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Detecting the position of supports within an elastic structure has many applications,
particularly when these supports are not "xed. Previous studies have presented methods for
the detection of translational support locations in elastic structures based on the
minimization of the di!erence between the measured and computed natural frequencies.
However, these discrete supports were constrained to be at nodes of the "nite element model
of the elastic structure. This required a "ne mesh and the numerical computation of the
eigenvalue derivative with respect to the support location. This paper has the same purpose,
namely to identify the support locations, but the position of the supports is now
a continuous parameter. When the support is located within an element the shape functions
are used to produce the global sti!ness matrix. The advantage is that the support location
now appears explicitly in the formulation of the problem, and hence the analytical
computation of the eigenvalue derivative is possible. Furthermore, the mesh may be much
more coarse, requiring fewer degrees of freedom to detect the support locations, with
reduced computational e!ort. The e!ect of identifying both the support sti!ness and
location is also discussed. The proposed approach has been illustrated with simulated and
experimental examples used in the earlier studies.

( 2001 Academic Press
1. INTRODUCTION

Many #exible mechanical systems such as fuel pins, heat exchanger tubes, control rods and
various instrumented and shrouded tubes used in nuclear power plants and other
engineering industries are beam-like components with a number of intermediate supports
along their length. In many cases, these intermediate supports are "rmly "xed. However, in
some cases they may be loosely coupled and may move from their original locations during
operation, for example because of #ow-induced vibration. The movement of the supports
may or may not a!ect the support sti!nesses depending upon the structural con"guration.
Undetected, such dislocated supports may deteriorate the system performance and
consequently jeopardize the safety of the structure or plant. Visual inspection of such
support locations in the structural system is not always possible if the structural
con"guration is complex. Other feasible inspection methods can be expensive and time
consuming and may require the extended shutdown of the plant. Hence, a non-intrusive and
non-destructive method for the detection of support locations in the structural system in
a quick but reliable manner is important.
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Sinha et al. [1] presented a technique to locate simple massless translational spring
supports in elastic structures, based on the measured natural frequencies of the structure.
A gradient-based "nite element (FE) model updating technique [2] was used based on
a correlated FE model. The method involves the detection of spring support locations by
updating the position of the support in the FE model through the minimization of the
di!erence between measured and computed natural frequencies. This cost function is
a highly non-linear function with respect to the updating parameters, and an iterative
solution by a gradient search technique is used. Such an approach requires the formulation
and computation of the sensitivity matrix ("rst order derivatives) of the cost function with
respect to the updating parameters. Sinha et al. [1] used the support locations as updating
parameters, but only allowed the supporting springs to be attached at nodes of the FE
models of the beams. Therefore, the system mass and sti!ness matrices, and thus the
eigenvalues, were not a continuous function of the updating parameters. This lack of
continuity meant that the eigenvalue derivatives and the sensitivity matrix could not be
computed analytically, and had to be estimated numerically [1]. This method was used for
solving typical problems encountered in nuclear power plants and was also tested on
a small laboratory set-up [3]. Although the method was successful, if the actual location of
the support is between two nodes of the FE model, it can only approximate this location to
the nearest node. Hence, a very "ne FE mesh is required to avoid large errors in the location
of the supports, which requires a large computational e!ort.

This paper estimates the support locations in a similar manner, except now the spring
location is a continuous parameter. If a spring is estimated to be attached within any
element, then the shape functions of the beam element are used to approximate the
extension in the spring. Now the support positions appear explicitly in the sti!ness matrix,
which is a continuous function of these updating parameters. The eigenvalue derivative with
respect to the updating parameters, and hence the sensitivity matrix, may now be calculated
analytically. The advantages gained compared to the earlier studies [1, 3] are as follows:

(1) an FE model with fewer degrees of freedom (d.o.f.s) may be used;
(2) supports can be detected at their exact physical location;
(3) eigenvalue derivatives may be computed analytically; and
(4) a signi"cant reduction in computational e!ort is obtained.

This paper presents the theoretical formulation for estimating support location, including
the FE modelling of the problem and the validation of the method through the simulated
and experimental examples cited in the earlier studies [1, 3].

2. THEORETICAL FORMULATION

The problem of two simple beams with a number of massless intermediate spring
supports is considered, as shown in the schematic diagram in Figure 1. It is assumed that the
support springs move along the beam length and that this movement does not change their
own sti!nesses. The spring locations are estimated using the gradient-based model updating
method [2].

2.1. FE MODELLING

The FE model of the assembly is shown in Figure 2. The two-node Euler}Bernoulli beam
element was used to model both beams, labelled A and B, and only bending in a single plane



Figure 1. Schematic of two beams with interconnected intermediate supports. kspring 1, kspring,2,2, kspring,l"1
Sti!nesses of "rstr to lth supports.

Figure 2. Beam models used.

Figure 3. Modelling of the jth support spring.
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is considered. A lumped mass matrix is used here, although there is no problem using
a consistent mass matrix. Each node has two degrees of freedom, namely the translational
displacement and bending rotation. The supports are modelled as springs (of sti!ness
k
spring

), that may be placed within the beam elements of the FE model (see Figure 2). To aid
understanding, the modelling procedure will be outlined for only one support (i.e., the jth
support of spring sti!ness, k

spring,j
) between beams A and B, as shown in Figure 3. Within
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the eth element of beam A, the displacement is approximated (for Euler-Bernoulli beam
theory) as
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Exactly the same shape functions and displacement approximation occur for each beam
(but of course the nodal de#ections will be di!erent). If the support is at local position m

j
then the strain energy in the spring support between beams A and B is
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where w
eA

is the displacement of beam A, and similarly w
eB

for beam B. Substituting
equation (1), and the equivalent for beam B, into equation (3), gives the (8]8) local sti!ness
matrix (between the degrees of freedom at the nodes of the elements on both beams) as
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Similarly, the sti!ness matrix K
S

can be constructed for other supports. The sti!ness
matrices of the beams and the spring may be partitioned into those degrees of freedom
a!ected by the spring sti!ness, and the other degrees of freedom within the beam. Thus,
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The sti!ness matrices of the three substructures are partitioned into their internal and
connected d.o.f. The "rst subscript A, B and S relates to beam A, beam B and the supports
respectively. In the second and third subscripts, I represents the internal d.o.f. of the beams
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A and B, depending upon the "rst subscript, and S represents the d.o.f. of the supports. The
lumped mass matrix of beams A and B may be written in a similar fashion to sti!ness
matrix.

Using equations (5)}(7), the system eigenvalue equation is
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or,

K/"jM/, (9)

where K and M are the system sti!ness and mass matrices and / is the normalized
eigenvector of the structural system and j is the eigenvalue.

2.2. ESTIMATION OF SUPPORT LOCATIONS

One of the gradient-based model updating methods, namely the Penalty Function
method [2], based on natural frequencies only, is used to estimate the support locations.
The vector of updating parameters, h"[x

1
, x

2
,2,x

p
]T , consists of the locations of

the p supports, measured from one end of the beams. If required, the support sti!nesses
may also be included as unknown parameters. These parameters will not be
considered further in this section because the use of such parameters in model updating
is common, and their inclusion is straightforward [2]. The "rst m eigenvalues (natural
frequency squared) are measured and placed in the measurement vector,
z
e
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]T. The corresponding eigenvalues computed from the FE model are
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]T. Mode shapes (or eigenvectors) may also be included in the

measurement vector, although this is a minor extension to the approach, and is not
considered further.

The eigenvalues may be written as a "rst order truncated Taylor series expansion in terms
of the updating parameters, giving the error vector, e, as

e"dz!S dh, (10)

where dh is the vector of perturbations in the support locations and dz"z
e
!z

c
is

the eigenvalue error. Note that it is important that the correct modes are paired, which
is conveniently checked using the modal assurance criteria (MAC) [4]. The
sensitivity matrix, S, is the "rst derivative of eigenvalues with respect to the support
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locations,
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The derivatives in equation (11) are computed [5] as
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are the ith eigenvalue and eigenvector. In the estimation of spring support

locations, the derivative LM/Lx
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is zero since the mass of the spring supports is assumed to

be negligible. The derivative LK/Lx
j

is computed by di!erentiating the system sti!ness
matrix (equation (8)).

The position of the jth support at the end of each iteration is given by x
j
. Suppose that the

jth support is placed within the eth element of beam A (see Figure 3). Then,
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Only coe$cients of the spring support sti!ness matrix K
S
depend on the local co-ordinate,
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Lj
ci

Lm
j

"/T
i

0 0 0 0

0
LK

S,AA
Lm

j

0
LK

S,AB
Lm

j

0 0 0 0

0
LK

S,BA
Lm

j

0
LK

S,BB
Lm

j

/
i
. (15)

It is vital that the eigenvalue derivative should be continuous at the nodes of the FE model.
If the spring support is located at a node, either of the elements connected to this node may
be used to determine the eigenvalue derivative, and both these derivatives must be equal.
The derivative of the support sti!ness matrix, equation (4), consists of terms like
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However, evaluating this expression at the ends of the elements gives, from equation (2),
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Although these look di!erent, when these expressions are substituted into equations (4) and
(12) the non-zero terms pick out the same d.o.f.s in the eigenvector. Thus, the eigenvalue
derivatives are continuous at the nodes.

The penalty function, J, is formed as [2]

J (dh)"eTWe e, (18)

where We is the positive diagonal weighting matrix which re#ects the con"dence level in the
frequency measurements. It is generally taken as the reciprocal of the variance (the square of
the standard deviation) of the corresponding measurements [2].

The vector of desired support locations can be obtained by minimizing J with respect to
dh which involves the di!erentiation of J with respect to each parameter, and setting the

result equal to zero. The perturbation in the parameter vector is then

dh"[STWeS]~1 STWe dz . (19)

Since equation (10) is a linear approximation, the method is iterative. A new model with the
updated support locations is generated, and the revised analytical eigenvalues and
sensitivity matrix are produced. The iteration process continues until the solution
converges.

2.3. COMPUTATIONAL IMPLEMENTATION

To implement the above formulation (equation (19)) for the estimation of support
locations, the modal data need to be computed for a given set of support locations h. In this
paper, an FE model is used for this purpose. In addition, experimental modal data
measured on a structure with unknown support locations are required to determine dz. The
iterative process in equation (19) requires an initial guess for the support locations. After
each iteration, the updated values of the support locations, for example x

j
of the jth support,

is compared to nearby nodal position of the FE model in order to place the jth support
within the correct element of the FE model. The matrices for the two beams do not have to
be generated at each iteration. Only the sti!ness matrix of the spring supports have to be
computed, and placed in the correct positions in the global sti!ness matrix. Note that
equation (8) implies that the ordering of d.o.f. changes if the location of the supports changes
from one element to another. In practice, the ordering of the d.o.f. would be "xed, and the
spring support sti!ness matrix would be placed at the correct d.o.f.s.

No mention has been made of regularization or conditioning of the estimation procedure
[6]. One advantage of specifying the position of the support, rather than estimate sti!ness
values for all elements, is that the number of parameters is reduced. In general, the fewer the
parameters that need to be estimated the better is the conditioning of the problem. If natural
frequencies are used, then the number of modes measured must be equal to, or preferably
larger than, the number of support locations. If the support sti!nesses are also estimated
then there must be twice as many modes as supports. However, ensuring that there are more
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measurements than parameters does not guarantee a well-conditioned problem, as di!erent
parameters may have a similar e!ect on the predicted eigenvalues. This does not appear to
be a problem in the examples below, partly because only one or two supports are identi"ed.
The e!ect of location and sti!ness are likely to be di!erent, since the support location is
likely to a!ect di!erent modes in di!erent ways, whereas the support sti!ness is likely to
change all the modes in a similar way.

3. SIMULATED AND EXPERIMENTAL EXAMPLES

To determine the spring support locations, measured modal data and an initial estimate
of the locations are required. The measured data required consist of measured natural
frequencies and mode shapes of the structure corresponding to some support locations that
are to be determined. This set of data is henceforth referred to as the target data for the
iterative solution. In the examples given only the natural frequencies are used in the
estimation. Any of the well-known experimental techniques for modal analysis [7] can be
used to obtain these modal parameters. In the numerical study, simulated modal data are
used in place of the experimental modal data for the assessment of the method. To
determine the e!ectiveness of the present formulations in comparison with earlier studies
[1, 3] the same examples are used. Examples 1, 3 and 4 assume that the support sti!ness is
known accurately. If this is not the case then these support sti!nesses should also be
estimated, and this is the purpose of examples 2 and 5.

3.1. EXAMPLE 1: NUMERICAL SIMULATION OF PARALLEL BEAMS

The problem of two "xed}"xed beams of di!erent dimensions with two spring supports
of sti!ness 10 kN/m was considered "rst [1]. Both beams were 2m long, and beams A and
B had cross-sections 50]25 mm and 25]12)5 mm respectively. The Young's modulus of
elasticity and the density for both beams were 70 GN/m2 and 2666)67 kg/m3 respectively.
TABLE 1

¹he location of two unsymmetrically placed spring supports between two beams

Case 1a Case 1b Case 1c

Parameters Initial Target Initial Target Initial Target

Support x
1

(mm) 520)0 440)0 520)0 440)0 520)0 440)0
Location x

2
(mm) 1880)0 1720)0 1880)0 1400)0 1880)0 1200)0

Natural 19)217 18)771 19)217 22)091 19)217 24)344
frequencies (Hz) 33)295 33)252 33)295 34)107 33)295 35)232

48)950 48)991 48)950 51)487 48)950 49)544

Iterations Present study*
required (76 d.o.f.)

05 08 07

Earlier study*
(196 d.o.f.) [1]

05 06 09



TABLE 2(a)

¹he location of two symmetrically placed spring supports between two beams

Case 1d Case 1e Case 1f

Parameters Initial Target Initial Target Initial Target

Support x
1

(mm) 520)0 240)0 520)0 280)0 520)0 360.0
location x

2
(mm) 1880)0 1760)0 1880)0 1720)0 1880)0 1640)0

Natural 19)217 17)041 19)217 17)428 19)217 18)565
frequencies (Hz) 33)295 32)986 33)295 33)040 33)295 33)221

48)950 46)542 48)950 47)211 48)950 48)885

Iterations Present study*
required (76 d.o.f.)

14 12 13

Earlier study*
(196 d.o.f.) [1]

08 15 05

TABLE 2(b)

¹he location of two symmetrically placed spring supports between two beams

Case 1g Case 1h Case 1i

Parameters Initial Target Initial Target Initial Target

Support x
1

(mm) 520)0 440)0 520)0 600)0 520)0 800)0
location x

2
(mm) 1880)0 1560)0 1880)0 1400)0 1880)0 1200)0

Natural 19)217 20)139 19)217 23)853 19)217 26)699
frequencies (Hz) 33)295 33)548 33).295 34)935 33)295 37)785

48)950 50)634 48)950 52)150 48)950 48)651

Iterations Present study*
required (76 d.o.f.)

10 14 13

Earlier study*
(196 d.o.f.) [1]

09 07 14
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Both of the beams were divided into 20 elements of equal length, giving a total of 76 d.o.f.
The number of d.o.f. used was less than 40% of those used in the earlier study [1]. The
support locations, x

1
and x

2
, for both the spring supports were chosen as updating

parameters.
Many exercises were carried out to determine the location of both the spring supports for

di!erent target data from a variety of initial guesses. The measured data consisted of the "rst
three eigenvalues, and the weighting matrix was taken as the identity. Tables 1 and 2 show
the results of these exercises, and show that the support locations were successfully
identi"ed without any error. The results of the earlier study are also listed in the tables for
comparison. Figure 4 shows the convergence of the parameters for case 1i. As expected,



Figure 4. Convergence of the two estimated support locations for case 1i.
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since the example does not include any noise or errors, the updated support locations
exactly match the target locations.

3.2. EXAMPLE 2: NUMERICAL SIMULATION OF PARALLEL BEAMS*IDENTIFICATION OF

SUPPORT LOCATION AND STIFFNESS

The above example was now repeated, except that the support sti!ness was also
identi"ed, along with the location. Since only three natural frequencies are assumed to be
measured, only one support location and sti!ness can be identi"ed. Table 3 shows the
results of these exercises, and shows that the support locations are successfully identi"ed
without any error. Figure 5 shows the convergence of the parameters for cases 2a and 2e. As
expected, since the example did not include any noise or errors, the updated support
location and sti!ness exactly match the target data.

3.3. EXAMPLE 3: NUMERICAL SIMULATION OF COAXIAL TUBES

The second system was also a numerical simulation, in this case two coaxial tubes with
two loosely held spacers maintaining the annular gap between the tubes [3]. Figure 6 shows
a schematic of the tube assembly. Both tubes were 6350 mm long, and tube A had
a diameter and thickness of 100mm and 5 mm and tube B had a diameter and thickness of
150 mm and 2 mm. The Young's modulus and the mass density for the tubes were
200GN/m2 and 8000 kg/m3 respectively. The ends of both the tubes were "xed. The sti!ness
of both the massless spacers was 1GN/m. Both tubes were discretized into 31
Euler}Bernoulli beam elements, giving a total of 62 elements and 120 d.o.f. The number of
d.o.f. used was less than 25% of those used in the earlier study [3].

Once again, the two spacer locations, x
1
and x

2
, were chosen as the updating parameters,

and Table 4 gives the results of estimated spacer locations. Clearly, the spacers were located
correctly in fewer iterations than in the earlier study [3]. Figure 7 shows the convergence of
the support locations case 3a.



TABLE 3(a)

¹he estimation of the sti+ness and location of a spring support between two beams

Case 2a Case 2b Case 2c

Parameters Initial Target Initial Target Initial Target

Support location, 520)0 240)0 520)0 600)0 520)0 740)0
x
1

(mm)
Support sti!ness,
k
spring,1

(N/m) 11 300 10 600 11 300 11 500 11 300 11 850

Natural 19)434 16)764 19)434 20)601 19)434 22)743
frequencies (Hz) 33)332 32)954 33)332 33)559 33)332 34)196

49)339 45)991 49)339 49)864 49)339 49)032

No. of iterations required 05 03 06

TABLE 3(b)

¹he estimation of the sti+ness and location of a spring support between two beams

Case 2d Case 2e

Parameters Initial Target Initial Target

Support location, 520)0 850)0 520)0 950)0
x
1

(mm)
Support sti!ness,
k
spring,1

(N/m) 11 300 12 125 11 300 12 375

Natural 19)434 24)183 19)434 24)973
frequencies (Hz) 33)332 34)973 33)332 35)674

49)339 47)113 49)339 45)604

No. of iterations required 19 08
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3.4. EXAMPLE 4: LABORATORY-SCALE EXPERIMENT

The last system was a laboratory-scale experiment that consisted of two tubes made of
steel which were inter-connected by a rubber band [3]. The schematic of the set-up is shown
in Figure 8(a). The detail of the dimensions and the boundary conditions of both the tubes
are also marked in the "gure. A modal test was carried out using impact excitation [7]. It
was assumed that the spring action of the rubber band was linear for the small levels of
excitation used in the test. Modal tests were conducted for two di!erent locations of the
rubber band (656)5 and 746)5mm from one end), and the identi"ed natural frequencies are
listed in Table 5. Figure 8(b) shows the FE model of the set-up that was developed using
lumped mass Euler}Bernoulli beam elements for both the tubes and a spring element for the
rubber band. A total of 96 d.o.f. (46 translation d.o.f. and 50 rotational d.o.f.) were used in
the FE model, which is 39% of the number used previously [3]. The sti!ness of the elastic
band was measured as 0)9278 N/m.



Figure 5. Convergence of the estimated parameters for cases 2a (h-h-h) and 2e (s-s-s): (a) Location
estimation; (b) sti!ness estimation.

Figure 6. Schematic of the assembly of two coaxial tubes.
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The location of the spring was carried out using the position of the spring, x
1
, as the

updating parameter. As shown in Table 5 the target location for both cases was detected at
the "fth iteration from the initial guess of the rubber spring at 508 mm. The position of the
spring for both cases had a very small error of less than 1% of the target locations. Thus, an



TABLE 4

¹he location of two spacers between a twin coaxial tube assembly

Case 3a Case 3b Case 3c

Parameters Initial Target Initial Target Initial Target

Support x
1

(mm) 2450)0 2950)0 2450)0 2350)0 2450)0 2850)0
location x

2
(mm) 4350)0 3950)0 4350)0 3850)0 4350)0 3350)0

Natural 18)723 18)705 18)723 18)725 18)723 18)687
frequencies (Hz) 50)923 49)614 50)923 50)755 50)923 49)147

80)104 72)292 80)104 80)128 80)104 71)081

Iterations Present study*
required (120 d.o.f.)

10 05 19

Earlier study*
(504 d.o.f.) [3]

14 06 19

Figure 7. Convergence of the two estimated support locations for case 3a.
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FE model with a small number of d.o.f. was su$cient to determine the support locations
correctly. Figure 9 shows the convergence of the support locations.

3.5. EXAMPLE 5: LABORATORY-SCALE EXPERIMENT*IDENTIFICATION OF SUPPORT

LOCATION AND STIFFNESS

The above example was now repeated, except that the support sti!ness was also
identi"ed, along with the location. Table 6 shows the results of the identi"cation, and
Figure 10 shows the convergence of the parameters. The location of the spring was
identi"ed with an error of 5)11 and 0)39% for the two cases. The error in the estimated
spring sti!ness was larger, at 20)0 and 2)65% from the target sti!ness of 0)9278N/m.



Figure 8. Laboratory experimental set-up: (a) schematic of the set-up assembly; (b) FE model.

TABLE 5

¹he location of a rubber band spring between two tubes for the experimental example

Case 4a Case 4b

Parameters Initial Test data Initial Test data

Support location, 508)44 656)50 508)44 746)50
x
1

(mm)

Natural 18)053 20)938 18)053 21)875
frequencies (Hz) 29)081 28)750 29)081 29)375

37)219 39)375 37)219 39)375

Present Estimated 651)97 mm (!0)69%) 745)05mm (!0)19%)
study* location
(96 d.o.f.)

No. iterations

05 05

Earlier Estimated
study [3]* location

656)74mm (0)04%) 741)48mm (!0.67%)

(248 d.o.f.) No. iterations 03 04
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Figure 10 clearly shows that the conditioning of the estimation problem was worse, and
convergence was slower, than when only the location was estimated. One reason for this
was that the spring sti!ness was relatively small, and the di!erence in the natural frequency
for sti!ness values of 0)7421 and 0)9278 N/m was very small. However, it was gratifying that



Figure 9. Convergence of the estimated support location for cases 4a (h-h-h) and 4b (s-s-s).

TABLE 6

¹he estimation of the sti+ness and location of a rubber band spring between two tubes for the
experimental example

Case 5a Case 5b

Initial Test data Estimated Initial Test data Estimated

Support location, 508)44 656)50 690)08 508)44 746)50 743)60
x
1

(mm) (5)11%) (!0)39%)
Support sti!ness, 2)00 0)9278 0)7421 2)00 0)9278 0)9032
k
spring,1

(N/m) (!20.0%) (!2.65%)

Natural 19)253 20)938 20)674 19)253 21)875 21)504
frequencies (Hz) 29)468 28)750 28)891 29)468 29)375 28)780

54)057 39)375 39)630 54)057 39)375 40)424

No. iterations 05 13
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the spring was located accurately, and the estimate of location seemed more robust to errors
than the estimate of sti!ness.

4. CONCLUDING REMARKS

A method for the estimation of the locations of interconnecting intermediate spring
supports in beam structures as a solution of an inverse vibration problem has been
presented. The methodology uses a baseline FE model along with the modal test data in
a gradient-based model updating method. The changes in the natural frequency
characteristics of the structural system due to the movement of the loosely held spring
supports are used. The formulation presented in the paper is slightly more involved than



Figure 10. Convergence of the estimated parameters for cases 5a (h-h-h) and 5b (s-s-s): (a) location
estimation; (b) sti!ness estimation.
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earlier studies. However, the advantage of the present formulation is that an FE model with
far fewer d.o.f. is su$cient to locate the support accurately, and hence signi"cantly reduces
the computation required. Furthermore, in the proposed method the parameters are
continuous, which avoids the complicated numerical estimate of the eigenvalue derivative
required previously. The validation and the advantages of the proposed method have been
highlighted through numerical simulations and an experimental example. In the illustrative
examples, only one and two supports are used, although this is not a constraint of the
method. Beam models have been used in the development of the method, although a similar
approach for plate elements is possible.
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