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1. INTRODUCTION

With quality and efficiency being of continual importance in industry, a significant amount
of research activity has been devoted to machine signature analysis (MSA) [ 1-3]. The major
tool used for MSA has been spectral analysis. Classical spectral estimation techniques
include Periodogram, Averaged Periodogram and Blackman-Tukey spectral estimation.
Newer approaches to spectral analysis include a variety of parametric modelling
techniques. Within this category are the rational transfer function modelling method,
autoregressive (AR) PSD estimation, moving average (MA) PSD estimation, autoregressive
moving average (ARMA) PSD estimation, Prony spectral density estimation and maximum
likelihood method (MLM) [2, 3].

The majority of the research and development work carried out to date with regard to
signal processing strategies for machine condition monitoring and diagnostics applications
has focused on signals generated from steady state processes. Transient processes have been
left relatively unstudied. Examples of methods that are applicable to transient processes are
wavelet and short-time fast Fourier transform [1, 4]. The Prony method, originated by the
French scientist Baron de Prony in 1795 [5], is also capable of analyzing transient processes
[5, 6] and is inherently suitable for the study of exponentially decaying dynamic signals, such
as those that develop as a result of many different types of machinery condition deterioration
[6-9]. This paper explores the use of the Prony method to study such transient signals.

Similar to the well-known system identification techniques such as AR and ARMA models,
the Prony model seeks to fit an exponential model, which is a linear combination of a series of
exponentially decaying sinusoidal functions, to sampled data. The Prony method first
determines the linear prediction parameters that fit the sampled data. Such linear prediction
parameters are then used as coefficients to form a polynomial. The roots of this polynomial
are finally employed to estimate the damping coefficients, the sinusoidal frequencies, the
exponential amplitude and sinusoidal initial phase of each of the exponential terms.

2. NUMERICAL EXPERIMENT

2.1 NUMERICAL IMPLEMENTATION

The application of the Prony method in applications other than machine condition
monitoring is well understood and documented [2, 3, 5]. The Prony modelling and
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TABLE 1

Function parameters recaptured using the Prony method

Amplitude Damping constant Frequency (Hz) Phase (rad)
5-0000000000 — 0-8000000000 10-0000000000 1:5707963268
3-0000000000 —0-3000000000 40-0000000000 —1-5707963268

10-0000000000 — 0-5000000000 25-0000000000 — 31415926536
10-0000000000 —0-5000000000 26-0000000000 0-7853981634

0 5 10 15 20 25 30 35 40 45 50
Frequency (Hz)

Figure 1. Spectral presentation of data generated using equation (1).

spectrum estimation procedures used in this work were coded in a FORTRAN 77 program
with double precision. Some of the subroutines were borrowed from reference [5] with
modifications from reference [10].

2.2. VALIDATION OF ROUTINES

In this section, examples are presented for validation of the computer program. Four
deterministic functions were combined to generate data sets, which in turn were used as
input to the program for computation of a Prony model that then describes the data set. All
the data sets generated using the deterministic functions consist of 64 points. Computation
results collected include function parameters recaptured and spectral figures. The first
example is

x(t) = 10exp(— 0-5t) cos(2725t + ©) + 10exp(— 0-5¢) cos(2n26t + 7/4)
+ Sexp(— 0-8t) cos(2n10t + 7/2) + 3exp(— 0-3t)cos(2n40t + 37/2). (1)

The parameters and the spectrum computed by the prony method are shown in Table 1
and Figure 1. The order of the prony model used was 8. The peaks in the figure appear at
frequencies of 100, 25:0, 26:0 and 40-0 Hz respectively. All parameters are accurately
recaptured.
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Figure 2. Spectral presentation of simulated data generated using equation (2).

2.3. SIMULATION

The simulated data were generated according to the following function, which consists of
four exponential components and a stationary Gaussian white noise process. The data
consists of 256 points:

x(t) = 10exp(— 0-5¢t) cos (2125t + ) + 10 exp(— 0-5t)cos(2n26t + 7/4)
+ Sexp(— 0-8t)cos(2n10t + 7/2) + 3exp(— 0-3t)cos(2n40t + 37/2) + W (). (2)

Here, W (t) is a Gaussian white noise process with zero mean and r.m.s. of 1-0. The spectral
plot computed by using the program is presented in Figure 2 where the order of the Prony
model is 32. The peaks in the figure are clearly visible at frequencies of 10-0, 25-0, 260 and
40-0 Hz as expected.

3. METHODOLOGY ENHANCEMENT

In engineering practice, many factors can affect the accuracy of measurement and
computation results, which do not exist in the laboratory environment. To ensure the
efficiency and the effectiveness of the proposed technique, it is necessary to enhance the
methodology in order to increase its robustness. To this end, a few measures have been
taken and are described in this section.

3.1. MINIMIZING THE NUMERICAL DEVIATION

It is commonly understood that wherever numerical computation is involved, numerical
error exists. It is, however, possible to reduce such errors through steps such as careful
selection of numerical algorithm and routines. In this work, the following steps were taken:
(1) increase of the program precision—double precision was used; (2) use of longer digit
platform machine—32 bit; (3) test and comparision of different algorithms; (4) test and
comparison of different subroutines.
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The critical root finding routines were tested and compared extensively and the
“three-stage variable shifting iteration” by Jenkins and Traub [11, 12] was proven to be the
best in handling different situations. For the least-squares linear prediction estimation
method, the covariance method was adopted. The “fast algorithm to solve the covariance
normal equation” by Morf et al. and Marple [5] was employed. To examine the robustness
of the program, a number of experimental data sets of various lengths were analyzed and the
computation results were compared. It was concluded after the comparisons that the
accuracy was satisfactory. The numerical results are the same up to eight decimal points.
Presented below is one of those examples. The input data in this example was cut in half
iteratively until a minimum data length was reached. Minimum data length means the
reciprocal of the lowest dominant frequency in the sample data. From the figures, one sees
that the results computed by using the minimum data length are the same as those when
using a full set of data. They are, in fact, virtually identical.

Figures 3 and 4 are examples that illustrate the robustness of the program. Figure 5 is
a spectral plot calculated by using the input vibration data shown in Figure 3. Figure 4
presents the input data which is one-sixteenth of that in Figure 3. Figure 6 is the
corresponding spectral plot computed by using the short input data shown in Figure 4. It is
easy to observe that both spectral plots are virtually identical. This indicates that the
program is able to offer accurate output with minimum input data. Several other sets of
experimental data were used to test the procedure with similar results.

3.2. SINGULAR VALUE DECOMPOSITION

Background noise is, and will always be an issue accompanying any type of data
acquisition and processing. The reduction of noise is sometime critically important in order
to extract useful information from the sampled data. It would thus be beneficial to include
a data reduction technique with the program. There exist several approaches for noise
reduction that can be used: FILTERING which includes analog filtering and digital
filtering, AVERAGING and numerical methods. The filtering techniques are integrated
systems whereas the averaging technique usually requires many trials and is therefore not
suitable here as the focus of this investigation is non-repeatable short data samples. It
appears that the appropriate technique to be incorporated into the program is the
numerical approach. The Singular Value Decomposition (SVD) is a proven numerical
technique that can be adopted for noise reduction by truncating decomposition terms of the
data matrix.

The procedure for applying the SVD technique is: first calculating the singular values of
the data matrix; rearranging the singular value in descending order and finally truncating
the eigenvectors associated with the small eigenvalues. If a signal consists of m components
with background noise, then the m eigenvectors associated with the m largest singular
values primarily span the m major components while the remaining smaller singular values
mainly span the noise components.

Presented in this subsection are two examples to demonstrate the effectiveness of the
application of the SVD in noise reduction. Figure 7 is a spectral plot calculated with
simulated signal data in additive noise and Figure 8 is the corresponding spectral content
computed by using the same set of data with the application of SVD. One clearly sees that
the latter is much clearer in terms of revealing the dominant frequencies. Figures 9 and 10
show another similar example, computed by using experimental data with additive noise, to
prove the effectiveness of the SVD in reducing the effect of additive noise.
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Figure 3. Impact response vibration data from a cantilever beam (full data set).
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Figure 4. Vibration input data (one-sixteenth of that in Figure 3).

3.3. MODEL ORDER SELECTION

The model order selection is an extremely important part of parametric approaches and
in industrial applications. Improper selection of model order will cause either loss of
information or introduction of extra peaks in the spectra. Either case may lead to incorrect
or inaccurate judgements. There has been extensive research on model order selection
carried out over the last few decades with many different criteria described. These include
the Akaike Information Criterion (AIC) [13-15], the Minimum Descriptive Length (MDL)
criterion [16, 17] and the Hannan criterion [18]. These criteria are based on or partially
based on the maximum likelihood principle. A thorough comparison of the various model
order selection criteria has been carried out by the authors of this paper [19, 20].
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Figure 5. Spectral plot using full set of input data shown in Figure 3.
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Figure 6. Spectral plot using the short data set shown in Figure 4.

4. LABORATORY TESTS

4.1. CANTILEVER BEAMS

Simple experiments were conducted to illustrate the application of the Prony model to
transient vibration signals. The structures tested were two cantilever beams, which were
made of mild steel with properties as follows: density of 7860 kg/m?, elasticity modulus of
200 GPa. The dimensions of the beams are 2512 mm x4:61 mm x 643 mm and
37-63 mm x 3-13 mm x 323 mm. Vibrations were generated by impact testing the two
beams. The vibration data for the long beam impact response is presented in Figures 3 and 4.
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Figure 7. Spectrum of a sample signal [data from equation (1)] in additive noise (without SVD filtering).
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Figure 8. Spectrum of a sample signal [data from equation (1)] in additive noise (with SVD filtering).

Figures 5 and 6 show the frequency spectra computed using the procedure described in this
paper. The peaks in Figures 5 and 6 are located at 9-2, 57-3, 163-3 and 314.1 Hz. These
locations coincide with calculated theoretical values and finite element analysis results.
Similar agreement with theoretical and FEA results was found after analysis of the data
from the impact test of the short cantilever beam as well. For the Prony method, one trail
(trace) was always enough for the program to produce a clear spectral plot. Such an
advantage would be extremely valuable in situations where repeated signals are difficult or
even impossible to collect.

To further test the program, the clamped base of the cantilever beams was slightly
loosened purposely and impact vibration testing was again conducted. The frequency
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Figure 9. Spectrum of an experimental signal in additive noise (without SVD filtering).
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Figure 10. Spectrum of an experimental signal in additive noise (with SVD filtering).

spectral content from one of the tests is presented in Figure 11. The dominant frequencies
and the overall pattern of the frequency spectrum have changed. This suggests the potential
application of the Prony method in Machine Condition Monitoring where changes in
equipment operating condition need to be detected through the analysis of short transient
vibration data.

4.2. LOW SPEED FAULTY BEARING TESTS

The next laboratory experiment was conducted to apply the Prony method to vibration
signals collected from machinery operating at low rotating speed. Bearing fault detection
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Figure 11. Frequency content of the impact vibration signal from the loosened cantilever beam.

has been a research subject for years and many satisfactory results have been achieved.
Most of this research has focused on the machine’s operation frequencies (defect
frequencies) and therefore a sufficient length of data is needed which may be difficult to
collect in the cases where the rotation speed of the bearings is low. Mechefske and Mathew
[21-24] applied a modelling approach to deal with this problem and achieved promising
results. This section looks at the low-speed bearing fault issue from a different perspective,
investigating the high-frequency content. The incentive for such an investigation is the
following. For high-frequency investigation, only a very small length of data is needed. This
could provide the ability to detect the occurrence of a fault or a change in operating
condition. This is particularly important in circumstances where long data samples are
difficult or even impossible to collect. This also provides the opportunity for real time
application.

Applying the Prony method for bearing fault detection serves the purpose of
demonstrating the capability of this method in detecting condition changes using only short
length vibration signals. Artificial faults in the form of a groove cut across the full width of
the outer race were created with widths ranging from 0-2 to 2:0 mm in 10 increments of
0-2 mm and depths ranging from 0-1 to 1:0 mm in increments of 0-1 mm respectively. The
faults were located at the center of the load zone. Vibration signals are collected through an
accelerometer placed on the bearing housing in the center of the load zone and close to the
fault location. Each time a roller runs over the groove, a small impact signal is generated.
Low-frequency investigation analyzes the frequency at which these impact signals occur.
This study, by applying the Prony method, looks at analyzing each of these impact signals
individually and tries to extract useful information from these short impulses.

Before the bearing was installed, its natural frequency was measured by impact test
performed on the bearing hanging without other constraints. The first natural frequency of
the bearing is 1200 Hz. This will provide useful information as to approximately what
frequency range one should be looking at when analyzing the impulse generated by the
rollers. Unlike the cantilever beam cases, one should not expect the natural frequencies to
shift significantly when artificial faults are created or the groove is widened because such
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faults are rather minor in terms of the integrity of the structure as a whole. Instead, one
should focus on the energy input to generate such signals.

Figure 12 shows a typical signal collected from the bearing structure operating with
artificial faults, in which frequencies below 20 Hz have been filtered out. The Prony method
was applied to analyze each impulse of these signals. Figure 13 is the spectral result after
applying the Prony method to one impulse corresponding to a fault groove of 0-4 mm.
Figure 14 is one that corresponds to a groove of 1-0 mm while Figure 15 is the result
associated with a fault groove of 2-0 mm. Notice that the spectral peaks are located at
around 1300 Hz instead of 1200 Hz. This is because the bearing is now clamped by the
bearing housing and the structure becomes more rigid. As was expected, the frequencies
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Figure 12. Typical vibration signal collected from faulty bearings.
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Figure 13. Spectral content of signal from faulty bearing (groove: 0-4 mm).
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Figure 14. Spectral content of signal from faulty bearing (groove: 1-0 mm).
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Figure 15. Spectral content of signal from faulty bearing (groove: 2-0 mm).

change very little with width change of the fault grooves. However, the spectral intensity of
the signals changes visibly with the widening of the grooves as one compares Figures 13-15.
Such changes can certainly be used as an indicator of fault worsening in condition
monitoring. More studies need to be conducted in order to acquire a thorough
understanding of the Prony parameters associated with different fault conditions.

5. CONCLUDING REMARKS

Investigations have been conducted which explore the application of the Prony method
to the analysis of transient vibration signals. Numerical validation, computer simulation
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and laboratory testing, including cantilever beams and bearing test rigs, have been
conducted to examine the Fortran 77 program that implements the Prony modelling
procedures. From the preliminary results presented in this paper, a few concluding remarks
can be drawn.

Selection of the Prony method for transient vibration signal analysis is proven to be
appropriate.

The auxiliary techniques enhance the method and make it more robust.

The test results show that the program runs well and the computations are accurate and
efficient.

It is revealed that the program has the potential to be adopted in machine condition
monitoring and real time application.

The next step to follow is to further test the program on bearing test rigs and more
complicated structures as well as in industrial machine condition monitoring situations.
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