
"0, (4}6)

where the subscript x is de"ned as partial derivative with respect to x. The non-linear term
1
2
v2
x

due to large geometric deformation in the transverse direction is considered. The total
potential energy can be written as

;"P
l

0

1

2CEAAu2x#
1

4
v4
x
#u

x
v2
xB#EIv2

xxD dx!P
l

0

G(x)u
x
dx#

1

2
km2, (7)

where

G(x)"!g CoA(l!x)#
n
+
i/1

m
i
H (x

i
!x)#M

GD (8)

is the gravitational force due to the distributed beam, n #oors and the tuned mass M
G
. H is

the unit step function.
The free-body diagrams of the tuned mass M

G
and the top #oor are shown in Figures 2(a)

and (b) respectively. The sign function is de"ned as

sgn(mQ )"G
#1,

!1,

mQ '0

mQ (0
.

In addition, the virtual work done by the non-conservative friction force between the nth
#oor and the tuned mass, associated with a virtual displacement dv (l, t), is

d="!kM
G

g sgn(mQ ) dm. (9)
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2.2. THE EULER-BEAM THEORY

Substituting equations (3), (7) and (9) into Hamilton's principle

P
t
2

t
1

[d(¹!;)#d=] dt"0, (10)

taking variation, applying integration by parts, and collecting the like terms, one obtains
the governing equations for the axial and transversal vibrations of the tall building, and the
rigid-body motion of the tuned mass respectively:

u oAuK#
n~1
+
i/1

m
i
uK d(x!x

i
)!EA

L
Lx Cux#

1

2
v2
xD#

L
Lx

[G(x)]"0, 0(x(l (11)

v oA(vK#bG )#
n~1
+
i/1

m
i
(vK#bG )d (x!x

i
)#EIv

xxxn
!EA

L
Lx C

1

2
v3
x
#u

x
v
xD"0, 0(x(l

(12)

m M
G
[vK (l, t)#bG#mG ]#km#kM

G
g sgn(mQ )"0, (13)

and the associated boundary conditions:

u(0, t)"0, v (0, t)"0, v
x
(0, t)"0. (14}16)

u(l, t) (M
G
#m

n
)uK (l, t)#EA[u

x
(l, t)#1

2
v2
x
(l, t)]#(M

G
#m

n
)g"0, (17)

v(l, t) M
G
[vK (l, t)#bG#mG ]#m

n
[vK (l, t)#bG ]

#EA[1
2
v3
x
(l, t)#u

x
(l, t)v

x
(l, t)]!EIv

xxx
(l, t)"0, (18)

v
xx

(l, t)"0, (19)

where d is the Dirac-delta function. It can be observed that (1) the acceleration bG of
earthquake motion appears in the transverse vibration equation (12) and its boundary
condition (18), (2) the axial and transverse vibrations are non-linearly coupled in the
governing equations (11) and (12) and boundary conditions (17) and (18), and (3) equation
(18) states the force equilibrium in the transverse direction at x"l, and the free-body
diagram is shown in Figure 2(b). Equation (18) can be rewritten together with equation (13)
as

EA[1
2
v3
x
(l, t)#u

x
(l, t)v

x
(l, t)]!EIv

xxx
(l, t)#km#kM

G
g sgn(mQ )"0. (20)

2.3. THE SIMPLE-FLEXURE BEAM MODEL

The simple-#exure beam model [9] is the Euler-beam theory with quasi-static stretching
assumption, in which one will eliminate the axial inertia e!ect. The reduction process is to
incorporate these e!ects of equation (11) into equation (12). Thus, one may de"ne the
internal axial force as

p (x, t)"EA[u
x
(x, t)#1

2
v2
x
(x, t)]. (21)
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By taking x"l in equation (21) and using equation (17), the relationship between the
internal force at x"l and the external force is

p (l, t)"EA[u
x
(l, t)#1

2
v2
x
(l, t)]"G(x). (22)

As a result, we have

p (x, t)"p(l, t)!P
l

x

L
Lx

p (x, t) dx"!gCMG
#oA (l!x)#

n
+
i/1

m
i
H (x

t
!x)D , (23)

in which the inertial terms of equation (11) are neglected for the simple-#exure beam model.
Alternatively, formula (23) can be obtained directly from equation (11) by neglecting the
inertia e!ects [10].

Consequently, the governing equations (11)}(13) can be reduced to two equations:

oA(vK#bG )#
n
+
i/1

m
i
(vK#bG )d (x!x

i
)#EIv

xxx
!G (x)v

xx
!oAgv

x
"0, 0(x(l, (24)

M
G
[vK (l, t)#bG#mG ]#km#kM

G
g sgn(mQ )"0, (25)

and the boundary conditions are

v(0, t)"0, v
x
(0, t)"0, (26, 27)

M
G
[vK (l, t)#bG#mG ]#m

n
[vK (l, t)#bG ]!EIv

xxx
(l, t)!g (M

G
#m

n
)v

x
(l, t)"0, (28)

v
xx

(l, t)"0. (29)

It is seen that the e!ects of axial displacement and non-linear term disappear in governing
equation (24) and boundary condition (28).

Governing equations (24) and (25) and boundary conditions (26)}(29) can also be
obtained directly by Hamilton's principle with the following kinetic energy and strain
energy:

¹"P
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2
oA(vR#bQ )2 dx#P

l

0

n
+
i/1
C
1

2
m

i
(v5 #bQ )2d (x!x

i
)D dx

#

1

2
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G
[vR (l, t)#bQ #mQ ]2 , (30)

;"P
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0

1

2
(EIv2

xx
) dx#P

l

0

1

2
G(x)v2

x
dx#

1

2
km2, (31)

where G(x) is the same as in equation (8). In Hamilton's principle, the virtual work is also
the same as in equation (9).

2.4. RIGID-BODY MODEL

The governing equation for the rigid-body building, i.e., neglecting all the #exible terms, is

M
G
(bG#mG )#km#kM

G
g sgn(mQ )"F. (32)

It is the governing equation for the TMD device subjected to earthquake excitations.
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2.5. DISCUSSION

One main objective of this paper is to formulate the new dynamic equations of
a continuous tall building with the TMD device. The reduction process was done by
starting with the Euler-beam theory and going through the simple-#exure beam model,
and "nally the rigid-body model. From the dynamic formulations of the governing
equations and boundary conditions, several important observations can be made. (1) In
the simple-#exure beam model, the v(x, t) governing equation (24) becomes linear.
Boundary condition (28) representing the shear force balancing at the top #oor couples
with the motion of the tuned mass. (2) The transversal vibrations of the #exible building
and the rigid-body motion of the TMD are coupled in both the Euler-beam theory and
the simple-#exure beam model. Thus, a complete formulation of the continuous tall
building with the TMD device should include both the rigid-body motion and transversal
vibrations.
Figure 3. The transient response diagrams. (a) The top-#oor displacements in the transverse direction; (b) the
top-#oor displacements in the longitudinal direction; (c) the tuned-mass displacements:**, the non-linear Euler-
beam theory; - - - , the simple-#exure beam model.
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3. NUMERICAL RESULTS

In this paper, the Euler-beam theory and the simple-#exure beam model are both studied
by the "nite element formulation, in which the continuous displacements are approximated
in terms of the discretized nodal displacements. The #exible beam is divided into n elements.
The detailed "nite element formulation can be seen in Appendix A.

In order to speed-up the computational simulation, a three-#oor building is given as an
example for dynamic analysis. The parameters of the tall building and the TMD device are
selected as l"9 m, E"2)1324]1010 N/m2, A"0)075 m2, I"5)625]10~4 m4,
o"7840 kg/m3, M

G
"91)95 kg, and each #oor mass m

i
"194)25 kg.

First, we show the transient free responses of the top #oor and the TMD for the given
parameters k"0, k"0 N/m and F"0. The "rst-mode shape of the uniform beam is
adopted for the initial displacement:

v(x, 0)"C[sin(bx)!sinh(bx)!a (cos(bx)!cosh(bx))], (33)

where bl"1)875104, a"((sin(bl)#sinh(bl))/(cos(bl)#cosh(bl))), and the coe$cient
C"0)1835 is assigned. The other initial displacements are zero.

The transverse and longitudinal responses of the non-linear Euler-beam theory and the
simple-#exure beam model are compared in Figures 3(a)}(c). It can be examined that the
oscillational periods of the building and the tuned mass are almost the same as
(2nb2)oA/EI"1)0135 (s) which is the "rst-mode period of a uniform cantilever beam
without the lumped masses of #oors. The non-linear terms have the e!ects of increasing the
transverse oscillation periods [Figure 3(a)] and increasing the amplitude in the longitudinal
direction [Figure 3(b)]. The longitudinal displacements are much smaller than those in the
transverse direction. Thus, the two-dimensional formulation can be simpli"ed as a
one-dimensional problem. Since the energy could transfer from the building to the TMD, it
Figure 4. The passive-control responses subjected to an initial displacement. (a) The top-#oor vibration; (b) the
TMD vibration: *, k"0)05; - - -, k"0.



Figure 5. The passive-control responses subjected to the El Centro earthquake. (a) The acceleration of the El
Centro earthquake; (b) the displacements of the top #oor; (c) the displacements of the TMD: *, k"0)05; ) ) ),
without the passive control.
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is observed in Figures 3(a) and (c) that the maximum moving distance of the tuned mass is
about two times the maximum displacement of the top #oor.

In this paper, we are only interested in the passive control of the tall building with the
TMD device subjected to the initial displacement and earthquake excitations. The results
are shown in Figures 4}6. The spring sti!ness k of the TMD device is adjusted so that the
natural frequency of the TMD equals the "rst-mode frequency of the building. In this case,
the spring sti!ness is k"3011)67 N/m. Then, the TMD becomes a passive-control device to
absorb the "rst-mode vibrations of the building. Figure 4 shows the passive control
responses due to an initial displacement. In fact, the frequency of the TMD is close to, but
not exactly equal to, the natural frequency of the building, the beating phenomenon occurs
in the simulation results. It is seen that as the dry friction is introduced, the vibration
suppression is more e!ective. Figures 5(a) and 6(a) show the seismic accelerations of the El
Centro and Kobe earthquakes respectively. In order to save computational time, the
transient responses within 10 s are shown. The vibrations of the tall building are passively
controlled and are shown in Figures 5(b) and 6(b). The displacements of the TMD are
shown in Figures 5(c) and 6(c).



Figure 6. The passive-control responses subjected to the Kobe earthquake. (a) The acceleration of the Kobe
earthquake; (b) the displacements of the top #oor; (c) the displacements of the TMD:*, k"0)05; ) ) ), without the
passive control.
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4. CONCLUSIONS

The transversal vibrations of a continuous tall building coupled with the rigid-body
motion of the TMD device are successfully formulated via Hamilton's principle in this
paper. From the dynamic formulations and numerical results, the following conclusions can
be drawn.

(1) For the tall building system, a two-dimensional problem can be reduced to
a one-dimensional one via the simple-#exure beam model.

(2) The rigid-body motion and transversal vibrations are always coupled in both the
Euler-beam theory and the simple-#exure beam model. A complete analysis of the tall
building associated with the TMD device should include both the rigid-body motion
and transversal vibrations.

(3) The gravitational forces due to the #oor masses and the TMD device appear in both the
Euler-beam theory and the simple-#exure beam model.
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(4) The displacement of the tuned mass is much larger than that of the top #oor. It is found
that the TMD needs more space to operate in real application.
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APPENDIX A

The usual approach in the "nite element method is to assume the unknown deformations
u(x, t) and v(x, t) to be approximated by a "nite series:

u (x, t)"
n
+
i/1

H
ui
(x)q

i
(t), (A1)

v (x, t)"
n
+
i/1

H
vi
(x)q

i
(t), (A2)

where H
ui
(x) and H

vi
(x) are the Hermite shape functions [11]:

H
ui
(x)"a

ui
#b

ui
x, i"1, 2, (A3)



134 A.-P. WANG E¹ A¸.
H
vi
(x)"a

vi
#b

vi
x#c

vi
x2#d

vi
x3, i"1}4. (A4)

The displacement shape function (A3) has two degrees of freedom. There is an axial
displacement at each node. The complete cubic polynomial function (A4) has four degrees of
freedom (a transverse displacement and a small rotation at each node) for an element. The
shape functions H

u
and H

v
of a beam element can be found as

H
u
"C1!

x

l

x

lD , (A5)

H
v
"

1

l3
[2x3!3x3l#l3 x3!2x2l#xl2 !2x3#3x2l x3l!x2l2], (A6)

and the nodal displacement vector q can be written as

q"[q
1

q
2

q
3

q
4

q
5

q
6
]T. (A7)

A.1. THE NON-LINEAR EULER-BEAM THEORY

Substituting equations (A1) and (A2) into equations (3) and (7), the kinetic energy and
potential energy for the jth element can be expressed, respectively, as

¹
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l
e

0

G(x)H
u,x

dx, (A14)

where the non-linear e!ect of the Euler-beam theory appears in the second term of the
sti!ness equation (A13). In this paper, the non-linear term is calculated at the previous time.
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This is a simpli"ed numerical technique [12] in the "nite element method for the non-linear
problem.

By assembling the equation of motion, we obtain the global ordinary di!erential
equation

M
1
QG

1
#K

1
Q

1
"P

1
, (A15)

where Q
1

is the global displacement vector, M
1

and K
1

are the global mass and sti!ness
matrices respectively and P

1
is the force vector. They are expressed as follows:
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where boundary conditions (14)}(16) are considered and
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A.2. THE SIMPLE-FLEXURE BEAM MODEL

Substituting equations (A1) and (A2) into equations (30) and (31) for the simple-#exure
beam model, and following similar processes, one obtains

M
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2
Q

2
"P

2
, (A23)
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where Q
2

is the global displacement vector, M
2

and K
2

are the global mass and sti!ness
matrices respectively and P

2
is the force vector. They are expressed as follows:
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where

M*
2
"

Ne

+
j/1
CoA P

l
e

0

(HT
vj

H
vj
) dx#

n
+
i/1

m
i
(HT

v
H

v
)#M

G
(HT

v
H

v
)
x/lD , (A28)

K*
2
"

Ne

+
j/1

P
l
e

0

[EI (HT
vj,xx

H
vj,xx

#G(x)HT
vj,x

H
vj,x

H
vj,x

] dx, (A29)

P*
2
"

Ne
+
j/1
C!oA P

l
e

0

H
vj

bG dx!
n
+
i/1

m
i
H

v
bG!M

G
H

v
bG K

x/lD . (A30)

The force vector in the "nite element formulation includes the acceleration of earthquake
and the dry friction force.
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