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Free and forced vibration analysis is presented for Reissner—Mindlin plates with four free
edges resting on a Pasternak-type elastic foundation. The formulations are based on the
Reissner-Mindlin plate theory, considering the first order shear deformation effect and
including the plate-foundation interaction and thermal effects. A new set of admissible
functions, which satisfy both geometrical and natural boundary conditions, are developed
for the free vibration analysis of moderately thick plates with four free edges. The
Rayleigh-Ritz Method is employed in conjunction with this set of admissible functions to
determine the vibration behaviors. Then on this basis, the modal superposition approach is
used in conjunction with Mindlin-Goodman procedure to determine the dynamic response
of free edge Reissner-Mindlin plates exposed to thermomechanical loading. The mechanical
loads consist of transverse partially distributed impulsive loads and in-plane edge loads
while the temperature field is assumed to exhibit a linear variation through the thickness of
the plate. The numerical illustrations concern moderately thick plates with four free edges
resting on Pasternak-type elastic foundations with the Winkler elastic foundations being
a limiting case. Effects of foundation stiffness, transverse shear deformation, plate aspect
ratio, shape and duration of impulsive load, loaded area, and initial membrane stress as well
as thermal bending stress on the dynamic response of Reissner-Mindlin plates are studied.

© 2001 Academic Press

1. INTRODUCTION

Dynamic response of simply supported, moderately thick rectangular plates under
transverse partially distributed impulsive loads combined with in-plane edge loads and
temperature field and resting on a Pasternak-type elastic foundation was the subject of
a recent investigation [ 1]. The analysis was based on the Reissner—Mindlin first order shear
deformation plate theory (FSDPT). Dynamic response was determined by using both the
modal superposition approach (MSA) and state variable approach (SVA). Such solutions
may find important applications in stress analysis and design of concrete pavements of
airfields.

Many publications have appeared in the literature on the free or forced vibration of
isotropic and composite laminated thick plates. The dynamic response of plates are
presented mainly for a few edge boundary conditions, such as those simply supported at
four edges (Navier-type solutions) or at two parallel edges (Levy-type solutions). For other
type of boundary conditions, only numerical results can be found [2-57], and most of them
are for the free vibration analysis. The Rayleigh-Ritz method has been frequently applied
and it should select appropriate admissible functions (e.g. beam vibration mode shapes [6])
representing the deflection of the plate under consideration. However, as mentioned by
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Bassily [7] and Dawe [8], this kind of admissible function for the plate involving one or
more free edges is less satisfactory in free vibration analysis. Consequently, some modified
functions, e.g. degenerated beam functions [9], orthogonal polynomials [10, 11], pb-2 type
polynomial function [12], are introduced to overcome this difficulty, but they do not satisfy
natural boundary conditions and thus show slow convergence. Moreover, Gorman [13]
and Gorman and Ding [14] employed the superposition method to obtain accurate free
vibration solutions for completely free rectangular thin or thick plates. Shen [15, 16] gave
the analytical solutions for non-linear bending of Reissner—-Mindlin plates with four free
edges subjected to transverse partially distributed loads combined with temperature field or
in-plane loads and resting on elastic foundations.

The present study extends the previous work [1] to the case of moderately thick
rectangular plates with four free edges resting on a Pasternak-type elastic foundation.
A new set of admissible functions, which satisfy both geometrical and natural boundary
conditions, are developed for the free vibration analysis of moderately thick plates with four
free edges. The Rayleigh-Ritz Method is employed in conjunction with this set of admissible
functions to determine the vibration behavior. Then on this basis, the modal superposition
approach in conjunction with Mindlin-Goodman procedure [17, 18], is used to determine
the dynamic response of free edge Reissner—Mindlin plates exposed to thermomechanical
loading. The mechanical loads consist of tranverse partially distributed impulsive loads and
in-plane edge loads while the temperature field is assumed to exhibit a linear variation
through the thickness of the plate. The material properties are assumed to be independent of
temperature. The formulations are based on Reissner-Mindlin first order shear
deformation plate theory and include the plate-foundation interaction and thermal effects.
Numerical examples are presented that relate to the dynamic behaviors of free edge
moderately thick plates resting on Pasternak-type elastic foundations, from which results
for Winkler foundations are obtained as a limiting case. Static bending is treated as
a degenerated problem.

2. GOVERNING EQUATIONS AND THEIR DIMENSIONLESS FORMS

Consider a moderately thick rectangular plate of length a, width b, and thickness h, which
rests on a Pasternak-type elastic foundation. The four edges of the plate are all free.
A Cartesian co-ordinate system (X, Y, Z) is located at the middle plane of the plate, where
X is longitudinal and Z is perpendicular to the plate. The origin point is located at the
center of the plate, as shown in Figure 1. The plate is exposed to a stationary temperature
field T(X, Y, Z) and transverse impulsive load g over a central area a; x b; combined with
in-plane edge loads Ny in the X direction and Ny in the Y direction. Asis customary [15, 16,
19-217, the foundation is assumed attached to the plate and separation does not arise. The
load-displacement relationship of the foundation is assumed to be p = K;W — K, V2W,
where W is the plate deflection, p is the force per unit area, K, is the Winkler foundation
stiffness, K, is a constant showing the effect of the shear interactions of the vertical elements,
V2 is the Laplace operator in X and Y. Py and Py are the mid-plane rotations of the
normals about the Y- and X-axis respectively, 7 is the time and Q is the frequency.

It is postulated that the temperature field T'(X, Y, Z) exhibits a linear variation through
the plate thickness, i.e.,

TX,Y,Z) =T, <1 +C %) (1)

in which T, and C denote the temperature amplitude and gradient respectively.
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Figure 1. A Reissner—-Mindlin plate subjected to a transverse partially distributed impulsive load.

The thermal moments caused by the temperature field T(X, Y, Z) are defined by

__ Ex [
mr =% J ZT(X, Y, Z)dZ, ?)

—V J-n2

—

where o is the thermal expansion coefficient of a plate, E is Young’s modulus and v is the
Poisson ratio.

The deduction of the governing equations associated with Reissner-Mindlin first order
shear deformation plate theory, and including the plate-foundation interaction and thermal
effects, follows the same pattern as in the case of its static counterpart [15], so that the
motion equations can be written as

Li1(Px) + Li5(Py) + Lis(W) — KyW + K, VW 4 g = Ly (W), (3)
Ly (Px) + Lys(Py) + Laa(W) — MY = Lyy(Py), )
L31(¥x) + L3s(¥y) + Lys(W) — MTy = L34(¥y), (%)

where

-

Li() = 2Gh-2) Li( ) = 12Gh 2

0x’ oYy’
52 62 62
Lis() = (Gh + Nx) o5 + (2Gh + Ny) 50, Laa( ) =11 =,
0 1—v o? 0

Ly( ):D<8X2+2(3Yz>_KZGh’ Lys() = —KZGha*X,

1+v 0 1—v o2 0*
L =L = __D— L =D|l—— 2

31() = Lao( ) > Paxay 32( ) < > X2 +0Y2> Kk*Gh,

0 0? 0? 0?

Lss() = —Kthﬁ, Laa( ) =Laa( ) =13 272 VZZW‘FW, (6)
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in which

ER3 2 ,
D= 20 =) (1, I5) = IW p(1,Z7)dZ. ™

D is flexural rigidity, G is shear modulus, and p is the mass density of the plate. Also, x? is
the shear factor, which accounts for the non-uniformity of the shear strain distribution
through the plate thickness. For Reissner plate theory x* = 5/6 while for Mindlin plate
theory x? = n?/12.

The stress resultants are

J\7IX=D<(§(+V(;¥;Y>—MTa ®)
MY:D<V%§X+%¥;Y>—]\7[T, ©)
iy = QV)D<‘§(+ aaﬁ) 1o
Ox = k*Gh (?;{7 + ?_’x>, an
Oy = k*Gh (%‘f + 'I7y>. (12)

If all four edges of the plate are free, the boundary conditions are
X = Fa2

My=0, Myy=0, Qyx=0. (13a)
Y= Fb/2:

My =0, Myy=0, Qy=0. (13b)

Because of equations (1) and (2), it is noted that the temperature does not vary in X and
Y, then thermal moment M7 is a constant, so that the boundary conditions of equation (13)
are non-homogeneous, but in equations (4) and (5) ML = M* = 0.

Introducing dimensionless quantities (in which the alternative forms k; and k, are not
needed until the numerical examples are considered),

X Y a 12a n*D l—v 1+v
= — = — = — 0 = = — =
X T a P T b > ﬂ b s h > 7 deth (Vls v2) ( 2 ’ 2 >3
w _ _ _aq _ a
W = 7 (lpx: 'Ily) = (II/Xa (IlY) n_h (Qxa Qy) = (QX) QY) Wa
T YR YRy —ry @ e K
(Mx, Mys MxyaM ):(MX’ MYa MXYsM )m (Kl,kl):(a 7b )%9
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K f: E 2(1 —v2
(KZ’ k2) = (az, bz) TZD» t= 1 ﬁ» w?=Q? %Evv)s
v a\p(l—v i
4 Nya? Nyb?
P LA T A . i (14)

T m*Dh Y w*D’ Y @D

Equations (3)-(5) may then be written in dimensionless form as

Liy(¥Yy) + Lio(¥,) + Lis(W) — KiW + K, VW + Aq = L14(W), (15)
Ly1(Yy) + Los(W) + Los(W) = Lyy(¥,), (16)
L31(¥y) + L3s(Vy) + L3s(W) = Laa('P)), (17)
where
,B a 1 2 2
Li()=~%, LlZ()_;ﬁ_y’ Lis()= ;‘f‘ )52 B2\
0? 0? 0? 1 10
Li)=0? 2 21( ):<5x2+ s ay2>_ . Laa() vﬁ’
0 0? 0? 0
Liq( )=Lzz()=vzﬁm, 32( ) <v16x2+ﬁ26y2>_ > L33()__§67y’
0? _ 0? 0?
Ly ) =Lyl )= FreR V2= F + p* 2y (18)
and the dimensionless forms of stress resultants become
Y.
M, = 66 Ty —MT, (19)
oY, v,
M,=v— —_MT 2
=B 0)
ov, oV
M, = T4 2 21
xy V1< ay + ax> ( )
ow ow
=— 4+ Y =f—4+Y,. 22,2
Q="+ Q=B (22, 23)
The boundary conditions of equation (13) become
x= Fa/2
M,=0, M, =0, 0.=0. (24a)
y= Fn/2

M,=0, My,=0, Q,=0 (24b)
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and zero initial conditions are assumed, i.e.

= 0. (25)

oW ov¥, oY
(Wa lIIxa lIly)|t:0 =0 < y>
t=0

ot’ ot ot

3. FREE VIBRATION ANALYSIS

3.1. ENERGY FUNCTIONAL

The strain energy for initially stressed Reissener-Mindlin plates may be written in the
dimensionless form as [19]

1 (w2 2 k4 (0%, 2 0P, 0¥, 1—v /[ 0¥, 0¥, \>
=— x Y 2 xZy x4y
v ZJ,I/Z Jn/z {( 0x >2+ﬁ <6y> +2vh Ox 0y + 2 <B dy + 8x>

1 oW \? oW \? oW'\? oW\?
+- (Pt ) + |V +B——) |+l =) +B* =) pdxdy. (26)
) 0x Jy 0x dy

The maximum kinetic energy for free harmonic vibration is

1 /2 /2
P—MJ J (0*°W? + W2 + P2)dxdy 27)

2 —n/2 J—7/2

and the strain energy owing to the Pasternak foundation model is

x2  pw/2 2 2
2 ) np2)-np2 0x oy

then the energy functional is

N=U-T+V. (29)

3.2. ADMISSIBLE SOLUTION

Firstly, we assume the modal shape functions as

W(x, y) = Wi+ Wy + Wi + Wiy, (30)
Yi(x, y) = Yo + Parvs (31)
Yyx,y) = ¥Ym + Yirv, (32)
where
W, = Ago, Wu= )Y [Amocos(2mx) + dymox>], (33a, 33b)
m=12,...

W= Y [Aoncos(2ny) + azony*1, (33¢)

n=12,...
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Wiv=Y [A1mc0s2mx) + Ay, cos(2ny)
1,2, ...

+ A, c08(2mx) cos(2ny) + dqpmX> + Azmmy* ], (33d)
Yau= Y [Buosin(2mx) + byuox], (33e)
m=12, ...
Yav= Y [Bimsin(2mx) + B,,sin(2mx)cos(2ny) + by,.,x]1, (33f)
m=12,..
Yym = :lz; [Consin(2ny) + c20,y], (33g)
Yov=Y  [Camsin2ny) + C,,cos(2mx)sin(2ny) + ¢z y] (33h)
n=1,2,...

in which, A¢g, Ao, etc. are unknown coefficients. Because the applied loads in section 4 are
symmetric, only the double symmetric modals will make contributions to the dynamic
response of the plate. For this reason, the modal shape functions selected here are applicable
to cases of double symmetry.

Then substituting equations (30)-(32) into equations (16) and (17), considering the
boundary conditions (24) and ignoring the thermal bending and the dynamic inertia, we can
set-up the relations among the unknown coefficients. They are

I/VII _ w;k T
-]

W %
[ “‘}[Wi}ag, (34b)
'IUYIII \|’y3
Wiy wi
Pav | =W | as, (34¢)
leIV \|’;=4

in which the row-submatrix of w3, ¥, etc., are defined in Appendix A.
Using the Rayleigh-Ritz method and minimizing the total energy functional of equation
(29) with respect to the unknown coefficients leads to

(D + /,.E — 0*F)a =0, (35)

where a is the column matrix of all unknown coefficients (generalized displacements), D is
the elastic stiffness matrix, E the initial stress stiffness matrix and F the consistent mass
matrix. The details of these matrices are given in Appendix B. If the truncated orders of the
admissible functions m = n = r — 1, the size of these matrices is 7 x 2. Because not all of
the elements of a equal to zero, from equation (35), we have

det(D + /.E — ?F) = 0. (36)

The resultant standard eigenequation can then be easily solved for determining the
m order natural frequencies ,, and mode shape functions W,(x, y), ¥..(x, y) and ¥,,(x, y),
which satisfy both geometrical and natural boundary conditions, and will be used in the
next section for dynamic analysis.
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4. FORCED VIBRATION ANALYSIS

Because the boundary condition of equation (24) is non-homogeneous, we assume that
the solution of equations (15)—(17) is comprised of two parts as [17, 18]

W(x, y, 1) = W(x,y,t) + W(x, ), (37a)
qlx(xs Vs t) = qlx(x’ Vs t) + @x(x: )’)a (37b)
le(X, Vs t) = 'le(xa Vs t) + (ily(-)@ y)v (37C)

where W (x, y), P.(x, y) and lf’y(x, y) are additional solutions, and assumed to have the form
W (x, y) = M" a1 cos(2x) + 01, cos(2y) 4 a3 c08(2x)cos(2y) + ayax? + a15y%], (38a)
P(x, y) = Moy sin(2x) 4 o33 5in(2x) cos(2y) + az4x], (38Db)
P, (x, y) = M [0z, sin(2y) + o33 cos(2x)sin(2y) + a35)]. (38¢)

Substituting solution (38) into equations (15)-(17) and boundary condition (24), the
coefficients oy, o5, etc. can be determined with details given in Appendix C.
Then solutions W(x, y), P,(x, y) and P,(x, y) should satisfy equations

L (P) + L12(¢y) + Ls(W) — KyW + K, VW + /Tq =Ly, (W), (39a)
Ly () + Lzz(qu) + Lys(W) = Ly (P, (39b)
L3 (7)) + Lsz(‘:ily) + Lyx(W) = L34(¢y) (39¢)

with the homogeneous boundary conditions

x= Fmn/
P P, o, oY, ow -
x —2-0 YL Y_0, —+P.=0. 40
x TP 0 P T T T (402)
y= F /2
P P, oy, 0, ow -
YL p=2=0 YLV, p—+P,=0 40b
V@x+ﬂ@y ’B6y+(3x ,ﬂay+y (40b)

and the initial condition

- JUN oW o, 0P oW oW, o
W, 0., P)eo=—W, ¥, ¥) (—, =, =2 - x 0%y
(W, ¥, ¥)le=o ( ) <6t ot ot >t=0 <

ot’ ot ot

>=0 (41)

in equation (39a) 7, is given in detail in Appendix D.
The modal superposition approach (MSA) is now used to solve equation (39) and we
assume

W(X, Vs t) = Z Wm(xa y) Tm(t)s (423)

m=1
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P00 = 3 Pnlos DTl (42b)
Py p, 1) = X Pl ) Tlt), (420)

where W,(x, y), Ym(x, y) and ¥,,,(x, y) come from equation (35) and T,,(t) is the principal
co-ordinate for the mth modal and w,, is the mth frequency of the plate. Following the same
procedure of reference [1], we can obtain

1
T, (t) = — ml
(t) KmCOS(w )+mem

ft 0,.(t)sin[w,,(t — 1)]d7, (43)
0

where Q,(t), K,,, I,, are given in detail in Appendix D. Note that the Mindlin-Goodman
orthogonality condition, in the present case, can be written as

0 JO

j j [ W, Y)W, 1) + P06 1) Pen( ) + P (s 1) P, )] dcdy

=0 when m+#n
=1,2,3,...) 44
20 whem s (mn=123...) (44)

Substituting equation (43) into equation (42) and adding equation (38), W(x, y, t),
Y.(x, y,t) and ¥, (x, y, t) can be obtained. If we degenerate this problem into a static one,
T,.(t), Q,(t) become independent on time, then we can seek the static solution. Taking the
same procedure as its dynamic counterpart, we can obtain

Om

T, = :
" Ka(on)?

(45)

Using the same steps, the displacement fields can be expressed explicitly.

5. NUMERICAL EXAMPLES AND COMMENTS

5.1. CONVERGENCE AND COMPARISON STUDIES

To demonstrate the convergence of the presented method, a study of free or forced
vibration for a square plate with four free edges has been carried out by setting v = 0-15,
k2 =n?/12 and p = 2500 kg/m3. The plate is supported by a Pasternak-type elastic
foundation with (ky, k,) = (2:0, 0-4), but no edge compression is applied. For free vibration
problem, no thermal bending stress is included, and the symmetric-symmetric (SS)
dimensionless frequency @ = Qb?/n%./ph/D is given in Table 1 for various width-to-
thickness ratio b/h = 5, 10 and 20. It is mentioned that the first frequencies in Table 1 are the
rigid-body translations on elastic foundations. The results indicate that the first five SS
frequencies converge very accurately by taking m and n up to 5. Accordingly, in the
following studies, m and n are taken as 5. For a dynamic problem, initial thermal bending
stress is included (T, =30°C, o =10x10"°/°C, C = 1:0), dimensionless dynamic
deflection (W = WEah/q,b®) and bending moment (My = Mya®/qob*h?) as function of
time [ = (f/b) \/E/p] are listed in Table 2 for a square plate with b/h = 10 subjected to
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TABLE 1

Convergence study for the symmetric-symmetric frequency parameter Qb*/n*./ph/D of
square plates; v =015, a/b = 1, and (ky, k,) = (2:0, 0-4)

Doubly symmetric modes

Determinant

m n size 1 2 3 4 5

1 1 4 1-4142 2:7038 2:8753 6-5002 —

3 3 16 1-4142 2:6739 2:8099 5:5620 86598
b/h=5 4 4 25 2:6683 2:8063 5-6470 8-:3287

5 5 36 2:6678 2:8059 5-6453 8:3156

6 6 49 2:6678 2:8059 5-6451 8-3146

1 1 4 1-4142 2:8830 3-0799 7-5266 —

3 3 16 1-4142 2:8556 3-0104 66793  11-0073
b/h =10 4 4 25 2:8535 3-0088 6:6680 107577

5 5 36 2:8533 3-0086 6:6673 107476

6 6 49 2:8533 3-:0086 6:6673 107468

1 1 4 1-4142 29382 3-1440 7-8917 —

3 3 16 1-4142 2:9128 3-:0743 7-0793 121290
b/h =20 4 4 25 29117 3-0734 70684 119587

5 5 36 29116 3-0733 7-:0678  11-9529

6 6 49 29116 3-0733 70678 119526

a suddenly applied central patch load (ai/a =b,/b =05, ¢o=20x10%kN/m?
E = 35 GN/m?). The results indicate that the convergence is obtained by taking numbers of
modes up to 14, which is employed in the following dynamic studies.

As part of the validation of the present method, the central deflections and bending stress
of a free edge moderately thick square plate, subjected to a static transverse load over
a central patch area alone and resting on a Winkler elastic foundation, are compared in
Figure 2 with finite-difference method results given by Henwood et al. [22] and the
superposition method solutions given by Shi et al. [23], using their computing data, i.e.,
E =300 MN/m? v =035, K; =50 MN/m?, a=b=10m, h=04m, a; = b; = 0-5m,
and g, = 1-0N/m?. They show that, in the static bending case, the deflection W along the
X-axis is in good agreement with the comparison results, whereas the bending stress
oy along the X-axis is lower than its counterparts, when 0-2 < X < 0-8 m.

In addition, the dimensionless frequencies for completely free square and rectangular
thick plates (that means without any elastic foundation) are compared in Table 3 with
Rayleigh—Ritz solutions of Frederiksen [11] (taking orthogonal polynomials as admissive
functions) and Hanna [2] (taking polynomials as admissive functions) and superposition
method solution of Gorman [14]. Rigid-body translations are not included. They show
that, in the free vibration case, the present results agree well with existing solutions.

5.2. PARAMETRIC STUDIES

A parametric study intended to supply information on the dynamic behaviors of
a moderately thick plate with four free edges subjected to thermomechanical loading and
resting on an elastic foundation was undertaken. The typical results are shown in Figures 3-9.

It should be appreciated that in all these figures (£/b)/ E/p, W Eah/q,b3, M .a*/q,b*h? mean



TABLE 2

Convergence study for the dimensionless dynamic deflection (W = W Eah/qob®) and dynamic bending (My = Mya?/qob*h?) moment of square
plates; v = 0-15, a/b = 1, b/h = 10, (ky, k,) = (20, 0-4), a;/a = b;/b = 05, g5 = 220 x 10° kN/m?, T, = 30°C, o = 1-0x 107 3/°C, C = 1-0

No. t=2 t=4 t=6 f=38 =10 =12

of

modes W MX W MX W MX W MX W MX W MX
6 2-1421 2-8246 3:9263 3:6340 3:6050 1-6101 37712 1-5715 4-4510 3-1225 32592 3-2836
8 2:1502 2-8733 39340 3-6801 3-6071 1-6228 37797 1-6223 4-4582 3-1658 32614 3-2970

10 2-1467 2-:8430 3-9307 3:6520 3:6042 15982 37773 16022 4-4565 3:1509 32603  3-2878

12 2:1337 27315 39202 3-5620 3:5974 1-5395 3-7746 1-5784 4-4574 3-1590 32639 33185

14 2-1269 2:6674 39136 3-4996 3:5971 1-5358 37676 1-5127 4-4509 3-0983 32635  3:3147

16 2-1271 2:6725 39140 3:5042 3:5973 1-5376 37678 1-5156 44511 3-:1000 32635  3:3152

SHLVTd NI'TANIN-JINSSIHY A0 NOILVYILIA ddD404 ANV dd9d4

60¢
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Figure 2. The comparison of static deflection and flexural stress along the X direction: (a) deflection; (b) flexural
stress: , present; m, Henwood et al. (1982); ----- , Shi et al. (1994).
8F @ 4L ®
6 -
S
g
Y
=
2 - -
0
0
(f/b)NE/p (F/b)NE/p
Figure 3. Effect of the foundation stiffness on dynamic behaviors of a moderately thick plate: (a) central
deflection versus time; (b) bending moment versus time (f = 10, b/h = 10-0, Ny =0, a;/a = b;/b = 0-5): ——, (ky,
k,y) = (10, 0-0); ----- , (ky, k3) = (20, 00); -+, (ky, ky) = (20, 04); - —-—-— , (ky, k) = (2:0, 0-8).

_4 1 1 1 1 L
0 5 10 15

@b)NEIp @b)VEIp

Figure 4. Effect of pulse shape and pulse duration on dynamic behaviors of a moderately thick plate: (a) central
deflection versus time; (b) bending moment versus time (f =10, b/h =100, (k;, k,) = (20, 0-4), Nx =0,
ay/a =by/b =05): 1, Load Case 1; 2, Load Case 2; 3, Load Case 3; 4, Load Case 4; 5, Load Case 5. 3

(fo/b) /E/p = 50; -+ -, (fo/b) \/E/p = 8.

the dimensionless forms of, respectively, time, central deflection and bending moment of the
plate, i.e., at the point (X, Y) = (0, 0). For all of the examples, E = 35GN/m?, v = 015,
p = 2500 kg/m3, and the transverse shear correction factor was considered to be
x? = n%/12. The impulsive pressure q(X, Y, f) = qo F(f) f(X, Y) is applied on the top surface



TABLE 3

Comparisons of frequencies of completely free plates

Doubly symmetric modes

Dimensionless
forms b/h a/b SS-1 SS-2 SS-3
FEM 62515 13998 30636
Qa*./p/E/h v=03 6:67  Frederiksen [11] 15 FSDPT 62513 13997 30632
K? = n?/12 HSDPT 62473 13-976 30499
Present 1-5 FSDPT 62515 139879 30-5603
1 FSDPT 5732 7-057 16:845
y =015 Hanna [2] HSDPT 5736 7065 16:896
Qa® /p/E/h K2 = n?/12 10 2 FSDPT 6430 25665 34012
HSDPT 6432 25691 34073
1 FSDPT 57355 7-0673 169213
Present 2 FSDPT 6-4350 256866 340863
Gorman [14] 1 SM 18-59 2345 5490
Qa? ./ph/D v = 0333 10 05 5257 2110 2793
k2 = 0-8601 Present 1 RRM 18-:5996 234966 554550
05 52623 21-1271 28:1052
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(@b)NEIp

(I/b)NElp
Figure 5. Effect of loaded area on dynamic behaviors of a moderately thick plate: (a) central deflection versus
time; (b) bending moment versus time (f = 10, b/h = 10-0, (ky, k;) = (2:0, 0-4), Ny =0): 1, a,/a = b,/b = 03; 2,
ay/a =by/b=05;3,ay/a=by/b=0"7.

Arm

WEahlq b’

0 L 1 L 1 L
5 10 15

(f/P)NEIp
Figure 6. Effect of initial membrane stress on dynamic behaviors of a moderately thick plate: (a) central
=(2:0,04), a;/a = by/b = 0-5):

deflection V.ersus time; (b) bending moment versus time (f = 10, b/h = 10-0, (ky, k,)
7 =00, Nx/(Nx)ee =00; 2, =00, Nx/(Nx)oe =—025 3, =00, Nx/(Ny)er =025 4, z=10

1,
NX/(NX)cr =—025.

b3

WEahlq,

@b)EIp

(FZb)NElp
Figure 7. Effect of the initial thermal bending stress on dynamic behaviors of a moderately thick plate: (a)
(2:0, 0-4),

central deﬂéction versus time; (b) bending moment versus time (f = 10, b/h = 10-0, T, = 30°C, (ky, k,) =
Nx=0,a,/a=by/h=05:1,C=30,2,C=10;3,C=00;4 C=—-10; 5 C=—30.

of the plate, in which ¢, is the maximum amplitude, f(X, Y) is a unit function in space
domain and F(f) is a unit function in time domain which can be any one of the types listed in

Table 4.
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Figure 8. Effect of the plate width-to-thickness ratio on dynamic behaviors of a moderately thick plate: (a)
central deflection versus time; (b) bending moment versus time (f =10, (k;, k;)=(20, 04), Nxy=0,
ay/a =by/b =05): 1, b/h = 15:0; 2, b/h = 10-0; 3, b/h = 5-0.
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Figure 9. Effect of the plate aspect ratio on dynamic behaviors of a moderately thick plate: (a) central deflection
versus time; (b) bending moment versus time (b/h = 100, (ky, k;) =(2:0, 0-4), Ny =0, a,/a = by/b =05): 1,
p=0752, =100 3, =125

Figure 3 shows central deflection and bending moment as functions of time for a square
plate subjected to a suddenly applied central patch load and either resting on
Pasternak-type or Winkler elastic foundations. The stiffnesses are (k;, k) = (2:0, 0-8) and
(ki, k5) = (20, 0-4) for Pasternak-type elastic foundations and (k;, k,) = (20, 0-0) and
(ki, k) = (1:0, 0-0) for Winkler elastic foundations. It can be seen that the foundation
stiffness has a significant effect on the dynamic response of the plate.

Figure 4 shows the effect of the pulse shape and duration on the dynamic response of
a thick square plate under the loading condition of cases 1-5, i.e., sudden loads, step loads,
triangular loads, sine loads and exponential loads in Table 4, when the plate is supported by
a Pasternak-type elastic foundation. Here (fy/b) \/E/p( = 5-0 and 8-0) indicates pulse
duration.

Figure 5 shows the effect of the loaded area parameter (a;/a = b,/b = 0-3,0-5, and 0-7) on
the dynamic response of a thick square plate subjected to a suddenly applied load and
resting on a Pasternak-type elastic foundation. As expected, these results show that the
central deflections and bending moments are decreased by decreasing the loaded area
parameter.

Figure 6 shows the effect of initial membrane stress (compressive or tensile) on the
dynamic response of a thick square plate subjected to a suddenly applied central patch load
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TABLE 4

The various kinds of pulse shapes of transverse impulsive loads

Case 1 2 3 4 5
Sudden loads Step loads Trianguar Sine loads Exponential
loads loads
F(n) F(1) Fn) F(n) F()
— I 1 1 1
0] :

t t

=
-

f fo I

1-1 i<t sin® 7<
0 F(f):{ tﬂ’ ) _0 F(f):{ t‘,, )
t t>

1 7,
t

0,

N
=

F(LT) — c*ai

0

- =
V
=~

(=]

F@o=1 F(f)={

and resting on a Pasternak-type elastic foundation. Clearly, the in-plane loads have
considerable effects on the dynamic behavior of the plate, but the biaxial load ratio has less
effect.

Figure 7 shows the effect of initial thermal bending stress (go = 2:0 x 103 kN/m?,
E =35GN/m?, T, = 30°C, « = 1-0x 107 %/°C, C = 0-0, + 1-0 and =+ 3:0) on the dynamic
response of a thick square plate subjected to a suddenly applied central patch load and
resting on a Pasternak-type elastic foundation.

Numerical values for some points on the curves analogous to the results of Figures 6 and
7 are listed in Table 5. These numerical results are useful for numerical benchmarking by
others.

Figures 8 and 9 show, respectively, plate width-to-thickness ratio b/h ( = 15-0, 10-0 and
5-0) and plate aspect ratio § ( = 0-75, 1-0 and 1-25) on the dynamic response of a rectangular
plate subjected to a suddenly applied central patch load and resting on a Pasternak-type
elastic foundation. It can be seen that the transverse shear deformation has a significant
effect on the dynamic behavior. Also, it can be seen that the central deflections and bending
moments are increased, but the frequency is decreased by increasing the plate aspect ratio.

In Figures 4-9, the Pasternak-type elastic foundation stiffness is characterized by
(k1, k») = (2:0, 0-4); in Figures 3 and 5-9, the plate is subjected to a suddenly applied central
patch load; in Figures 3 and 4 and 6-9, the loaded area parameter a,/a = b,;/b = 0-5; in
Figures 3-5 and 7-9, biaxial load ratio y = 0-0 and the initial compressive stress N, = 0; in
Figures 3-6 and 8 and 9, the temperature gradient C = 0-0; in Figures 3-7 and 9, the plate
width-to-thickness ratio b/h = 10-0; and in Figures 3-8, the plate aspect ratio ff = 1-0.

6. CONCLUSIONS

Free and forced vibration analysis for a Reissner-Mindlin plate with four free edges
resting on a Pasternak-type elastic foundation has been presented. A new set of admissible
functions, which satisfy both geometrical and natural boundary conditions, is developed for
the free vibration analysis of moderately thick plates with four free edges. On this basis, the
modal superposition approach is used in conjunction with Mindlin-Goodman procedure
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TABLE 5

The dimensionless dynamic deflection (W = W Eah/qob®) and dynamic bending moment

(My = Mya?/qob*h?) at different times (f = (i/b) </ E/p) of square plates; v = 0-15, a/b =1,

b/h =10, (ky, k,) =20, 04), aj/a=by/b =05 go=20x10°kN/m?, T,=30°C,
% =10x10"%/°C

Initially stressed t 2 4 6 8 10 12 14
Ny/(Ny),, =0 W 14266 30003 30633 33105 35822 24291  0-4055
M, 15781 20846 06180 06529 16199  1-8385 0-3109
Ny/(Ny), =—025 W 14550 31921 34012 32578 33371 27614 0-8796
M, 16323  2:5165 14949 06080 09750  2-5918 1-6374
Ny/(Ny),, = 0-25 14 1-3987 2-8474 29084 3-4745  3-5680 1-9965 0-5343
M, 15189  1-7268 01840 10397 16944  0-7610 0-5410
NX/(NX)CY N
=Ny/(Ny),, =025 W 14804  3-3553 36740  3:1620 3-1408  3-1248 1-3001
M, 16662 25204 1-5447 04512 10103  2:9099 1-5053
Initially heated f 2 4 6 8 10 12 14
Cc=10 Iﬁf/ 2:1274 39140 35974 37678 44511 32635 0-8406
My  2:6725 3:5042 1-5397 1-5157  3-1001 3-3152 1-2267
C=-10 W 07259 20865 2:5292  2-8531 27133 15946 —0-0296
M,  0-4837 0-6650 —0-3038 — 0-2098 0-1396 03617 —0-6049

to determine the dynamic response of free edge Reissner—Mindlin plates exposed to
thermomechanical loading. The static bending problem is treated as a limiting case.
A number of issues related to static bending and free vibration of free edge moderately thick
plates with or without elastic foundations have been examined.

Some numerical results are given for the first time and can serve as a benchmark for
further investigations. A parametric study of free edge moderately thick plates resting on
Winkler or Pasternak-type elastic foundations has been carried out. The results presented
herein confirm that the characteristics of dynamic behavior are significantly influenced by
foundation stiffness, shape and duration of impulsive load, loaded area, transverse shear
deformation, plate aspect ratio as well as initial membrane stress.
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APPENDIX A

In equation (34),
a,=[Aoo]. 2a,=[A10 - Anol, a3="[Aos - Aon]s ag=[A1; - Ap],
wi=[11, WS =[wio - Wmol, Wi =1[Wo1 " Woul Wi=[wii - wpl
Vi =101, V& =[VxioVwmod WE=L[0-1 V= [Yir - Yuml,
Vi =101, =001 Ws=D[Vo1V¥youd Va=0[Vyi1 Yyl (Al

where

2m?(— 1)"
Wpo = cos(2mx) + sz,

Em
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2 4m?(— 1y
Yo = 2 sin(2mx) — Mx,
8Em Em
2n?(— 1)
Won = cos(2ny) + Myz,
&n
2Bn . 4Bn?(—1)"
Yyon =——sin(2ny) ———,
gn gn
_ e 2 2.2 _qyntt 2 2.2
Wonn _=D gmivm o )cos(me) +( ) gz,,(rzn + v )cos(2ny)
Vm gmn Vﬁ n gmn
2_1m+n+122 2_1m+n+12
+ cos(2mx)cos(2ny) + (=D pn x? + ( )2 2,
VEmn VB Gun
2 —1 m+ 1 2 2,2
lpxmn = ( ) gr;m(vm + ﬁ " )Sin(2mx)
VIM~gEmn
2 4 —1 m+np2. .2
+ n sin(2mx) cos (2ny) + Mx,
gmn ngn
2= 1)""g, fn(m® + vp?n?) .
= 2
lpymn vﬁznzg,,gm,, Sll’l( ny)
2 4( —1 m+n 2
2P cosamx) sin (2ny) + XD (A2)
Gomn VB G
and
gn=4m*y +1; g, =4 + 15 g = 4m>y + 45707 + 1, (A3)

in which(im,n=1, 2, ...).

APPENDIX B

In equation (35), the elements of a, D, E, F are given by
a=[a; a, a; a,]",

Dll D12 D13 D14
D21 D22 D23 D24
D31 D32 D33 D34
D41 D42 D43 D44
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Ell E12 E13 E14
EZI E22 E23 E24
E31 E32 E33 E34
E41 E42 E43 E44

[Fi; Fip Fiz Fpg
Fyi Fy Fa Fuy
Fi1 Fi Fi3 Fay
Fioi Fao Fuz Fuy

where the row sub-matrix a,,, which are given in equation (A1), contain, in the appropriate
order, the corresponding unknown coefficients. The D,,,,, E,,, and F,,, are, respectively, the
elastic stiffness, the initial stress stiffness and the consistent mass sub-matrix, and their
elements are given as

LT [aE AW A0 OGUE);
(Dyn)ij = J J [ ox Ox +5 dy dy

—7n/2 J—m/2

W W) Wi W),
+Vﬁ< ox 0Oy * oy 0x >

. < Pz a(w;*‘m),) < g R aw;‘:.»)

dy 0x Jy Ox
1 o(wik), o(w¥).
2 () + ) (g QO
y ox 0x

o(wk); o(w);
(R (R Ry )
7 oy y

AWE). Bw*). AWE): A(w*).
+ K2 (Wm)l (:Vn )J + ﬁz (Wm)l (Wn )J dx d_)/,
ox  Ox dy dy

n/2  pm/2 W), a(Wf)j 5 A(wn); a(WrT)j
(En)ij = f J [ ax ox " dy 0y e

—n/2 J—m/2

/2 /2
(Fukiy = f f [O(nE)s (w); + WENWE), + WENWE), 1 dxdy,  (B2)

—n/2 J—m/2

in which m, n =1, ..., 4; and the i, j is the index of the sub-matrices of w};, W%, and V3,
Note that equations (B2) and (D2) can be expressed in explicit forms as a set of long
equations but, for the sake of brevity, the detailed expression are not shown.
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APPENDIX C

In equation (39),

I v Si1
BT 41 +v) S5y

Si1 = 969°A, + 4B*[24y (s + 4,) + 64, + y(48K, — 12K )]
+ BPI24(1 + 49)0n + 48(1 + ) K, — (1 + 82K, ] — (1 + 49) 72K,

Sa3 =240 + 4,) + 24B%(1 + BHK, — (1 + fHn*Ky,

L+ 40+ ) v g4 + 4B (1 + vB?)
11 — Vh1 13> 12 — Vﬁzhl 13>
282 1 2 1
o = ——0u — A1 , o = - o - B
14 vhy 21+ P vB2hy T 2B%(1 4 v)
Loy 2
21 — Vhl 13> 23 — hl 13>
4p2 . 2(1 + vp?)
Opg =——0 —, U3y = U
24 Vi, 13 (1+v)’ 32 vBh, 13>
2 1
33 =—— 013, A15 = — %13 — ,
33 h1 13> %15 vﬁ2h1 13 2/32(1+v)
hy =1 + 4y + 4pp>. (C1)
APPENDIX D

In equation (40),

Tq = q + M"[p11€08(2x) + 712 €08(2y) + 713 €08(2x) cos(2y) + 71ax> + y15Y + V16l
1 ,
Y11= — ; [(4yiy + 7K1 + 49K, + 4oy — 20054 ],

1
Y12 = — ; [(4yp*0y + 9Ky + 49B°K, + 415 — 2Pots,],

1 . ,
Y1z = — ) {[4yA, + 4pB*2, + 7Ky + 4y(1 + BHK, + 41 + B*)]oys — 20003 — 2Puzs ),
V1a = — K014, 715 = — Kyoq5,

1 )
Y16 = ; [2(pAx + 7Kz + Doy + 282 (024, + 7Ky + Dotys + 054 + Porss] (D1)
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and in equation (43)

/2 /2 -
%m=f j T 2 ) Wi, 1) dx doy,

—-n/2 J—7m/2

/2 /2 N R ~
m=—J f [O2W (5, 1) Wi 1) + Falx, 3) W ) + F,5, 1) Wy, )] de dy,

—n/2 J—7/2

n/2 /2
Kn = f j [O* (W (X, ) + (P, YD) + (P (x, y)*] dx dy. (D2)

—n/2 J—7m/2
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