
Journal of Sound and <ibration (2001) 244(2), 211}233
doi:10.1006/jsvi.2000.3468, available online at http://www.idealibrary.com on
ON THE WAVEGUIDE MODELLING OF DYNAMIC
STIFFNESS OF CYLINDRICAL VIBRATION ISOLATORS.

PART I: THE MODEL, SOLUTION AND
EXPERIMENTAL COMPARISON

L. KARI

M=¸, Department of <ehicle Engineering, Kungliga ¹ekniska Ho( gskolan, 100 44 Stockholm, Sweden.
E-mail: leifk@fkt.kth.se

(Received 10 May 1999, and in ,nal form 5 October 2000)

A waveguide model of the axial dynamic sti!ness for cylindrical vibration isolators in the
audible frequency range is presented. The problems of satisfying the cylinder boundary
conditions simultaneously are removed, by adopting the mode-matching technique, using
the dispersion relation for an in"nite cylinder and approximately satisfying the boundary
conditions at the lateral surfaces by a circle-wise ful"lment or a subregion method. The
rubber material is assumed to be nearly incompressible with deviatoric viscoelasticity based
on a fractional order derivative model. The main advantage of the viscoelastic model is the
minimum parameter number required to model the material properties successfully over
a broad structure-borne sound frequency domain. The work is veri"ed by experiments on
a rubber cylinder, equipped with bonded circular steel plates, in the frequency range
100}5000 Hz. The model and the measurements are shown to agree strikingly well within
the whole frequency range. Comparisons with alternative material models, known as the
Kelvin}Voigt and frequency-independent or &hysteric' material models, are made. The
results are shown to diverge substantially from the presented material model; in particular,
the Kelvin}Voigt model overestimates the material damping in the high-frequency region,
while the frequency-independent model underestimates it. In addition, the resonance and
anti-resonance frequencies are incorrectly predicted. In a companion paper the dispersion
relation solution, convergence analysis and comparison with simple models are addressed.
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1. INTRODUCTION

Structural vibrations at audible frequency range, that is structure-borne sound, radiate
sound causing a major environmental problem. To reduce the transmitted structure-borne
sound energy, thereby reducing noise pollution, the receiving structures are disconnected
from the source by vibration isolators. The increased interest in noise abatement requires
suitable models predicting transmitted sound through vibration isolators. Analytical
models using the longitudinal modes in cylinders up to a few kHz are of particular interest.
Although other isolator motions such as rotation or lateral motion may be important in
some situations, the axial motion plays, in general, an important part in practical
installations. An analytical model for the axial motion is, in addition, a valuable tool in its
own right.

A di!erent approach is through a numerical method, such as the "nite element method
(FEM), [1}3], or the boundary element method [4]. Although FEM handles arbitrary
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geometry and di$cult constitutive equations with great success, it is not ideal for modelling
higher order modes, where they may be quite cumbersome in an iterative design process,
while interpreting the results is usually di$cult, as no closed form solution is obtained.

Increased complexity in analytically modelling wave propagation in "nite cylinders is
caused by di$culties in simultaneously satisfying boundary conditions at lateral and radial
surfaces of the cylinder. An analytical and physically attractive method is the
mode-matching technique. Zemanek [5] investigated longitudinal wave propagation in
a solid cylinder by mode matching. Boundary conditions at the free lateral surface are
satis"ed pointwise by mode matching the incident and the re#ected lowest order
longitudinal mode, along with a "nite number of higher order longitudinal modes with
complex wave numbers with results veri"ed by experiments on an aluminium cylinder.
However, Zemanek considered only the lowest longitudinal mode as an incident wave. His
analysis is, moreover, limited to elastic materials, that is, with no material damping.

Suitable constitutive relations including material damping are found in linear viscoelastic
models. The classical example in materials for structure-borne sound analysis is the linear
structural damping model with a frequency-independent loss factor [6]. This example, as
pointed out by Crandall [7], exhibits non-causal behaviour, which is physically unrealistic.
A physically more attractive description of the linear properties of real materials*including
material damping*is by means of linear hereditary laws, expressed as convolution integrals
[8]. However, the number of material constants required to describe rubber relaxation or
creep properties successfully over a broad structure-borne sound frequency range are often
large, resulting in a cumbersome number or a reduction of the frequency range. A major
reduction with a preserved broad frequency range is obtained by fractional derivative
models [9].

The aim is to model dynamic properties over a broad frequency range, up to at least
5000 Hz, expressed in terms of the axial driving point sti!ness and the axial transfer
sti!ness, analytically derived by mode matching. Although strictly valid only for
in"nitesimal strains, it generates an improved understanding of the in#uences of higher
order modes, losses and structure-borne sound dispersion. In a companion paper [10] the
dispersion relation solution, convergence analysis and comparison with simple models are
presented.

2. METHOD

2.1. NOTATIONS

Tensors are denoted by boldface and their components by lightface letters, repetition of
indices is avoided as tensors rather than their components are employed. Tr, T, dev and div
abbreviate trace, transpose, (symmetrized) deviation (or &&shear'') and divergence. The
operators *, R and I denote complex conjugate, real part and imaginary part. Moreover,
' denotes scalar product while N and Z

`
are sets of natural numbers and of positive

integers, respectively.

2.2. VIBRATION ISOLATOR

A typical example in Figure 1 consists of a vulcanized rubber cylinder "rmly bonded to
two parallel metal plates. Throughout, o and o

mp
are the cylinder and plate densities, l is the

cylinder length, l
mp

is the plate thickness, a is the cylinder radius and S"na2 is the cylinder
cross-sectional area with the radius equalling the plates radii.



Figure. 1. Cylindrical vibration isolator.
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2.3. CONSTITUTIVE ASSUMPTIONS

The rubber material is assumed to be isotropic, homogeneous, nearly incompressible and
non-ageing, while obeying the principle of fading memory [8]. Since the focus of the study is
the e!ect of higher order modes and dispersion, analysis is con"ned to isothermal
conditions, in"nitesimal strains and prestrains. Crystallization and non-linear friction are
not considered. A convolution integral, expressed as a constitutive relaxation relation, is
additively decomposed into a spherical (or &&compression'') part

tr p"3i
=

div u#P
t

~=

3i
1
(t!q)

Ldiv u (q)
Lq

dq (1)

and a deviatorical (or &&shear'') part

dev p"2k
=

dev[+ u]#P
t

~=

2k
1
(t!q)

Ldev[+ u(q)]
Lq

dt, (2)

where p is the stress and u the displacement, with + as the covariant derivative, Fung [11].
Compression and shear relaxation functions are additively decomposed as [8]

i (t)"i
=

h(t)#i
1
(t), k (t)"k

=
h(t)#k

1
(t), (3)

where lim
t?=

i
1
(t)"lim

t?=
k
1
(t)"0, h is the step function, i

=
"lim

t?=
i (t) and

k
=
"lim

t?=
k(t) are the equilibrium elastic moduli. Temporal Fourier transformations,

( )I )":=
~=

( ) ) e~*ut dt, of the constitutive relaxation relations yield

tr pJ "3iL div u8 (4)

and

dev pJ "2kL dev[+ u8 ], (5)

where iL (u)"i
=
#iuiJ

1
(u) and kL (u)"k

=
#iukJ

1
(u) are the complex bulk and shear

moduli, while u is the angular frequency and i the imaginary unit.
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In general, compression and shear relaxation functions are independent. However,
a simple and suitable model for rubber material assumes that they are dependent as

i (t)"bk
=

h(t), (6)

where the positive real-valued constant bA1, typically &102}105. This nearly
incompressible example reduces equation (4) to

tr pJ "3bk
=

div u8 . (7)

Helmholtz theorem, [11], gives u"grad /#curl t, where / and t are the scalar and
vector potentials. Through the gauge transformation t@"t!grad /@, where div t@"0,
the Helmholtz equations become

+ 2/I #k2
L
/I "0 and + 2tI @#k2

T
tI @"0, (8, 9)

where + 2 is the Laplacean; k
L

and k
T

are the longitudinal and transversal wave number,
respectively. They read

k
L
"u S

o
bk

=

1

1#4kL /3bk
=

and k
T
"u S

o
kL

, (10a, b)

for the nearly incompressible model. In contrast to a synchronous material model (that is,
i(t)"bk (t)) with bA1, the loss factor for the longitudinal wave number is not normally
overestimated.

2.4. FORMULATION OF THE GENERAL PROBLEM

A practical "eld representation at the junctions of the plates and mounting structures is
by variables acting at the junction centres. In Figure 2, the stress "eld is represented by the
force and moment vectors, with the displacement "eld represented by the displacement and
rotation vectors. As this is the vibration isolator dynamic sti!ness description, only rigid
body motions of the junctions at 1 and 2 are allowed. The plates are modelled as rigid.
A suitable description of the vibration isolators structure-borne sound properties provides
the blocked dynamic axial driving point and transfer sti!ness, de"ned as

kI
11
"f3 ) n D

1
/d3 ) n D

1
and kI

12
"f3 ) n D

2
/d3 ) n D

1
, (11, 12)
Figure. 2. Representation of "elds. The unit outward normal to the junction is denoted n, while d, f, m and h are
the displacement, force, moment and rotation vectors.
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provided junction 2 is blocked; d3 D
2
"hI D

2
"0, and that only axial displacement exists on

junction 1; d3 !(d3 ) n) n D
1
"hI D

1
"0, d3 D

1
O0. In addition,

kI
22
"f3 ) n D

2
/d3 ) n D

2
and kI

21
"f3 ) n D

1
/d3 ) n D

2
, (13, 14)

provided junction 1 is blocked; d3 D
1
"hI D

1
"0, and that only axial displacement exists on

junction 2; d3 !(d3 ) n) n D
2
"hI D

2
"0, d3 D

2
O0. Reciprocity implies kI

21
"kI

12
and the

particular vibration isolator symmetry kI
22
"kI

11
, which are subsequently used. Through

similar procedures other components of dynamic sti!ness are de"ned.
Consider the vibration isolator cylinder in Figure 3, a simple body consisting of

continuously distributed rubber material and occupying a "xed set BLR3 where "xed
B de"nes the cylinder reference con"guration, in its natural state; stress-free and
undeformed. Let u and p be the usual (spatial point dependent) displacement and stress. The
mixed boundary conditions, in the frequency domain, are the displacements

u8 "d3 D
1

given on L1
d
B, (15)

u8 "0 given on L2
d
B (16)

and, the traction

pJ n"0 given on L
t
B, (17)

where d3 !(d3 ) n)n D
1
"0, d3 D

1
O0, L1

d
BXL2

d
BXL

t
B"LB, LB is the boundary of the cylinder,

LB its boundary closure and n is the unit outward normal to LB. In addition, all the
involved "elds must be single-valued. It should be noted that there are stress singularities at

the rubber cylinder corners L1
d
BWL

t
B and L2

d
BWL

t
B, shown in Figure 3.

The dynamic sti!ness becomes

kI
11
"CPL1

d
B

n ) (r8 n) dS!u2na2l
mp

o
mp

d3 ) n D
1D/d3 )n D

1
(18)
Figure. 3. Rubber cylinder. Mixed boundary condition. The steel plates are removed, compare with Figure 2.
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and

kI
12
"PL2

d
B

n ) (pJ n) dS/(d3 ) n D
1
), (19)

provided rigid body motions of the metal plate, d3 !(d3 ) n) n D
1
"u8 DL2

d
B"0 and that d3 D

1
O0

where pJ is related to u8 by equations (5) and (7).
Formal derivation of the closed-form solution to this problem is laborious, on account of

the singularities, the constitutive equation form and the imposed boundary conditions. In
addition, boundary conditions on L1

d
B and L2

d
B are locally non-mixed, which refers to the

problem of a non-separable nature. Miklowitz [12] discusses separability and
non-separability in reference to elastic waves in solids.

The widely used technique of mode matching [13], is probably the most forthright
method of solving this problem, where the axial dependence is separated and the remaining
problem is solved, resulting in the eigenmodes of the cross-section. Finally, provided these
functions constitute a complete set, the total "eld is obtained by superposition of the
eigenmodes then matching them to the boundary conditions on L1

d
B and L2

d
B.

2.5. DERIVATION OF EIGENVALUES AND EIGENMODES

Consider the in"nite cylinder in Figure 4 where a convenient representation of the
geometry is in a cylindrical co-ordinate system with the z-axis directed along the main axis.
The axial dependence is readily separated by assuming an J exp (!i k

;
z) dependence for

the "eld variables, where k
;
is the axial wave number. Then, the relations (8), (9), (17), the

Helmholtz theorem, the gauge transformation together with the requirements of single
valuedness and non-singularity, result in a general transcendental equation. With respect to
the original problem, only the axially symmetric and non-torsional part is important, due to
boundary conditions (15) and (16). The particular transcendental equation reads

[k2
T
!2k2

MT
]20 (k

ML
a)#4k2

ML
[k2

T
!k2

MT
]0 (k

MT
a)"2k2

ML
k2
T
, (20)

where

0"xJ
0
(x)/J

1
(x), (21)
Figure. 4. Geometry of in"nite rubber cylinder.
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also known as the Onoe function of the "rst kind and "rst order, and J
n

is the Bessel
function of the "rst kind and order n. The axial wave number is given by

k2
ML

"k2
L
!k2

z
(22)

or

k2
MT

"k2
T
!k2

z
. (23)

An elaborated derivation of equation (20) together with equations (21)}(23), restricted to
elastic materials, is given in standard textbooks, such as Gra! [14], Pochhammer [15] and
Chree [16].

The relations (20)} (23) constitute the dispersion relation

k
z,n

"k
z,n

(u), (24)

for the eigenmodes of the in"nite cylinder, where n3Z
`

and labels di!erent solutions; the
eigenvalues k

z,n
, k

ML,n
and k

MT,n
. As the transcendental equation is an even function of k

z
,

k
ML

and k
MT

, !k
z
, !k

ML
and !k

MT
are also solutions. Therefore, it is su$cient to be

restricted to R k
z
*0, R k

ML
*0 and R k

MT
*0. In addition, the sti!ness obeys

kI
11

(!u)"kI H
11

(u) and kI
12

(!u)"kI H
12

(u), due to the properties of a temporal Fourier
transform. As a result, it is su$cient to consider k

z,n
"k

z,n
(u) restricted to u*0 and

R k
z,n

*0. The continuation to R k
z,n

(0 is performed by the formal replacement of
k
z,n
Q!k

z,n
.

Finally, in terms of the potential physical components, the su$cient and somewhere
non-vanishing eigenmodes are, [14], the scalar potential

/I
n
JJ

0
(k

ML,n
r) (25)

and the u-component of the vector potential

tI u,nJJ
1
(k

MT,n
r), (26)

r3[0, a], with the corresponding eigenvalues k
ML,n

and k
MT,n

, respectively.

2.6. DERIVATION OF DYNAMIC STIFFNESS

Consider again the "nite vibration isolator, where the geometry is represented in
a cylindrical co-ordinate system with the z-axis directed along the main axis, as shown in
Figure 5. Arbitrary axially symmetric and non-torsional stress and strain "elds are obtained
by superposition of the eigenmodes derived above, provided these functions constitute
a complete set. In the case of elastic materials, Love [17] points out that the real eigenvalues
are "nite in number at a given frequency, thus the corresponding eigenfunctions cannot
themselves form a complete set. Likewise, the purely imaginary eigenvalues are "nite in
number at a given frequency. However, Adem [18] shows that there are also an in"nite
number of complex eigenvalues at a given frequency, rendering a complete set possible. The
completeness extension to viscoelastic materials is provided by analytical continuation. For
the mathematical grounds concerning waveguide solutions, the reader may refer to
Cessenat [19] or [13]. Thus, the following expressions can be formulated for the potential



Figure. 5. Geometry of the cylindrical vibration isolator.
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"elds within the "nite cylinder:

/I "
=
+
n/1

[A`
n

e~*kz,nz#A~
n

e*kz,nz] J
0
(k

ML,n
r) (27)

and

tI u"
=
+
n/1

[B`
n

e~*kz,nz#B~
n

e*kz,nz] J
1
(k

MT,n
r), (28)

where r3[0, a[ and z3]!l/2, l/2[, with (Helmholtz theorem) u8 "grad /I #curl tI and pJ is
related to u8 by equations (5) and (7). The coe$cients are interrelated as A`

n
"P

n
B`

n
and

A~
n
"!P

n
B~
n

, where

P
n
"

k2
MT,n

!k2
z,n

J
1
(k

MT,n
a)

2ik
ML,n

k
z,n

J
1
(k

ML,n
a)

, (29)

because of the boundary condition (17). The boundary condition (15) becomes, with
equations (27)} (29) and Helmholtz theorem,

=
+
n/1

[C`
n

e*kz,nl@2#C~
n

e~*kz,nl@2];r
n
"0 (30)

and

=
+
n/1

[C`
n

e*kz,nl@2!C~
n

e~*kz,nl@2];z
n
"!dI z, (31)

where

;r
n
"!k

ML,n
[k2

MT,n
!k2

z,n
] J

1
(k

MT,n
a) J

1
(k

ML,n
r)!2k

ML,n
k2
z,n

J
1
(k

ML,n
a) J

1
(k

MT,n
r), (32)

;z
n
"!ik

z,n
[k2

MT,n
!k2

z,n
] J

1
(k

MT,n
a) J

0
(k

ML,n
r)#2ik

ML,n
k
MT,n

k
z,n

J
1
(k

ML,n
a) J

0
(k

MT,n
r),

(33)
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C`
n
X

n
"B`

n
, !C~

n
X

n
"B~

n
, X

n
"2ik

ML,n
k
z,n

J
1
(k

ML,n
a) and r3[0, a]. The boundary

condition (16) reads

=
+
n/1

[C`
n

e~*kz,nl@2#C~
n

e*kz,nl@2];r
n
"0 (34)

and

=
+
n/1

[C`
n

e~*kz,nl@2!C~
n

e*kz,nl@2];z
n
"0, (35)

where r3[0, a].
The most straightforward way to obtain the coe$cients from the relations (30)} (35) is

probably through the point-matching technique but in most cases, more accurate results are
achieved by the subregion method, which is a generalization of point matching.

2.6.1. Point-matching method

This represents the domain by speci"c points. Due to the axisymmetry of the problem,
each point may be extended in Figure 6 to axisymmetric circles. In particular, the lateral
boundaries Lk

d
B are represented by the circles; r3M

r
kr

1
,

r
kr

2
,2,

r
kr

P
k
r
N and r3M

z
kr

1
,

z
kr

2
,2,

z
kr

P
k
z
N; u3[0, 2n[ and z"!l/2 (k"1) or z"l/2 (k"2), where 0O

r
kr

1
(

r
kr

2
(2(

r
kr

P
k
r
,

z
kr

1
(

z
kr

2
(2(

z
kr

P
k
z

and Pk
r
, Pk

z
3N. The indices r and z refer to

boundary conditions in r and z directions. The separation into the two directions is carried
out to retain maximum #exibility. The boundary conditions are replaced by circle-wise
ful"lment. To obtain a "nite number of equations, the series in equations (30)}(35), must,
preceding point matching, be truncated after M terms, where P1

r
#P1

z
#P2

r
#P2

z
*

2M3 Z
`
. Thus, the boundary conditions (30)} (35) are replaced by

M
+
n/1

[D`
n

e*kz,nl@2#D~
n

e~*kz,nl@2];r
n
(1
r
r
j
)"0, (36)

M
+
n/1

[D`
n

e*kz,nl@2!D~
n

e~*kz,nl@2];z
n
(1
z
r
m
)"!1, (37)

M
+
n/1

[D`
n

e~*kz,nl@2#D~
n

e*kz,nl@2];r
n
(2
r
r
j
)"0 (38)
Figure. 6. Collocation circles at lateral boundary.
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and

M
+
n/1

[D`
n

e~*kz,nl@2!D~
n

e*kz,nl@2];z
n
(2
r
r
m
)"0, (39)

where D`
n

dI "C`
n
, D~

n
dI "C~

n
, j"1, 2,2, Pk

r
and m"1, 2,2, Pk

z
.

2.6.2. Subregion method

This method subdivides the domain into subdomains. In particular, the lateral
boundaries may be divided into sub-boundaries as

Lk
d
B"ZPk

r

j1
Lk,j
d,r
B"ZPk

z

m
:1 Lk,m

d,z
B, (40)

where Pk
r
, Pk

z
3N and k"1, 2. The indices r and z refer to boundary conditions in r and

z directions. Moreover, the pointwise ful"lment of the boundary conditions is replaced by
equality in the mean, by integration over each sub-boundary. To obtain a "nite number of
equations, the series in equations (30)}(35), must, preceding the subregion method, be
truncated after M terms, where P1

r
#P1

z
#P2

r
#P2

z
*2M3Z

`
. The boundary conditions

are replaced by

M
+
n/1

PL1,j
d,r
B

[C`
n

e*kz,nl@2#C~
n

e~*kz,nl@2];r
n
dS"0, (41)

M
+
n/1

PL1,m
d,z

B

[C`
n

e*kz,nl@2!C~
n

e~*kz,nl@2];z
n
dS"! PL1,m

d,z
B

dI dS, (42)

M
+
n/1

PL2,j
d,r

B

[C`
n

e~*kz,nl@2#C~
n

e*kz,nl@2];r
n
dS"0 (43)

and

M
+
n/1

PL2,m
d,z

B

[C`
n

e~*kz,nl@2!C~
n

e*kz,nl@2];z
n
dS"0, (44)

where j"1, 2,2, Pk
r

and m"1, 2,2, Pk
z
. Due to the axisymmetry of the problem,

sub-boundaries Lk,j
d,r
B and Lk,m

d,z
B are readily represented by the surfaces; r3[

r
kr

j~1
,
r
kr

j
] and

r3[
z
kr

m~1
,
z
kr

m
], u3[0, 2n[ and z"!l/2 (k"1) or z"l/2 (k"2), where 0"

r
kr

0
(

r
kr

1
(2(

r
kr

Pr
k"a, (Pk

r
O0), and 0"

z
kr

0
(

z
kr

1
(2(

z
kr

Pz
k"a, (Pk

z
O0).

By using the relations : x J
0
(x) dx"x J

1
(x) and : x J

1
(x) dx"nx [N

0
(x) J

1
(x)!N

1
(x)

J
0
(x)]/2, where N

/
is a Struve function of order n, de"ned in reference [20], the boundary

conditions (41)} (44) read

M
+
n/1

[D`
n

e*kz,nl@2#D~
n

e~*kz,nl@2] [>r
n
(1
r
r
j
)!>r

n
(1
r
r
j~1

)]"0, (45)

M
+
n/1

[D`
n
e*kz,nl@2!D~

n
e~*kz,nl@2] [>z

n
(1
z
r
m
)!>z

n
(1
z
r
m~1

)]"n[1
z
r2
m~1

!1
z
r2
m
], (46)

M
+
n/1

[D`
n

e~*kz,nl@2#D~
n

e*kz,nl@2] [>r
n
(2
r
r
j
)!>r

n
(2
r
r
j~1

)]"0 (47)
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and

M
+
n/1

[D`
n

e~*kz,nl@2!D~
n

e*kz,nl@2] [>z
n
(2
z
r
m
)!>z

n
(2
z
r
m~1

)]"0, (48)

where

>r
n
"n2 rC[k2MT,n

!k2
z,n

] J
1
(k

MT,n
a)= (k

ML,n
r)#2

k
ML,n

k
MT,n

k2
z,n

J
1
(k

ML,n
a)= (k

MT,n
r)D , (49)

>z
n
"2nr C!i

k
z,n

k
ML,n

[k2
MT,n

!k2
z,n

] J
1
(k

MT,n
a) J

1
(k

ML,n
r)#2ik

ML,n
k
z,n
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2.6.3. Dynamic sti+ness

The relations (36)} (39) and (45)} (48) may be written as Ax"b where A is a known
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Frequently, the rank of the system matrix is not numerically well determined so the
problem of solving the equation may be ill-conditioned, especially for large values of
2M [P1

r
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z
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r
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z
]. Moreover, the elements of A cover a wide range, mainly due to

the exponential functions, frequently causing over- and under#ow exceptions in subsequent
computations. To increase the e!ective rank of the system matrix, the original system is
rescaled and equilibrated into A@x@"b@, where A@"D
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diagonal scaling matrix. To avoid rounding o! errors introduced by the scaling, the
elements of the diagonal matrix are integer powers of the base in the number system used.
Normally, the base is 2. At the equilibration, the maximum norm of each row and column of
A@ is set as equal as is possible. In practice, any ill-conditioning of A is then concentrated
within the diagonal scaling. The e!ective rank of A@ is determined by treating as zero those
singular values which are less than the largest singular value times the #oating point relative
accuracy used. This accuracy equals 2~52 on machines with IEEE*arithmetic, roughly
2.22]10~16. The equation system is solved by singular-value decomposition of the system
matrix, which with the condition min DDA@x@!b@DD

2
in addition to a full rank of system

matrix, also guarantees a unique solution.
The dynamic sti!ness (18) and (19) becomes, using for example, u8 "grad /I #curl tI ,

equations (27)} (29), (5), (7), (10), (22)}(23) and (36)} (39) or (45)}(48),
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To summarize, point matching and subregion methods given above exactly satisfy the
equations of motion and the traction free boundary condition. Regarding the displacement
boundary conditions, point matching ful"ls the conditions at circles and the subregion
method ful"ls conditions in the mean within two subsequent circles, provided the equation
systems are exactly determined, that is, P1

r
#P1

z
#P2

r
#P2

z
"2M and the rank of A (or A@)

is 2M. Inasmuch as the series (27) and (28) fully represent the potential "elds within the
cylinder, the expressions (51) and (52) model the dynamic sti!ness to any desired accuracy
for a su$cient number of eigenmodes.

3. RESULTS AND DISCUSSION

To examine the methods in practice, a real vibration isolator has been analyzed,
presenting numerical as well as measurement results. The formulations given above are
implemented on a PC - Pentium Pro'. The computer code is written in LAHEY
FORTRAN 90' with all calculations performed in double precision. Graphically, the
results are presented by means of MATLAB'.

3.1. TEST OBJECT

The test object is a compression moulded cylindrical vibration isolator l"50)0 mm long
and a"50)0 mm radius, equipped with circular plates 2)6 mm thick and a"50)0 mm radius,
in steel alloy SS 141312 cured to the rubber cylinder using superior bonding agents Tixon
P6.1 and 520. In order to facilitate safe mounting, additional plates 19)0 mm thick and
a"50)0 mm radius are attached with Hottinger Baldwin Messtechnik GmBH bonding agent
X 60 having M 12 threaded centre holes. Total plate thickness is l

mp
"21)6 mm. The rubber

material is vulcanized natural rubber, "lled with small amounts of non-reinforcing carbon
black. The principal ingredients are given in Table 1. The nominal hardness is 403 IRH and
the density 1050 kg/m3. Maximum long-term axial static pre-load is limited to 3000 N.

3.2. MEASUREMENT OF DYNAMIC STIFFNESS AND MATERIAL PROPERTIES

3.2.1. Measurement method

The vibration isolator axial dynamic transfer sti!ness is measured by an indirect method
in Figure 7 with the isolator mounted between a block and the moving table of an
electro-dynamic vibration generator membrane. The moving table and block motions are
measured by piezo-electric accelerometers. The acceleration and mass of the block
multiplied, supplies the blocking force needed for the transfer sti!ness estimation. Data
collection is performed by a 4-channel frequency analyzer, also supplying the signal to the
generator via an ampli"er with measurements processed by a personal computer. The
instruments needed are tabulated in Table 2.



TABLE 1

Principal ingredients of the natural rubber compound

Concentration
Category Ingredient Type (phr)

Polymer Natural rubber SMR CV50 100
Filler system Carbon black N772 10
Stabilizer system Antidegradant system Antiozonant 1

Antioxidant 1
Wax 1

Vulcanization system components Activators Stearic acid 1
Zinc oxide 5

Vulcanizing agent Sulphur 3
Accelerator CBS 2

Special materials Processing oils Para$nic 1
Aromatic 5

Figure. 7. Measurement set-up.

TABLE 2

Measurement instruments

Instrument Type Number

Electro-dynamic vibration generator LDS V409 1
Ampli"er Labgruppen SS1400 1
Accelerometer B&K 4393 2
Accelerometer B&K 4367 3
Accelerometer Rion PV-84 2
Charge ampli"er B&K 2635 3
Frequency analyzer Tektronix 2630 1
Computer Aquila PC486 1
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Within the frequency range considered the block mass su$ciently reduces the motion of
the block. Then axial dynamic transfer sti!ness kI

12
+u2m

b
uJ
b
/uJ

mt
, where DuJ

b
/uJ

mt
D@1; m

b
and

u
b
are the mass and the displacement of the block and u

mt
is the displacement of the moving

table.
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In order to suppress (unwanted) rigid and non-rigid body motion in#uences,
accelerometers are positioned symmetrically close to the isolator at several places on each
block and on the moving table.

Let the frequency response function hI (xJ , yJ )"rJ (xJ , yJ )/rJ (xJ , xJ ), where rJ (xJ , yJ ) is cross-
spectrum density, de"ned as the temporal Fourier transform of cross-correlation function,
r(x, y)"lim

T?=
:T@2
~T@2

x (q) y (q#t) dq/¹. Source correlation technique reduces the in#uence
of measurement noise. The output signal, s, from the frequency analyzer is a source signal.
The sti!ness becomes kI

12
+u2m

b
M

mt
+Mb

n/1
hI (sJ , aJ n

b
)/[M

b
+Mmt

p/1
hI (sJ , aJ p

mt
)], where am is the

acceleration at the position m; M
mt

and M
b
are the number of accelerometer positions on the

moving table and on the block respectively.
To ensure reliable measurements various blocks are used. Each block mass, including the

accelerometer mass on the block and the plate mass, lies in [1)34, 215] kg. The larger the
mass the lower the driving point mobility, but, in general, the lower fundamental natural
resonance frequency, f

b
, is for the block itself. Consequently, heavy blocks are used in the

low-frequency region whereas light blocks in the high-frequency region. The frequency
range for each block lies in [N

b
f
ib
, f

b
/N

b
] Hz, where f

ib
is the axial rigid body resonance

frequency of the isolator}block system and N
b

is normally greater than 6. Hence, the
amplitude and phase errors due to non-vanishing point mobility of the block and non-rigid
block motion are negligible. Results from overlapping frequency regions are averaged.

Normally, the static preload on the isolator equals the block static mass. However, the
heaviest blocks are suspended by auxiliary rubber isolators, as the model, given in section 2,
does not cover the geometrical nor the material non-linearities aligned with "nite
pre-strains. The actual pre-load never exceeded 500 N.

The experiments are performed at room temperature, (20)9$0)2)3C. The frequency range
considered is 100}5000 Hz. To increase the signal-to-noise ratio, the excitation signal is
a stepped sine signal, starting from 100 Hz, with a constant frequency step of 4)5 to 199 Hz,
1 Hz from 200 to 1000 Hz and subsequently, with a step of 4 Hz to 5000 Hz. The signal is
recorded within a 5 Hz bandwidth, averaged 5 times and delayed 1000 ms between each
recording.

To take the stress softening e!ects into account, aligned with initial deformations of new
rubber samples, also known as Mullins' e!ect, the test object is preconditioned prior to
testing by subjecting to a few deformation cycles at a slow rate in the axial direction with
extreme values throughout the cycling, slightly exceeding the actual maximum static
pre-load. Dynamic tests are initiated after 1}2 h to allow for stress relaxation.

Each measurement chain*embodying an accelerometer, an accelerometer coaxial cable,
a charge ampli"er and a RG58 coaxial cable*is sensitivity calibrated in Figure 8(a), with
the accelerometer mounted on the shaker table of a calibrated vibration source, B&K 4291.
By tuning into the actual accelerometer mass, the built-in generator is adjusted to give
a sinusoidal signal with a peak value of 10)0 m/s2 at 79)6 Hz. The output signal from the
charge ampli"er is measured by a digital HP 34401A Multimeter. For transfer sti!ness
measurements it is su$cient to measure the ratio of the block displacement to the moving
table displacement; then it is only necessary to determine the relative sensitivity between the
measurement chains. Therefore, the calibration discounts any systematic deviation from the
stated vibration level of the calibrated vibration source.

Errors due to systematic phase and amplitude mismatch across the channels on the
frequency analyzer are reduced in Figure 8(b) by measuring, and gathering, the frequency
response functions between them. The output signal from the frequency analyzer is used as
a source signal. The frequency range, the frequency step and the time delay are the same as
those for sti!ness measurements. The number of averages is increased to 50 to minimize
random error in#uence.



Figure. 8. (a) Sensitivity and (b) cross-channel calibration.
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3.2.2. Measurement results

The measured axial dynamic transfer sti!ness is shown in Figures 9(a)} (d). Figures 9(a)
and (b) show the magnitude and the unwrapped phase in the frequency region 100}1000 Hz,
while the whole range from 100 to 5000 Hz is shown in Figures 9(c) and (d).

With respect to the magnitude curve in Figure 9(a) and the behaviour of the phase curve
in Figure 9(b), the three magnitude peaks most probably correspond to anti-resonances,
while the "rst and third troughs agree with resonances. At an anti-resonance for elastic
materials (that is, with no material damping) the sti!ness shows a magnitude peak and
a phase jump of !1803, while displaying a magnitude trough and a phase jump of #1803
at a resonance. Introducing damping, the resonances and anti-resonances are blunted; in
general, the magnitude troughs and peaks are rounded, while the sudden phase jumps
disappear, showing a &&slower'' phase shift. Therefore, it may become di$cult to distinguish
individual resonances and anti-resonances, particularly for high damping material (such as
rubber) at closely spaced resonances and anti-resonances.

Con"ned to the frequency range 1000}5000 Hz, the magnitude curve in Figure 9(c)
comprises an oscillating curve, with a rapidly declining amplitude, imposed on
a monotonically increasing curve. Likewise, the phase curve in Figure 9(d) oscillates, with
rapidly declining amplitude, around !1803. From 4000 to 5000 Hz, the phase curve
deviates gradually from !1803. Hitherto, the deviation decreases but is not eliminated,
although smaller accelerometers are used and the measurement block is substituted
by the bonded steel plate only. The fundamental natural resonance frequency of a freely
suspended plate rose to 9160 Hz, causing the factor N

b
at the high frequency limit to drop to

2. At this stage, the high frequency deviation is most likely due to the plates non-rigid
motion.

Regarding measurement noise, the coherence between the source signal and any
measurement signal used lies in ]0)999900, 1)000000], though rarely lower than 0)999990.
The sti!ness trough sector at 930 Hz is the frequency region of the lowest coherence.
Moreover, the measurement results, including the magnitude and the phase curves, show
negligible #uctuations. Accordingly, their measurement quality is excellent.

To sum up, the axial dynamic transfer sti!ness is strongly dependent on the frequency.
Below 1000 Hz, the sti!ness displays de"nite resonances and anti-resonances, while above
1000 Hz, it compounds from rapidly decaying oscillations on a monotonically increasing
curve.



Figure. 9. Measured transfer sti!ness. (a) and (b) 100}1000 Hz; (c) and (d) 100}5000 Hz.
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3.3. CALCULATED STIFFNESS AND EVALUATION OF MATERIAL MODEL PARAMETERS

Traditionally, material model parameters are calculated from the results of a small test
sample undergoing controllable deformation tests. From a practical point of view, the
deformation "eld must be simple to generate, and, in order to obtain accurate results, very
well known. Here, for simplicity, the material model parameters are determined from the
isolator measured axial dynamic transfer sti!ness. Although the "eld within the cylinder is
complicated, the merged axial motion of the plates is simple to generate and measure. It
should be noted that this procedure assumes that the presented waveguide solution is
correct. This is most likely the case, as shown in Part II. Moreover, a "nite element solution
[21] at vanishing pre-load, coincides with the presented waveguide solution. This is also the
case when varying the material parameters. In order to explore fully the material property
in#uence, other deformation modes may be applied, such as torsion; this is left for future
studies, since the focus in this paper is on the axial waveguide solution. In this connection,
the transfer sti!ness magnitude for the isolator considered displays a strong bulk modulus
(or b) dependence for f'2000 Hz. Therefore, the usually laboriously estimated bulk
modulus is readily estimated from the transfer sti!ness magnitude in the high-frequency
region. The use of the present isolator in place of a small test sample enlarges the result's
geometrical counterpart. Nevertheless, the e!ects of variations in the compound ingredients
and in component processing are eliminated. Important, but #uctuating processing
characteristics are: the temperature and pressure plus the time between the mixing and
initiation of cross-linking, the rate of its formation and its extent at the end of the process. In
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this connection, bulky rubber samples, such as the isolator considered, are frequently
under-vulcanized, compared to small thin-walled rubber samples manufactured from the
same mixture.

Regarding the polymer natural rubber, its limited concentration of carbon black and the
limited frequency range, a suitable "tting function for the shear modulus is a function with
slightly increasing loss factor and magnitude with increasing frequency. It should be
emphasized that any "tting function is possible, as long as it depicts the observed material
behaviour su$ciently accurately within the considered frequency domain, [22]. Here, the
"tting function applied is

kL "k
= C1#

(iukl/k=
)a2!(iukl/k=

)a1
Da log

e
(iukl/k=

) D , (54)

Da"a
2
!a

1
is similar to a fractional Kelvin}Voigt model [23], where the equilibrium

shear modulus k
=

and the parameters kl , a
1

and a
2

are to be "tted to the measurement
results. Indeed, it reduces to a fractional Kelvin}Voigt model kL "k

=
[1#(iukl/k=

)a],
when a

1
, a

2
Pa. Note that the Fourier transform of the fractional derivative of order a of

x(t) is (iu)a times the Fourier transform of x (t) [9]. The corresponding relaxation function to
the "tting function reads
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= Ch (t)#

1

Da P
a2

a1
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)a Ia(t) daD , (55)

where the Abel operator kernel Ia(t)"h (t)/[taC (1!a)], [23], and C is a Gamma function
[20], C (z)"

0
:=sz~1e~s ds, z'0, reducing to a relaxation function of a fractional

Kelvin}Voigt model k (t)"k
=

[h (t)#(kl/k=
)a Ia (t)], when a

1
, a

2
Pa.

Estimated bulk modulus is readily estimated from the transfer sti!ness magnitude in the
high-frequency region.

The material parameters in equation (54) were "tted manually. Principally, the
equilibrium shear modulus k

=
in addition to kl , a

1
and a

2
was determined by "tting

the low-frequency region of the transfer sti!ness curve ( f(300 Hz) to measurements while
the corresponding high-frequency region ( f'2000 Hz) determined b. The parameters
were then slightly adjusted to give a good overall "t throughout the whole frequency region.
The rubber density was provided by the rubber manufacturer. The &&least squares'' estimated
parameters are: k

=
"5)94]105 N/m2, kl"13)0 Ns/m2, a

1
"0)080, a

2
"0)625 and

b"2)22]103, together with o"1050 kg/m3. The estimated parameters are realistic: the
equilibrium Poisson ratio is 0)4998, the density equals the stated value, while the
equilibrium bulk and shear moduli slightly exceed the stated values. The shear modulus in
the extended frequency range 1}10 000 Hz is in Figure 10, showing a slight magnitude and
loss factor increase with increasing frequency, as expected. The bulk modulus is a constant;
1)32]109 N/m2. It should be noted that the applied "tting function is su$cient within the
considered frequency domain, while considerably higher frequencies require other models,
such as a fractional standard linear (or three element) solid [23], showing a "nite glass
modulus.

The calculated sti!ness is determined by point matching, using equidistant collocation
radii, P1

r
"P1

z
"P2

r
"P2

z
"100 and M"100; the equation system is, therefore,

overdetermined. The frequency points coincide with the measurement points. For all
frequencies considered, the e!ective rank of system matrix A@ is full, that is 200.

The calculated sti!ness is in Figures 11 and 12. Figures 11(a)}(e) show the transfer
sti!ness. Figures 12(a)} (f ) show the driving point sti!ness. In addition and for comparison,



Figure. 10. Shear modulus. 1}10 000 Hz. (a) Magnitude and (b) loss factor.
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the results of the axial transfer sti!ness measurement are shown in Figures 11(a)} (e). The
curves from the measurement are plotted in dashed lines while those from the calculations
are solid.

The measured and calculated axial transfer sti!ness agree very well. In particular, the
low- frequency plateau, the peaks and the troughs in Figure 11(a) are almost exactly
reproduced. In Figure 11(b), the calculated phase corresponds to the measured phase with
only minor discrepancies. The low-frequency fragment of the phase curve shown in Figure
11(c) results mainly from the material properties in shear. For comparison, the phase curve
of the shear modulus is plotted in a dash-dotted line closely following the phase curve of the
dynamic sti!ness to 150 Hz. The ensuing deviations are mainly due to geometrical e!ects.
Apparently, it is possible to achieve a good "t of the material damping of the applied nearly
incompressible material model embodying a simple "tting function, to those of
measurements. Magnitude and phase curves in the whole frequency region of 50}5000 Hz
are shown in Figures 11(d) and (e), where measurements and calculations match very well.
The small deviations close to 5000 Hz, slightly more conspicuous for the phase, result most
probably from non-rigid plate motions (or from a possible anti-resonance in the high-
frequency region).

The driving point sti!ness depends upon the dynamic properties of the plates in section
3.1. Three isolator plate con"gurations are provided in Figures 12(a)}(f ), plates not
included are plotted in solid lines, 2)6 mm plates included are plotted in dotted lines and
(2)6#19)0) mm plates included are plotted in dash-dotted lines.

With reference to the magnitude curve in Figure 12(a) and the behaviour of the phase
curve in Figure 12(c), the three magnitude peaks, without plates (that is, o

mp
,0), most



Figure. 11. Calculated (solid) and measured (dashed) transfer sti!ness. (a) and (b) 50}1000 Hz; (c) 50}300 Hz,
shear modulus (dash-dotted); (d) and (e) 50}5000 Hz.
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likely correspond to anti-resonances, while the four troughs agree with resonances.
Incorporating the plates, the sti!ness reads kI

11
"kI

11
D
no plates

!u2m
mp

, where m
mp

is the
plate mass. In Figure 12(b), although more de"nite in Figure 12(c), the "rst resonance is
shifted to 190 and 90 Hz, respectively, for 2)6 mm and (2)6#19)0) mm plates. Subsequently,
the dotted and the dash-dotted magnitude curves exceed the solid curve, more
conspicuously with (2)6#19)0) mm plates.

Next, the driving point sti!ness in the whole frequency region of 50}5000 Hz is in
Figures 12(d)} (f ), where sti!ness oscillates slightly, but tends towards !u2 (m

mp
#m

eff
)

for higher frequencies, with m
eff

as cylinder e!ective mass. Physically, the e!ective mass can
be considered as the equivalent part of the rubber mass moving in parallel with L1

d
B; here,

being &40% at 5000 Hz.



Figure. 12. Calculated driving point sti!ness. Bonded steel plates not included (solid), 2)6 mm (dotted) and
(2)6#19)0) mm bonded steel plates included (dash-dotted). (a), (b) and (c) 50}1000 Hz; (d), (e) and (f ) 50}5000 Hz.
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Finally, the sti!ness in the extended frequency region of 50}10000 Hz is shown in
Figures 13(a)}(d), displaying a lightly damped anti resonance at 8600 Hz. To obtain
satisfactory results close to this frequency the total mode number is increased to M"256
while P1

r
"P1

z
"P2

r
"P2

z
"256. The magnitude ratio of maximum to minimum sti!ness

within the frequency range is roughly 104 to 105, which de"nitely alters the de"nition of
&&spring constant''.

3.3.1. Other material models

In order to study further the material model signi"cance for the sti!ness, two typical
material models are applied to the nearly incompressible model. The parameters are



Figure. 13. Calculated (a) and (b) transfer sti!ness; (c) and (d) driving point sti!ness. Bonded steel plates not
included; 50}10 000 Hz.
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adjusted so as to be equal in density, bulk modulus, equilibrium shear modulus and the loss
factor of shear modulus (at 100 Hz), used as in the current model (54), resulting in equal
static sti!ness and measurement coincident sti!ness phase at 100 Hz. In Figure 14, the
sti!ness due to the frequency independent shear modulus, kL "k

=
(1#8)35]10~2 i), and

the ordinary Kelvin}Voigt model, kL "k
=

(1#8)35]10~4 f i), are plotted in dotted and
dash-dotted lines, respectively. The frequency range is 50}1000 Hz. The driving point
sti!ness is shown in Figures 14(c) and (d), while the transfer sti!ness is shown in
Figures 14(a) and (b). For comparison, the measurement results for the transfer sti!ness is
shown in Figure 14(a) and (b), plotted as a dashed line. In addition, the previously
determined sti!ness is shown in a solid line, with its shear modulus displayed in Figure 10.
Clearly, the simple models fail to model the sti!ness satisfactorily. The shear modulus is, for
both models, underestimated in the frequency range considered resulting in an
underestimation of the magnitude of the low-frequency sti!ness and a shift of the resonance
and anti-resonance frequencies to lower frequencies. In addition, the Kelvin}Voigt model
overestimates the material damping in the high-frequency region ( f'100 Hz), while the
frequency-independent model underestimates it. The peaks are, therefore, sharper for the
frequency-independent model and heavily broadened for the Kelvin}Voigt model. It is
possible to adjust the equilibrium shear moduli to give better low-frequency sti!ness
magnitude agreements; this would however result in unrealistic large (erroneous)
equilibrium shear moduli. Other material models, such as the fractional standard linear (or
three element) solid [23], were tested but the "tting function applied to the nearly
incompressible model is superior in this study. To enhance further the high-frequency



Figure. 14. Calculated (a) and (b) transfer sti!ness; (c) and (d) driving point sti!ness. Measurement (dashed);
present (solid thick), frequency independent (dotted) and Kelvin}Voigt model (dash-dotted). Bonded steel plates
not included; 50}1000 Hz.
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sti!ness phase agreement with measurements for f'1000 Hz, the bulk response may be
viscoelastically modelled rather than purely elastically.

4. CONCLUSIONS

In presenting a linear axial dynamic sti!ness model for cylindrical vibration isolators over
an audible frequency range of particular complexity and interest in noise abatement, the
problems of simultaneously satisfying the boundary conditions at the lateral and radial
surfaces of the cylinder are removed. The remedy is to satisfy approximately the boundary
conditions at the lateral surfaces by a circle-wise ful"lment or a subregion method and by
adopting the mode-matching technique while using the dispersion relation for an in"nite
cylinder. The rubber material is modelled as nearly incompressible with deviatoric visco-
elasticity based on a fractional order derivative model. The main advantage of the viscoelastic
model is the minimum parameter number required to model the material properties
successfully over a broad structure-borne sound frequency domain. The work is veri"ed by
experiments on a rubber cylinder, equipped with bonded circular steel plates, in the frequency
range 100}5000 Hz. The model and the measurements are shown to be in striking agreement
within the whole frequency range. Comparisons with alternative material models are made,
known as the Kelvin}Voigt and frequency independent or &&hysteric'' material models. The
results are shown to diverge substantially from the presented material model; in particular,
the Kelvin}Voigt model overestimates the material damping in the high-frequency region,
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while the frequency-independent model underestimates it. In addition, the resonance and anti
resonance frequencies are incorrectly predicted. In a companion paper [10] the dispersion
relation solution, convergence analysis and comparison with simple models are addressed.

To derive other components of dynamic sti!ness with methods similar to those presented
is an interesting continuation of this work.
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