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In a companion paper the quasi-steady aeroacoustic behavior of diaphragms which
prevails for low Strouhal number but Mach number of order unity was discussed. The
complementary case of a small Mach number and a Strouhal number of order unity is now
considered. In this case, a two-dimensional numerical method is used to predict the
Strouhal-number dependence of the coe$cients of the scattering matrix. The numerical
method solves the two-dimensional incompressible #ow equations by means of the
vortex-blob method. The quality of the numerical results is investigated by comparing
results of Howe's energy formulation with results obtained by an integral formulation to
calculate the pressure di!erence across the diaphragm. The predictions of the coe$cients are
compared with experimental measurements carried out at LAUM. It is shown that the low-
and high-frequency behavior are quite well predicted, while for intermediate frequencies
a deviation between numerical simulations and experimental measurements is observed.
While this is not yet fully understood it is expected to be related to whistling induced by the
"nite thickness of the diaphragm in the experiments.

( 2001 Academic Press
1. INTRODUCTION

For some aeroacoustic problems it is possible to separate the #ow domain into a region of
wave propagation and an acoustic source region. When the dimensions of the source region
are small compared to the wavelength of the acoustic perturbation (He@1), the source
region can be considered compact. There are two reasons for the source region to be
considered compact: i.e., (1) the local #ow in the source region can be considered
0022-460X/01/260057#21 $35.00/0 ( 2001 Academic Press
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quasi-steady, or (2) the local #ow in the source region can be considered incompressible. In
the "rst case, the acoustic source can be described by a quasi-steady model even taking
compressibility e!ects into account as was done in the companion paper [1]. In the second
case, the unsteady incompressible #ow equations have to be solved. It is usually necessary to
solve these equations numerically when considering arbitrary amplitudes. In the case of
linear perturbations, an analytical model has been proposed by Howe [2] which has been
used by Dowling and Hughes [3] and more recently by Wendoloski [4].

For low-Mach-number isentropic #ows unsteady vorticity is the main source of sound.
Therefore one can restrict oneself to solving the #ow in the source region accurately
describing the development of the vorticity "eld in the incompressible #ow limit.
Furthermore, only source regions for which a two-dimensional description is reasonable are
considered.

In order to model the high-frequency response of a slit-shaped diaphragm in a pipe,
a numerical method is used to simulate the #ow. It yields a solution of the two-
dimensional frictionless incompressible #ow equations and it includes #ow separation at the
edges of the diaphragm described by a Kutta condition. Because the method is an
incompressible #ow method, the results can only be applied to compact low-Mach-number
#ows. Results such as the acoustic losses due to the #ow through the diaphragm, are
presented. A comparison is made between two di!erent formulations of the acoustic source
power; results of Howe's energy formulation [5] for the acoustic source power are
compared with results of an integral formulation for the pressure using the Green function.
The acoustic power is studied as a function of acoustic amplitude and diaphragm opening.
Also, the in#uence of some details of the geometry of the diaphragm is studied. Another
result of this method is the acoustic source pressure Dp

source
that can be incorporated in an

acoustic model of the diaphragm #ow. The acoustic pressures upstream of the diaphragm
and the acoustic pressures downstream of the diaphragm are related by the so-called
scattering matrix [6]. Predictions of the components of the scattering matrix are compared
to low-Mach-number high-frequency experimental results obtained by means of
a two-source method.

2. NUMERICAL METHOD

2.1. VORTICITY}TRANSPORT EQUATION

The dynamics of incompressible two-dimensional #ows are governed by the conservation
of mass and momentum, which in non-dimensional form upon choosing a reference length
¸

ref
and a reference velocity ;

ref
, have the following forms: mass conservation equation,

$ ) u"0, (1)

momentum equation,

Lu

Lt
!uuM"!$ Ap#

Du D2
2 B#

1

Re
$Mu. (2)

Here u is the vorticity, uM"(!u
2
, u

1
) is the velocity vector rotated over 903, and

$M"(!L/Lx
2
, L/Lx

1
) is the gradient operator rotated over 903. In a two-dimensional #ow

the only non-zero component of the vorticity is directed along the third dimension, hence
x"(0, 0, u). Note that the density o drops out due to the scaling of the equation;
nevertheless, it is present in the scaling of the pressure with o;2

ref
. The vorticity}transport
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equation is derived by taking the curl of the momentum equation (2):

Lu
Lt

#u )$u"

1

Re
+2u. (3)

In this equation one can recognize the two processes that change the vorticity distribution.
The "rst process is the inviscid advection of vorticity described by the advection equation:

Du/Dt"0, (4)

in which D/Dt is the material derivative de"ned as, D/Dt"L/Lt#u )$. The second process
is the di!usion of vorticity described by

Lu
Lt

"

1

Re
+2u. (5)

At high Reynolds number the process of di!usion has only a small e!ect on the evolution
of distributed vorticity. In that case the transport of vorticity is governed by the advection
equation (4). In a subsequent section a desingularized point-vortex method is presented to
solve the vorticity}transport equation, while neglecting di!usion (see also references [7, 8]).
In the subsequent part of this paper the method is referred to as &&the vortex-blob''method.

One can choose to solve numerically the vorticity}transport equation, as opposed to the
Navier}Stokes equations for the primitive variable u. The velocity "eld is obtained from the
distribution of vorticity and also the pressure "eld is available through the integral
formulation that is presented in the next section. By solving the vorticity}transport equation
the computational e!ort can be focused on the regions of the #ow domain where vorticity is
present. At high Reynolds numbers vorticity is restricted to thin shear layers as a result of #ow
separation. This #ow separation is described at sharp edges by assuming a tangential separation
of the #ow, which corresponds to the so-called Kutta condition for frictionless #ows.

2.2. VORTEX-BLOB METHOD FOR INVISCID FLOW

When considering the transport of vorticity in a "xed two-dimensional domain
X enclosed by a contour LX the velocity "eld is given by

u(x, t)"PLX

u
n
KM(x!y) ds (y)!PLX

uqK(x!y) ds(y)#PPX

uK(x!y) dX(y), (6)

where K(x) is the Biot}Savart kernel

K(x)"
1

2n
xM

Dx D2
, xM"(!x

2
, x

1
).

The unit tangential vector s along the boundary is de"ned in an anti-clockwise direction
(with the #uid domain on the left) orthogonal to the unit normal vector that is directed
outwards: s"nM (see Figure 1). The velocity "eld has to satisfy only one boundary
condition on the solid walls in the domain: u

n
"0. On the in#ow section of the domain the

uniform in#ow velocity u
in

is prescribed: u
n
"!u

in
(t). On the out#ow section of the domain

the uniform out#ow velocity u
n
follows through mass conservation from the in#ow velocity.

The vorticity "eld u is approximated by a set of point vortices,

u"(x, t)"
N
+
j/1

C
j
d (x!x

j
),



Figure 1. De"nition of the integration domain and the unit vectors in the case of a diaphragm in a straight pipe.
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in which C
j
is the constant circulation of the jth point vortex at position x

j
and d (x!x

j
) is

the Dirac delta function. The positions of the individual vortices change in time according to

dx
j
/dt"u (x

j
, t). (7)

In the absence of solid walls in the #ow domain the velocity is completely determined by the
vorticity distribution. This leads to the following result for the velocity "eld:

u (x, t)"
N
+
j/1

K(x!x
j
)C

j
. (8)

When x"x
j
the above relation gives a singular value for the velocity at the jth vortex: It

has been shown that ignoring this contribution leads to a correct approximation of the
continuous velocity "eld, see reference [9]; i.e., each vortex has to move as if convected by
the net velocity "eld of all the other vortices. Moreover, the numerical evaluation of the
convolution (8) can be a!ected by large inaccuracies as xPx

j
. Two point vortices can be so

close that their mutual interaction is diverging as the inverse 1/r of the distance r between
these point vortices. This causes the development of a singularity in the solution at "nite
time, the e!ect of which can be removed only by solving the system (7) with an arbitrarily
small time step.

In the literature several approaches have been made to regularize the solution. Chorin
and Bernard [10] suggested the adoption of a regular vorticity "eld, with "nite-core vortices
(blobs) instead of the Dirac delta function. The convolution with the singular Biot}Savart
kernel produces a new modi"ed kernel for the velocity representation (8). A better
approximation of the solution is obtained even if the dynamics of these vortices is only
approximately a solution of the original equations. In fact, the vorticity distribution of each
blob, and therefore its shape, is "xed in time upon ignoring the action of the local strain "eld
on the vorticity "eld.

Beale and Majda [11] proved the accuracy, the linear stability and the convergence of
this model for the solution of the original equations. They proposed the following
desingularized kernel:

Kd (x)"K(x) (1!exp(!Dx D2/d2
v
)). (9)

In this equation d
v

is the so-called desingularization parameter. The contribution to the
vorticity distribution of the jth vortex associated with this vortex blob is

u
j
(x)"

C
j

2n
2

d2
v

exp(!Dx!x
j
D2/d2

v
), (10)
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which is a Gaussian distribution. An alternative kernel was proposed by Krasny [12}14]:

Kd(x)"K(x) )
Dx D2

Dx D2#d2
v

. (11)

The vorticity distribution associated with this kernel is

u
j
(x)"

C
j

2n
)

2d2
v

( Dx!x
j
D2#d2

v
)2

. (12)

The value of d
v
in equations (9) and (11) determines the level of desingularization. Although

these desingularization kernels are signi"cantly di!erent, it has been shown that the
in#uence of the exact form of the kernels on the numerical result is much less important
than the value of d

v
: comparable values of d

v
with di!erent forms of the desingularization

kernel lead to very similar results for the kind of problems of interest here, as shown by
Hofmans et al. [15]. However, note that both equations (10) and (12) indicate that the
vorticity distribution is not localized to the immediate neighborhood of x"x

j
but rather

spreads out to in"nity.
In the presence of solid boundaries the tangential velocity along the boundaries of the

domain is obtained from the projection of equation (6) along the local tangent: i.e., for
a point x on LX,

1

2
uq(x)#PLX

uq(y)K(x!y) ) s(x) ds (y)"PLX

u
n
(x)KM(x!y) ) s(x) ds (y)

#PPX

u(y)K (x!y) ) s (x) dX(y). (13)

Associated with the tangential velocity at the boundary is a circulation density c on the
boundary. It is given by the jump of the tangential velocity from the value given by equation
(13) to a prescribed value just outside the computational domain.

The closed boundary of the computational domain is discretized by a set of N
p

straight
panels, each having a uniform source density q and circulation density c. Across such
a panel the normal and the tangential component of the velocity jump by an amount of
q and c, respectively. In case one chooses the velocity outside the #uid domain to be zero,
the boundary condition of zero normal velocity at solid walls requires a zero source
strength, while at the parts of the boundary where there is an in- or out#ow the source
strength is speci"ed equal to the in- or out#ow. The Dirichlet condition (velocity potential is
speci"ed) is used on the boundary to determine the circulation density on each panel. It is
implemented by imposing a zero tangential velocity on the non-#uid side of the boundary,
i.e., in discretized form at each panel midpoint. The discretized equation representing the
Dirichlet boundary condition has the form

1

2
c
j
#

Np

+
k/1,kOj

c
k
Kc ( j, k)#

Np

+
k/1,kOj

q
k
K

q
( j, k)#

N
+
k/1

C
k
KC( j, k)"0, for j"1,2, N

p
, (14)

where K ( j, k) are the aerodynamic in#uence coe$cients which determine the in#uence of
the source (K

q
) or the surface vortex distribution (Kc) of the kth panel (or the in#uence of the

kth point vortex (KC)) exercised at the midpoint of the jth panel. For non-moving solid
boundaries K

q
( j, k) and Kc ( j, k) depend only on the "xed geometry of the computational



62 G. C. J. HOFMANS E¹ A¸.
domain and are independent of time. KC( j, k), however, is time-dependent since the vortex
blobs are advected with the #ow. In the case of straight panels with uniform source and
surface vortex distributions the aerodynamic in#uence coe$cients can be written as

Kc ( j, k)"P
sk

K(x
j
!x

k
) ) s

j
ds,

K
q
( j, k)"!P

sk

KM(x
j
!x

k
) ) s

j
ds, KC( j, k)"K (x

j
!x

k
) ) s

j
. (15)

In these equations s denotes the arc length along a panel and s
k
is the part of the boundary

belonging to the kth panel. Note that for the implementation of the boundary condition the
original singular kernel for the vortex blobs is used. When this is not done, the solution loses
any physical meaning. For every time step the surface vortex distribution on the boundary
can be solved by using an algorithm based on an LU-decomposition. When the circulation
density is known the vortex blobs can be advanced in time by integrating equation (7). This
equation is integrated in time by using a fourth order Runge}Kutta scheme.

The method described in this section solves the vorticity}transport equation for inviscid
#ow but does not include any means to generate vorticity. If this method is to be applied to
separating #ows a mechanism for generating vorticity is needed. For #ow separation from
sharp edges, as shown in Figure 2, simpli"ed models are available. These models have this in
common that they can be considered as an implementation of an approximate Kutta
condition at the sharp edge. The method used here is described below.

When a two-dimensional #ow is separating from a wall, the vorticity that was previously
in the boundary layer is transported with a certain transport velocity into the main #ow
domain. In the present model the vorticity of the boundary layer is concentrated in
the circulation density on the solid walls, which is equal to the tangential (slip) velocity at
the walls. The total amount of vorticity that is released into the domain per unit time is then
the product of the transport velocity and the vorticity in the boundary layer. In this method
at a sharp corner this process can be modelled as shown in Figure 2.

A new vortex blob is generated at an initial position determined by the velocity at the
midpoints of the two corner panels,

x
init

"x
corner

#1
2
(u

i
#u

i`1
)Dt,
Figure 2. Close-up of the numerical model of the #ow separation over a downward facing step, speci"cally the
generation of a new vortex.
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where Dt is the time step. The constant 1
2

in this equation is rather arbitrary. Results are
fortunately not sensitive to this choice [7]. From this initial position onwards the nascent
vortex blob is transported with the local #ow velocity. The circulation of the nascent vortex
blob is growing until a new vortex is generated. The change of the shear-layer circulation is
determined by

dC/dt"!1
2
Du

i
#u

i`1
D (u

i
) s

i
#u

i`1
) s

i`1
).

In this equation the transport velocity is represented by the term 1
2
(u

i
#u

i`1
), which is

the average of the velocities at the midpoints of the two corner panels. The amount of
vorticity that is transported into the #ow domain is the average of the circulation density on
the two corner panels. Although this is a very simple approximation of a complex process it
is very robust, leading to a very reasonable description of #ow separation at sharp edges as
the results will con"rm. As the interaction between the acoustic and vortical "elds is
strongest near sharp edges where #ow separation occurs, the accuracy of the prediction of
the model is largely determined by the accuracy of the implementation of the Kutta
condition.

3. INTEGRAL REPRESENTATION FOR THE PRESSURE

A natural way of computing the pressure "eld for an incompressible #ow starting from
a known vorticity distribution and boundary conditions is now presented. The adoption of
an integral representation leads to a more accurate evaluation of the solution than a direct
numerical integration along the boundary of the tangential projection of the momentum
equation (Navier}Stokes or Euler, according to the nature of the #ow). Moreover, the
deduction to be presented can suggest a quite straightforward application to acoustic
problems.

In the framework of vortex methods for incompressible #ows it is common to ignore the
pressure "eld for two main reasons. Firstly, to solve the momentum equations written in
terms of vorticity, knowledge of the pressure distribution is not needed, since p and u are
decoupled variables. The vorticity does not depend directly on the pressure; meanwhile p is
explicitly determined by the dynamics of u. Secondly, the total load acting on a surface
(both for internal or external #ow problems) can easily be obtained in terms of the time
variation of the vortex impulse [16].

The dynamics of incompressible #ows are governed by the conservation of mass and the
conservation of momentum as presented in equation (2). The boundary conditions are the
no-slip velocity on solid walls and an imposed uniform inlet velocity pro"le. Therefore
u"(0, 0) on solid walls and u

n
"!u

in
(t), uq"0 at the inlet section. Here u

n
and uq represent

the normal projection and the tangential projection of the velocity vector with respect to the
wall respectively. Note that the unit normal vector n is directed outwards and because u

in
is

the in#ow velocity, the minus sign on the right-hand side appears. As explained earlier, the
computational domain consists also of a far outlet section for which, u

n
"u

e
(t), uq"0,

where u
e
(t) is the uniform exit velocity that is evaluated by applying the conservation of

mass. This is strictly true only if the outlet section is really at in"nity. Nevertheless, the
asymptotic behavior of the perturbation velocity is a dipole-like one; hence the dependency
of the solution on this approximation may be easily relaxed by choosing a boundary
su$ciently far downstream. The unit tangential vector s along the boundary is de"ned in an
anti-clockwise direction (leaving the #uid domain on the left), while the normal one is
directed outwards of the domain, so that nM"s as is shown in Figure 1.
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If the divergence operator is applied to equation (2) a Poisson di!erential equation is
obtained for the non-dimensionalized total pressure P"p#Du D2/2:

+ 2P"!$ ) (uuM). (16)

The boundary conditions for P have to be chosen according to those for the velocity "eld.
This means that the dynamic boundary condition for P is provided by the normal
projection of the Navier}Stokes equations:

n )$P"!

Lu
n

Lt
!uuq#

1

Re
s )$u.

Therefore, P appears to be the solution of an inner Neumann problem, which admits
a non-unique solution. This is consistent with the physical de"nition of the pressure and so
P will be correctly found by subtracting a particular solution independent of the boundary
conditions (P"constant).

A straightforward application of Green's second identity provides an integral
representation for the total pressure,

c(x)P (x)"!PPX

$
y
) (uuM)G(x!y) dX(y)

!PLX

P (y)s )K(x!y) ds (y)!PLX

LP(y)

Ln
G(x!y) ds(y),

where y is the integration variable, X is the two-dimensional control area, LX is the closed
curve enclosing the control area, and ds denotes integrating along the curve LX. The
coe$cient c(x) is equal to 1

2
or 1 as the point x is on the #uid side of the boundary or in the

#uid domain, respectively; G (x!y) is the free space Green function for the Laplace
problem, given by

G(x)"
1

2n
log Dx D, x3R2,

and K(x!y)"!$M
y
G(x!y) is the Biot}Savart kernel,

K(x)"
1

2n
xM

Dx D2
, xM"(!x

2
, x

1
).

Integrating the previous expression by parts and taking into account the boundary
condition one "nds

c(x)P (x)"PPX

uu )K (x!y) dX(y)#PLX

uuqG(x!y) ds (y)

!PLX

P(y)s )K(x!y) ds(y)#PLX

Lu
n

Lt
G(x!y) ds(y)

!PLX

uuqG(x!y) ds (y)#PLX

1

Re

Lu
Ls

G (x!y) ds (y).
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Moreover, one can consider, for y3LX, the following identity:

G(x!y)
Lu
Ls

"

L
Ls

[G(x!y)u]!un )K (x!y).

The contour LX is a closed curve and the functions G(x!y) and u are single-valued on it;
hence the integral of the "rst term on the right-hand side will drop out. The solution of the
problem (16) is then expressed in terms of an integral representation, valid for x3LX or
x3X:

c(x)P (x)"PPX

uu )K (x!y) dX(y)!PLX

P (y)s )K(x!y) ds (y)

#PLX

Lu
n

Lt
G(x!y) ds(y)!PLX

1

Re
un )K (x!y) ds(y). (17)

As mentioned before, for x3LX the constant c(x) is equal to 1
2

and the relation (17) gives
rise to the following boundary integral equation of the second kind:

1

2
P (x)#PLX

P (y)s )K(x!y) ds(y)"PPX

uu )K(x!y) dX (y)#PLX

Lu
n

Lt
G(x!y) ds (y)

!PLX

1

Re
un )K(x!y) ds(y). (18)

As a result of the adoption of a Neumann boundary condition, only the pressure
distribution is unknown, which is obtained by imposing in a discretized fashion the integral
equation at a number of collocation points. The boundary of the geometry LX is
approximated by straight elements (panels) carrying a panel-wise uniform distribution of
P (for a "rst order scheme).

Note that the discretized form of equation (18) leads to an algebraic system of linear
equations. The square matrix of coe$cients is singular, with one eigenvalue equal to zero
(i.e. its rank is equal to N! 1). Therefore, the solution of equation (18) should be obtained
by applying a singular-value-decomposition (SVD) technique for the inversion of the
matrix, and then selecting the solution by subtracting the reference far"eld value of the total
pressure P

=
: the numerical technique needed for solving equation (18) re#ects exactly the

non-uniqueness property of the pressure "eld. However, we found that the problem can be
transformed to a non-singular one simply by replacing the equation at one of the
collocation points with the condition P"P

ref
at some point on the boundary. This

technique leads to a solution consistent and equal to that obtained with an SVD procedure,
with the main advantage of a simpler and faster algorithm based on an LU decomposition
of the coe$cients matrix.

4. NUMERICAL RESULTS

4.1. GENERAL RESULTS

By varying the value of the desingularization parameter d
v
in the range of 0)05 to 0)2 the

stability and accuracy of the numerical method has been analyzed. Since the time step must
reduce approximately proportional to the value of d

v
for a stable numerical solution, the
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number of point vortices increases inversely proportional to d
v
. It was found that for values

of d
v
(0)2 the condition of tangential #ow separation from the sharp edge of the diaphragm

is quite well satis"ed. Therefore, in order to have a stable numerical method for a reasonable
choice of the time step (in view of the computational e!ort), the value of the
desingularization parameter d

v
is chosen equal to 0)1 times the height of the aperture of the

diaphragm h
d
. This value of d

v
will yield numerical results that are accurate enough for our

purposes.
Uniform #ow conditions are imposed on the in- and out#ow boundary. The in- and

out#ow velocities consist of a steady #ow component and an oscillating #ow that is
superimposed,

u
1
(t*)"u

2
(t*)"u

1
#u@

1
sin(2n Sr t*),

where t* is the time non-dimensionalized with the reference length h
d

and the reference
velocity u

d
"(S

v
/S

d
)u

1
. The numerical simulation is started from a steady potential-#ow

solution.
The diaphragm that has been used in the experiments (diaphragm II shown in Figure 3) is

approximated by one of the two-dimensional forms shown in Figure 4. The numerical
simulations were performed for two di!erent geometries of the diaphragm. First a thin
diaphragm was used that is a representation of a diaphragm of in"nitesimal thickness in the
vortex-blob method. It has a thickness much smaller than the height h

d
of the aperture of the

diaphragm: its thickness is 0)05h
d
. The second diaphragm has a thickness that is of the same

order as the height h
d

of the aperture. This is the diaphragm that is actually used in the
experiments. It has a thickness equal to 0)63h

d
. The ratio of pipe cross-sectional area and the

aperture of the diaphragm is 0)27 and this corresponds in the experiments to h
d
"6)4 mm in

both cases.
In Figure 5, a typical result of the vortex-blob method is shown for an amplitude of the
#uctuating velocity u

ac
"u@

1
/u

1
"0)1. Top to bottom time increases with a quarter period of

oscillation ¹/4 between each "gure. The simulation exhibits features that are well known
Figure 3. Three di!erent slit-like diaphragms that have been used in the experiments: diaphragm I has
h
d
"10)7 mm and S

d
/S

p
"0)45; diaphragm II has h

d
"6)4 mm and S

d
/S

p
"0)27; diaphragm III has h

d
"2)6 mm

and S
d
/S

p
"0)11.



Figure 4. The two diaphragms that have been studied numerically. On the left is the thin diaphragm which is an
approximation of a line diaphragm and on the right is a two-dimensional representation of the actual diaphragm
used in experiments.

Figure 5. Development of the jet #ow through the diaphragm. From top to bottom the time is increasing by ¹/4
between each "gure. The markers give the positions of the point vortices. This is a result of the vortex-blob method
for Sr"0)4 and u

ac
"u@

1
/u

1
"0)1.
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Figure 6. Acoustic source pressure (vortex pressure) as a function of time and the associated power spectrum.
The simulation was started at t"0. Sr"0)4, u

ac
"u@

1
/u

1
"0)1.
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for (two-dimensional) jet #ows: the vena contracta e!ect and pairing of vortices. Although
the jet #ow is still developing and the #ow does not look periodic, the resulting acoustic
source pressure and therefore also the acoustic source power becomes periodic within three
to four periods of oscillation. The acoustic source pressure (vortex pressure Dp

source
) is

shown as a function of time on the left in Figure 6. On the right the associated power
spectrum is shown. The fundamental (forcing) frequency f

1
is dominant by three orders of

magnitude, but several higher modes are signi"cant. The vortex pairing visible in Figure 5
produces a period doubling relative to the fundamental period of forcing. This mode at
1
2

f
1

is also weakly present in the signal as can be seen in the power spectrum. Further
numerical simulation indicates that for Sr*0)5 the period doubling has a maximum
in#uence on the signal. The acoustic results for the fundamental frequency appear not to be
sensitive to the ratio u

ac
"u@

1
/u

1
up to a value of 0)1. This allows one to compare the results

with those of low-amplitude experiments.

4.2. ACOUSTIC SOURCE POWER

In an unsteady vortical #ow the interaction of the acoustic "eld with the vorticity "eld
can lead to production or dissipation of acoustic energy. Howe [5, 17] proposed an energy
formulation for the acoustic power generated by a turbulent #ow. The amount of acoustic
energy that is generated or dissipated in the numerical simulations is obtained by two
methods. The "rst method is a direct implementation of Howe's energy formulation for the
time-averaged acoustic source power as used by Kriesels et al. [8],

SPT"!o
0 P

V

S(x]u) ) uT d<, (19)

where x"$]u is the vorticity, u is the convection (total) velocity of the vorticity, and u@ is
the acoustic velocity de"ned as the irrotational time-dependent part of the velocity. < is
a volume enclosing the vorticity present in the #ow "eld. The second method is the integral
pressure formulation of section 3 using the Green function,

SPT"P
S

SI ) nT dS, (20)

where I"B@ (ou)@, and B@ is the total-enthalpy perturbation. S is the surface enclosing the
whole computational domain. In the limit of incompressible #ow this can be approximated
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by I"p@u@. Since the boundaries are chosen to be far from the region of vorticity, the in- and
out#ow velocity can be considered uniform. In that case the integral reduces to the time
average of the pressure di!erence due to the presence of vorticity times the acoustic velocity
u@
1

at the boundaries,

SPT"S
p
SDp

source
u@
1
T, (21)

where Dp
source

is de"ned as the di!erence between the actual pressure p in the #ow
containing vorticity and the potential-#ow contribution p

pot
to the actual pressure:

Dp
source

"Dp(t)!Dp
pot

(t). (22)

For compact sources at low Mach number, results of equation (21) should be equivalent to
results of Howe's formulation (19). Di!erences in the results of these two formulations are
due to numerical errors and therefore a measure for the numerical accuracy.

In Figure 7 the time-averaged acoustic source power is shown as a function of the
Strouhal number (Sr"f h

d
/u

d
). The power is non-dimensionalized with the diaphragm

velocity u
d
"S

p
/S

d
u
1

and the cross-sectional area of the aperture S
d
. These results have

been obtained for the thick (0)63h
d
) diaphragm. Clearly, this diaphragm is only dissipating

acoustic energy. In the "gure the results of both formulations (19) and (21) are presented.
The two formulations are in fair agreement, which is a measure for the accuracy of the
vortex-blob results. At Sr"0 the quasi-steady incompressible-#ow model of Hofmans et al.
[1] is used. The results of the vortex-blob method show a quasi-steady limit that
approaches this result reasonably well. The di!erence in the calculated power is only 7%.
The quasi-steady limit of the numerical simulations di!ers from the quasi-steady model due
to the inability of the vortex-blob method to capture accurately the vena contracta e!ect
( within 5%) using the current numerical input parameters. For Sr larger than 0)5 a slight
oscillation in the power can be seen in Figure 7. A satisfactory explanation is not yet found
for this feature. This could be a &&whistling'' e!ect of the diaphragm (see the papers of
Hirschberg [18] and Peters [7]).
Figure 7. Time-averaged acoustic source power as a function of Strouhal number for a slit-like diaphragm in
a pipe. The slit area is 27% of the pipe area and u

ac
"u@

1
/u

1
"0)1. Results obtained by Howe's formulation are

marked by # and results obtained by the integral pressure formulation are marked by L.



Figure 8. Time-averaged acoustic source power as a function of the ratio of the cross-sectional area of the
aperture and the cross-sectional area of the pipe, a slit-shaped diaphragm in a pipe: Sr"0)4, u@

1
/u

1
"0)1. Results

obtained by Howe's formulation are marked by # and results obtained by the pressure formulation are marked
by L.
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In order to illustrate the in#uence of the pipe wall on the acoustic behavior of the
diaphragm the time-averaged acoustic source power is presented in Figure 8 as a function of
the relative aperture of the diaphragm S

d
/S

p
. For small values of this ratio the power

reaches a constant value. Only when the ratio S
d
/S

p
exceeds 0)45 is the power signi"cantly

in#uenced by the geometry. At very low values ((0)1) the power starts to deviate from the
constant value but this is most likely due to inaccuracies in the numerical method for these
geometries. This is also indicated by the divergence between the results of Howe's
formulation and those of the pressure formulation for small values of S

d
/S

p
. This divergence

can be explained by a di!erence in sensitivity of the two prediction methods to the #ow near
the separation point. It also indicates that the #ow near this separation point is crucial for
the aeroacoustic response of the diaphragm. This con"rms our conclusions from our
companion paper that the description of the turbulent mixing region downstream of the jet
is not critical.

4.3. ACOUSTIC RESPONSE

In order to interpret the numerical results acoustically, an acoustic model must be used.
The "rst equation is the incompressible form of the equation of mass conservation across
the acoustic source region,

p`
1
!p~

1
!(p`

2
!p~

2
)"0, (23)

where region 1 is the region upstream of the diaphragm and region 2 is the region
downstream of the diaphragm. The second equation follows from the momentum
conservation across the acoustic source region upon neglecting friction,

p`
1
#p~

1
!(p`

2
#p~

2
)"Dp

source
#io

0
u¸

%&&
u@
1
, (24)
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where Dp
source

is the acoustic source pressure obtained from numerical simulations and
iu¸

%&&
is the contribution due to the inertial e!ects of the potential #ow through the

diaphragm. This separation of contributions is due to the de"nition of Dp
source

which does
not include potential-#ow contributions that in#uence the acoustic inertance of the
diaphragm. In the case of the diaphragm considered here (diaphragm II, S

d
/S

p
"0)27) the

e!ective length ¸
%&&

is 2)59h
d
obtained from the potential-#ow solution.

In Figure 9 the acoustic source pressure is shown as a function of the acoustic amplitude
for the thick diaphragm at Sr"0)4. For u@

1
/u

1
(0)1 the acoustic source pressure appears to

be linearly proportional to the acoustic velocity u@
1
. If one assumes the acoustic source

pressure to be proportional to the acoustic velocity u@
1

one obtains the equation

(p`
1
#p~

1
)!(p`

2
#p~

2
)"Ku@

1
#io

0
u¸

%&&
u@
1
, (25)

where K is a function of Sr and S
d
/S

p
. This can be rewritten as

p`
1
#p~

1
!(p`

2
#p~

2
)"(K#io

0
u¸

%&&
)
p`
1
!p~

1
o
0
c
0

. (26)

One can now write the two equations (23) and (26) in the form of a scattering matrix [6],

A
p`
2

p~
1
B"A

¹`

R`

R~

¹~B A
p`
1

p~
2
B , (27)

where

¹`"¹~"

2o
0
c
0

K#io
0
u¸

%&&
#2o

0
c
0

(28)

and

R`"R~"

K#io
0
u¸

%&&
K#io

0
u¸

%&&
#2o

0
c
0

. (29)
Figure 9. Acoustic source pressure as a function of the acoustic amplitude for the thick diaphragm at Sr"0)4.
Note that for small acoustic amplitudes the source pressure is linearly proportional to the acoustic amplitude.



TABLE 1

Numerical results obtained with the vortex-blob method for the acoustic source pressure and
the phase di+erence relative to the acoustic velocity for the two diaphragms; acoustic amplitude

u
ac
"0)1

Thin Actual

Sr DDp
source

D/o;2
d

arg(Dp) DDp
source

D/o;2
d

arg(Dp)

0)0 0)180 0 0)180 0
0)1 0)169 !0)032n 0)172 !0)047n
0)2 0)168 !0)069n 0)170 !0)105n
0)3 0)160 !0)113n 0)149 !0)177n
0)4 0)145 !0)140n 0)124 !0)206n
0)5 0)128 !0)146n 0)098 !0)186n
0)6 0)118 !0)145n 0)086 !0)147n
0)7 0)110 !0)141n 0)087 !0)124n
0)8 0)107 !0)136n 0)087 !0)112n
0)9 0)104 !0)130n 0)087 !0)106n
1)0 0)100 !0)138n 0)087 !0)110n
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These elements have a form similar to the elements found for the quasi-steady
incompressible-#ow model [1]. Also in the case of an unsteady incompressible description
of the source region a symmetric matrix is obtained with elements that satisfy the relations:
¹`#R`"¹~#R~"1. The symmetry ¹`"¹~ and R`"R~ is the result of the
incompressible #ow approximation.

The acoustic source pressure Dp
source

is obtained from the numerical simulations. The
method yields the acoustic source pressure as a function of two input parameters: i.e.,
acoustic amplitude u

ac
"u@

1
/u

1
and the Strouhal number Sr. In Table 1 the numerical results

are presented for both diaphragms. Using equations (28) and (29) one obtains results for the
re#ection coe$cient and transmission coe$cient as a function of Strouhal number.

5. EXPERIMENTAL RESULTS

5.1. EXPERIMENTAL SET-UP AND PROCEDURE

In order to verify the accuracy of the model, experiments have been performed at the
Acoustic Laboratory of the University of Le Mans (LAUM). These experiments consisted in
measuring the frequency dependence of a diaphragm in a pipe at low Mach number.

The diaphragms being studied are slit-shaped diaphragms in a cylindrical pipe (see the
companion paper). Although this is a three-dimensional con"guration the response of the
con"guration is expected to be governed by the two-dimensionality of the slit-shaped
diaphragm. This makes a comparison to two-dimensional numerical simulations
reasonable. Three diaphragms with varying apertures have been used. The aperture can be
as large as 45, 27 or 11% of the pipe cross-sectional area. In Figure 3 one of the diaphragms
is shown. The edge of the diaphragms is kept sharp (radius of curvature less than 10~5 m)
and at the downstream side the aperture diverges with a bevel angle of 453. This ensures
a predictable vena contracta e!ect.

The present theoretical results are to be compared with broadband scattering matrix
measurements carried out at LAUM with the two-source method [6, 19] as described by
Ajello [20]. The experimental set-up at LAUM is similar to the set-up as described by
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Hofmans et al. [1]. Two sets of six loudspeakers each positioned up- and downstream of the
diaphragm are used as sources of sound. Both sides of the main pipe (entrance and exit)
were manufactured to be anechoic and corrections are made for the re#ections that still do
occur. The re#ection coe$cients of these terminations were typically of the order of 0)2 for
the range of frequencies used in the experiments.

On both sides of the diaphragm three pressure transducers were mounted. By alternately
using the upstream and downstream loudspeaker as a source of sound the four elements of
the scattering matrix as de"ned by equation (27) can be determined. During one
experimental run the elements were measured in a short time for a range of frequencies
(typically 100 frequencies from 50 to 1600 Hz). Since on both sides three microphones were
used to measure two acoustic waves (p` and p~) a regression technique can be used to
determine the elements of the matrix with the temperature as an additional unknown
quantity. The two sets of microphones were placed symmetrically with respect to the plane
x"0 (corresponding to the upstream face of the diaphragm). The distance between the "rst
microphone (closest to the diaphragm) and the third microphone (furthest from the
diaphragm) was 0)9715 m (accuracy 0)02 mm). The second microphone in the middle is at
0)3750 m from the "rst microphone. A complete description of the experimental set-up and
procedure used at LAUM can be found in reference [20].

5.2. EXPERIMENTAL RESULTS FOR LOW-MACH-NUMBER UNSTEADY FLOWS

The diaphragm used in the experiments presented here is shown in Figure 3. Diaphragm
II with S

d
/S

p
"0)27 and h

d
"6)4 mm has been used. The experiments have been performed

at a Mach number M
1

in the main pipe of 0)0092. The frequency range was from 20 to
1620 Hz with steps of 20 Hz. The value of the Strouhal number corresponding with these
measurements ranges from 0)005 to 0)9, and the Helmholtz number ranges from 0)001 to
0)13. With these values of M

1
, Sr, and He an incompressible unsteady #ow model is

expected to be a reasonable approximation. In Figures 10}13 a comparison between
Figure 10. Comparison of measured re#ection coe$cients (Ajello and Auregan, 1997) and re#ection coe$cients
obtained from the vortex-blob method. Numerical results are obtained for two di!erent diaphragms: one with the
actual thickness of 4 mm and one much thinner with a thickness of 0)32 mm:==, DR` D; ) ) ) ) ) ) ) ) ) ), DR~ D; j*j,
DR D thin; d*d, DR D actual.



Figure 11. Comparison of measured argument of the re#ection coe$cients (Ajello and Auregan, 1997) and
argument of re#ection coe$cients obtained from the vortex-blob method. Numerical results are obtained for two
di!erent diaphragms: one with the actual thickness of 4 mm and one much thinner with a thickness of 0)32 mm:
==, arg(R`); ) ) ) ) ) , arg(R~); j*j, arg(R) thin; d*d, arg(R) actual.

Figure 12. Comparison of measured transmission coef"cients (Ajello and Auregan, 1997) and transmission
coe$cients obtained from the vortex-blob method. Numerical results are obtained for two di!erent diaphragms:
one with the actual thickness of 4 mm and one much thinner with a thickness of 0)32 mm:==, D¹` D; ) ) ) ) ) ,
D¹~ D; j*j, D¹ D thin; d*d, D¹ D actual.
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experimental and numerical results is presented. The solid lines are the experimental results
for R` and R~ or ¹` and ¹~. The markers are the results obtained from the vortex-blob
method for the two diaphragms of Figure 4. Since the model used to convert the numerical
results for DP

source
to re#ection and transmission coe$cients assumes incompressible #ow,

the scattering matrix is symmetric and only one value is found for R` and R~ as well as for
¹` and ¹~. This is con"rmed by the experimental results although the transmission



Figure 13. Comparison of measured argument of the transmission coe$cients (Ajello and Auregan, 1997) and
argument of transmission coe$cients obtained from the vortex-blob method. Numerical results are obtained for
two di!erent diaphragms: one with the actual thickness of 4 mm and one much thinner with a thickness of
0)32 mm:==, arg(¹`); ) ) ) ) ) , arg(¹~); j*j, arg(¹) thin; d*d, arg (¹) actual.
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coe$cients show a small di!erence between ¹` and ¹~. This is most clear in Figure 13
where the phase of the transmission coe$cient is shown. The di!erence in ¹` and ¹~ due
to "nite Mach number e!ects is discussed in the companion paper [1]. Furthermore, it is
clear that the experimental results show a larger scatter for higher frequencies (Sr'0)7)
than for lower Strouhal numbers. This is most probably due to the microphone positions
that are used: the set-up was designed to be used for frequencies up to 800 Hz. It is
interesting to observe that the numerical results for the thin diaphragm agree better with the
experimental results than the results for the thick diaphragm (actual geometry). Between
Sr"0)2 and 0)6 a small decrease in DR D and a small increase in D¹ D can be observed for the
thick diaphragm. In Figure 7 an unexplained feature around Sr"0)5 has already been
noted. One possible explanation is that the thickness of the diaphragm introduces an
additional length scale and a corresponding time scale: the jet velocity is approximately
u
d
/B and the thickness is 0)63h

d
so the value of the Strouhal number based on this velocity

and length scale is approximately 0)38. Why this feature is absent in the experimental
results is yet unclear but it may be due to the experimental set-up being essentially
three-dimensional or due to viscous e!ects.

6. CONCLUDING REMARKS

For low-Mach-number #ows that are essentially unsteady and two-dimensional the
vortex-blob method can be used. Two methods are used to determine the acoustic source
power numerically: Howe's energy formulation and our integral pressure formulation. Due
to the implementation of these two di!erent formulations a measure for the accuracy of the
numerical results has been obtained. The pressure formulation as opposed to Howe's
energy formulation contains additional information on the non-linearity of the source and
can be used to predict the generation of higher harmonics.

Together with an acoustic interpretation of the #ow, results of the vortex-blob method
are used to predict the elements of the scattering matrix as a function of frequency. These
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results are compared to results of experiments performed at LAUM and are found to be in
good agreement. Surprisingly, the numerical results for a (very) thin diaphragm agree better
with the experimental results than the numerical results for the geometrically more accurate
representation of the actual diaphragm which is quite thick. In the vortex-blob method the
thickness introduces a second length scale which results in a whistling e!ect at critical
values of the Strouhal number. However, this e!ect is not observed in the experimental
results. A satisfactory explanation for this is still lacking.

Finally, the vortex-blob simulations con"rm that the aeroacoustic response of the
diaphragm is determined locally in the region near the separation point where the free jet is
formed. Both the quality of the Kutta condition imposed at the separation point and the
geometry of the edge have a signi"cant e!ect on the aeroacoustic response. This is in
contrast with the small in#uence of modi"cations in the description of the turbulent mixing
region downstream of the jet.
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point d'un banc de mesure applications à des discontinuiteH s. Ph.D. ¹hesis, ;niversiteH du Maine.


	1. INTRODUCTION
	2. NUMERICAL METHOD
	Figure 1
	Figure 2

	3. INTEGRAL REPRESENTATION FOR THE PRESSURE
	4. NUMERICAL RESULTS
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	TABLE 1

	5. EXPERIMENTAL RESULTS
	Figure 10
	Figure 11
	Figure 12
	Figure 13

	6. CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

