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An energy-based numerical model is developed to investigate the in#uence of cracks on
structural dynamic characteristics during the vibration of a beam with open crack(s). Upon
the determination of strain energy in the cracked beam, the equivalent bending sti!ness over
the beam length is computed. The cracked beam is then taken as a continuous system with
varying moment of intertia, and equations of transverse vibration are obtained for
a rectangular beam containing one or two cracks. Galerkin's method is applied to solve for
the frequencies and vibration modes. To identify the crack, the frequency contours with
respect to crack depth and location are de"ned and plotted. The intersection of contours
from di!erent modes could be used to identify the crack location and depth.
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1. INTRODUCTION

For vibration analyses of cracked beams and possible crack detection, the fracture
mechanics procedure is generally preferred [1]. According to this procedure, the crack
occurring in a beam would reduce the local sti!ness at the location of the crack. In using the
fracture mechanics model, the local sti!ness is calculated using Castigliano's second
theorem as applicable to fracture mechanics formulations. The calculated local sti!ness is
then modelled by a #exural spring for the bending vibration of a cracked beam. To establish
the vibration equations, the cracked beam was represented by two substructures connected
by a #exural spring. Irwin [2] was the "rst to relate the local #exibility of a cracked beam to
the stress intensity factor. Okamura et al. [3] determined the local #exibility for the axial
and bending behaviors in a rectangular beam, separately. They examined the variation of
the "rst natural frequency of a free}free beam as a function of the crack depth. Ju et al. [4]
considered a beam in pure bending and used the results in connection with damage
detection. Dimarogonas and Paipetis [5] established a 5]5 #exibility matrix to model the
vicinity of a crack; torsion was not included in the model. Later Papadopoulos and
Dimarogonas [6] extended the matrix formulation by adding torsion resulting in a full 6]6
#exibility matrix. A comprehensive review on vibrations of cracked structures can be found
in reference [7] by Dimarogonas.

Some researchers have used the variational principle to develop vibration equations for
cracked beams. Christides and Barr [8] "rst proposed an exponential-type function (crack
disturbance function) to model the stress/strain variation around the crack zone, in which
one parameter was to be determined by experiments. Based on the assumed stress, strain
and displacement expressions, the vibration equations of beams with symmetrical cracks
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were derived using the Hu-Washizu variational principle. Shen et al. [9, 10] followed
a similar procedure to investigate the vibration of cracked beams with single or symmetrical
cracks, the solution to which was obtained using Galerkin's method with many terms.
Recently, Chondros and Dimarogonas [11] have generated some solutions for the crack
functions in vibrations of a cracked cantilever beam using the fracture mechanics principle
and Castigliano's theorem. However, according to their computations, one crack
disturbance function gets cancelled and disappears in the "nal vibration equation, while the
other function seems to be constant along the beam; this function also tends to in"nity
along the neutral axis. Such crack disturbance functions could result in unrealistic
displacements/stresses, which would not represent the displacements/stresses due to
a crack. Later Chondros et al. [12] obtained the crack function for a simply supported beam
(varying as a function of its distance from the crack), but the crack disturbance function is
still in"nite at the neutral axis, which would lead to in"nite displacements/stresses.

This paper computes the change of strain energy due to the occurrence of a crack under
dead-load (constant load) assumption, used in the energy balance approach to model crack
growth. It considers the strain energy distribution along the cracked beam length by
assuming an approximate function, which closely represents the high strain energy
concentration around the crack tip. By modelling the strain energy variation along the
beam length, the continuous equivalent bending sti!ness and equivalent depth of the
cracked beam are derived. Thereafter, the vibration for a beam with varying moment of
inertia is obtained. The crack is assumed to be always open during vibrations. The natural
frequencies are obtained using a four-term Galerkin's method. The frequency contours are
plotted for crack detection.

2. ENERGY BALANCE IN A CRACKED BEAM UNDER DEAD-LOAD SITUATION

If the crack has propagated Da, under a constant bending moment (due to dead-load
loading assumption), the applied moment will perform some work= which will not only
Figure 1. Load}displacement response as the crack grows under the dead-load loading.
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assist the crack growth but also increase the structural strain energy [13]. Since the
externally applied moment remains unaltered due to the crack growth Da, using
Clapeyron's theorem [13], the work= is twice the increase of elastic strain energy, and the
"nal strain energy of the system is increased. Figure 1 shows the load}displacement
response under dead-loading assumption for crack growth from a

1
and a

2
. The energy

before crack growth is represented by the area (OAC) and after the growth by the area
(OBD). During crack growth (under the constant load P) the load P performs work given by
the area (ABCD). The increase of strain energy would by (OBD)!(OAC)"(ABCD)/2.
Mathematical expressions are as follows:

="E
c
#D;"2D;, E

c
"D;, (1)

where E
c

is energy for crack growth, and D; the increase of elastic strain energy in
a cracked beam. The "nal strain energy of the cracked beam is

;
c
";#D;";#E

c
, (2)

where ; is the strain energy of the beam prior to crack growth.

3. BENDING STIFFNESS OF THE BEAM WITH A CRACK

For the uncracked beam, subjected to a bending moment M, the strain energy in the
beam is given by
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1
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When a crack is formed on one side of the beam, and grows from zero to a under constant
external bending moment, the energy consumed for crack growth, based on fracture
mechanics, is
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where b is the width of the beam and G is the strain energy release rate. For the transverse
vibration of the beam, the crack is mainly subjected to direct bending stresses and the shear
stresses can be neglected; therefore, only the "rst mode crack exists. This gives the strain
energy release rate as

G"

K2
l

E
, (5)

where K
l

is the stress intensity factor for the "rst mode crack, and E is the Young's
modulus. For a solid rectangular cross-section beam of depth h and width b, K

l
is given

as [13]
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where h is the depth of the beam; and for a/h(0)6,
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#14A

a

hB
4
. (7)

Finally, using equation (4) the energy consumed in generating the crack becomes

E
c
"D(a)M2, (8)

where

D (a)"
18n[F (a)]2a2

Ebh4
. (9)

If EI
c
is the bending sti!ness of the cracked beam with the crack being always open, the "nal

strain energy in the cracked beam could be alternatively expressed as

;
c
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where I
c
is the moment inertia of the cracked beam. It must be remembered that under the

dead-load assumption, the external dynamic moment applied to the beam is constant over
the length of the beam. For other cases, a suitable variation of bending moment along the
length could be considered and the derivations modi"ed.

From fracture mechanics considerations, the stresses/strains are highly concentrated
around the crack tip, and reach the nominal stress at a location far away from the crack. So
it can be assumed that the increase of strain energy due to crack growth, under constant
applied moment, is concentrated mainly around the crack region. In order to represent
mathematically the strain energy variation along the cracked beam length, the distribution
of E

c
(equal to the increase of strain energy) along the beam is postulated to be similar to

Q(a, c)

1#((x!c)/k(a)a)2
, (11)

where Q(a, c) and k (a) are terms to be determined such that
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and c is the distance to the crack location from one end of the beam. Expression (11) has the
maximum value at the crack location (x"c) and approaches zero far away from the crack.
This makes the strain energy to be concentrated largely around the crack region. From
equations (8) and (12), one obtains
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k (a)a[arctan((l!c)/Mk(a)aN)#arctan(c/Mk(a)aN)]
. (13)

Substitution of equations (3), (10) and (12) into equation (2) yields
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From the above equation, the modi"ed bending sti!ness of the cracked beam is obtained as
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, (15)

where
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At the location of crack, i.e., at x"c, one has
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where h
c
is the equivalent height of the beam at the position of the crack. The EI

c
given in

equation (15) and the equivalent height (h
eq

), computed thereby, will vary along the length
of the beam. Using equations (15) and (18), one obtains
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[The quantity Marctan((1!c)/Mk(a)aN)#arctan(c/Mk(a)aN)N is approximately equal to
n when the crack is not near the ends of the beam]. It can be seen that if no crack is present
in the beam, i.e., a"0, then the parameters D (a)"0, Q(a, c)"0, R(a, c)"0 and k (a)"0;
from equation (15) the equivalent sti!ness EI

c
becomes the sti!ness of the uncracked beam.

The variations of normalized equivalent sti!ness and normalized equivalent height of the
cracked beam (along its length) are shown in Figure 2 [calculated from equation (15)].

To verify the reasonableness of energy distribution given in equations (2) and (11), the
strain energy along the x-axis in a cracked plate (width of 40 units and unit thickness) under
Figure 2. Variation of (a) normalized bending sti!ness and (b) depth of a beam with a crack (crack location
c/l"0)5): **, a/h"0)05; - - - - -, a/h"0)25; } ) } ) } ) , a/h"0)5.



Figure 3. Energy distribution in x direction for a "nite cracked plate (;*the strain energy over plate width,
E*the elastic modulus): **, elastic fracture mechanics theory; - - - - - -, theory developed in this paper.
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uniform tension stress (plane stress) is calculated based on equations (2) and (11). At the
same time, strain energy is computed numerically using Westergaard's method (complex
functions) [14] in linear elastic fracture mechanics. The two curves of energy distribution
are plotted in Figure 3, which are close to one another except near the crack zone. It can be
seen from Figure 3 that, outside the crack in#uence zone, the energy distribution is nearly
constant, and the increase of strain energy will be nearly zero (outside the crack in#uence
zone), as is shown by both elastic fracture mechanics procedure and our procedure
[assumption in equation (11)]. Thus, the increase of strain energy under dead-load is quite
concentrated around the crack zone. Based on elastic fracture mechanics, the stresses near
the crack tip tend to be very large or in"nite, so does the strain energy. But, in reality,
stresses and strain energy cannot approach in"nity, and consequently plastic deformation
occurs around the crack tip; therefore, the part of the increased strain energy under the
dead-load is stored as plastic energy at the crack tip. This plastic strain energy is di$cult to
calculate. By using equations (11) and (12), the increase of strain energy is assumed to be
concentrated around the crack tip, and the total energy increase is set to the correct value.
The "nal strain energy distribution would then be a reasonable one. From Figure 3, the
di!erence in energy between the exact solution and our approximate solution is marginal,
and the energy concentration around the crack tip and the total increase of energy are also
guaranteed by equations (11) and (12); therefore, the crack function represented by equation (11)
is considered to be valid for the problem considered in this paper.

4. FORMULATIONS FOR A BEAM WITH TWO CRACKS

Under a constant external bending moment M, the energy supplied for two crack
growths is
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where a
1

and a
2

are the depths of two cracks, and G
1

and G
2

are the strain energy release
rates for the two cracks. Similarly, for the transverse vibration of the beam, the "rst mode
crack e!ect is dominant; and only the in#uence of the "rst mode crack is considered in this
study,
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The two stress intensity factors are given as
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Finally, equation (20) becomes
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Following the earlier derivations given in equation (8), for each crack growth, the energy
consumed can be expressed by
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If the two cracks are not very close to each other so that the stress "eld for each crack could
be treated separately using fracture mechanics theory, then the increase of strain energy due
to crack growths under constant external bending moment could be assumed to be
distributed in the beam according to the functions (similar to the case for one crack)
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with c
1

and c
2

being distances to the crack locations from one end of the beam. Using
equations (26) and (28), one obtains
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and
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Substitution of equations (3), (10), (20), (24) and (28) into equation (2) yields
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From equation (31), the bending sti!ness of the beam with two cracks is obtained as
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At the two crack locations, i.e., at x"c
1

and c
2

one has
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where EI
c1

and EI
c2

are the equivalent bending sti!nesses at each of the crack positions
respectively. Using equations (32) and (35), one obtains
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[It is to be noted that D c
1
!c

2
D<a

1
or a

2
when the two cracks are assumed to be not close

together.]
The variations of normalized equivalent sti!ness and depth (along the beam length) for

two cracks are shown in Figure 4. It can be seen that the e!ect due to crack interaction is
marginal unless the crack becomes large, viz., a/h'0)5. For more cracks on the beam, the
same procedure could be utilized to compute the bending sti!ness of the cracked beam, if
the cracks do not interact considerably with one other.

5. TRANSVERSE VIBRATION EQUATIONS FOR CRACKED BEAMS

For an Euler beam, the vibration equation can be expressed using Newton's approach as
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Figure 4. Variation of (a) normalized bending sti!ness and (b) depth of a beam with two cracks (crack locations
c
1
/l"1/3, c

2
/l"2/3): **, a/h"0)05; - - - - -, a/h"0)25; } ) } ) } ) , a/h"0)5.
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where m is the mass density along the beam length; in spite of the crack, the mass m per unit
length will remain constant throughout the length of the beam.

Let w"=(x)H (t), and substituting into the above equation (37), one obtains the
characteristic equation as
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dx2 D#mu2
c
="0, (38)

where u
c
is the natural frequency of the cracked beam.

To solve for natural frequencies and mode shapes, a four-term Galerkin's method is used.
For a simply supported beam, the trial functions are selected as
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The above four functions are the exact functions of the uncracked simply supported beam
for the "rst four modes. For a "xed}"xed beam, the trial functions are selected [15], from
the exact "rst four mode functions of the uncracked "xed beam, as
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TABLE 1

Frequency comparison for 4 and 8 terms Galerkin1s method (a/h"0)25)

First freq. Second freq. Third freq. Fourth freq.
Terms (*JEI/oA) (*JEI/oA) (*JEI/oA) (*JEI/oA)

Simply supported 4 1)092224 4)337546 9)732307 17)368636
beam 8 1)092097 4)336085 9)728025 17)362530

Relative di!.
(%)

0)012 0)034 0)044 0)035

Fixed 4 2)483754 6)812762 13)281186 21)995036
beam 8 2)483727 6)811426 13)274610 21)985253

Relative di!.
(%)

0)0011 0)02 0)05 0)0445

TABLE 2

Frequency comparison for 4 and 8 terms Galerkin1s method (a/h"0)5)

First freq. Second freq. Third freq. Fourth freq.
Terms (*JEI/oA) (*JEI/oA) (*JEI/oA) (*JEI/oA)

Simply supported 4 1)076682 4)188186 9)377521 16)952972
beam 8 1)074895 4)169363 9)332272 16)895126

Relative di!.
(%)

0)166 0)45 0)48 0)34

Fixed beam 4 2)471082 6)698606 12)891241 21)511597
8 2)470662 6)681268 12)820941 21)421874
Relative di!.
(%)

0)017 0)26 0)55 0)42
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To verify the convergence of Galerkin's method, more terms of trial functions are also used
in the calculations. Tables 1 and 2 show the frequencies obtained by the four terms
Galerkin's method and eight terms Galerkin's method for a cracked beam (one crack) with
a crack depth ratio of a/h"0)25 and 0)5, respectively. The beam length is 3 m and the crack
is located at c/l"0)8. The results indicate that the four terms Galerkin's method has given
acceptable frequencies, with minimal errors.

6. EXPERIMENTS AND COMPARISON WITH THEORY

In order to verify the theory, vibration experiments for the cracked beam were carried
out. The prismatic beam made of aluminum had a span length of 650 mm and a rectangular
cross-section of 25)4]25)4 mm. Young's modulus of elasticity was E"62)1 GPa, and the
material density was 2700 kg/m3. The crack was introduced by making "ne saw cuts at the
middle of the beam and perpendicular to the longitudinal axis; this allowed the crack to
remain open always. The beam was simply supported at two ends as shown in Figure 5. The
excitation was carried out by an electrodynamic shaker at the center of the beam. Seven
accelerometers were evenly placed on the beam. Dual Channel Signal Analyzer (type 2032)
and the STAR analysis software [16] were used to extract the experimental results.



Figure 5. Simply supported experimental beam.

Figure 6. Comparison of experimental and theoretical values of frequency ratio: }} } }, reference [8];**, test;
} ) } )}, theoretical.
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The beam without crack was "rst tested; then the crack was made in the beam from crack
ratio a/h"0)1 to 0)5. For each crack ratio the beam was tested, and the frequency ratios,
i.e., the ratio of the frequency of the cracked beam to that of the uncracked beam, were
calculated. The frequency ratio against the crack ratio ("rst mode) is shown in Figure 6 and
compared with our theoretical results and experimental data from Christides and Barr [8].
It can be seen that the theoretical and experimental results show a good agreement; the test
results seem to be slightly lower than the theoretical values.

7. RESULTS AND DISCUSSIONS

The natural frequencies and mode shapes for transverse vibration of the cracked beams
are calculated using the MATLAB program. The crack is assumed to be always open. All
beams considered here are of a solid rectangular cross-section, with a depth of 0)2 m and
a length of 3 m. For the simply supported beam with a crack, the "rst four frequencies are
obtained for di!erent crack depths and locations. When the crack is located at the midpoint
of the beam, the normalized frequencies are shown for di!erent crack depths in Figure 7.
The frequencies decrease by about 11)6 and 8)2% for the "rst and third modes as the crack
grows up to half the beam height. However, the frequencies change marginally for the
second and fourth modes; this is due to the fact that the crack at the midpoint of the beam is
located at the vibration nodes of the second and fourth modes. In reference [8], the
fundamental frequency is shown to decrease by about 13%, theoretically, and 12%,



Figure 7. Variations of the "rst four frequencies as a function of crack depth for a simply supported beam (crack
location c/l"0)5, u

c
/u*frequency ratio): (a) mode one, (b) mode two, (c) mode three, (d) mode four.

Figure 8. Variations of the "rst four frequencies as a function of crack location for a simply supported beam
(crack depth ratio a/h"0)25): (a) mode one, (b) mode two, (c) mode three, (d) mode four.
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experimentally, for a center-cracked simply supported beam with a crack depth of half the
beam depth; these values are very close to the present results. Figure 8 shows the
normalized frequencies for various crack locations when the crack depth is kept constant at
a/h"0)25. As indicated in the "gure, the crack occurring near the ends of the beam does not
change the frequencies. For the "rst mode, the maximum change of frequency takes place as
the crack occurs at the center. Generally, both the crack location and crack depth in#uence
the natural frequencies of the cracked beam. The normalized frequencies versus crack



Figure 9. Frequencies versus crack locations and depths for a simply supported beam; (a) mode one, (b) mode
two, (c) mode three, (d) mode four.

Figure 10. Variation of frequency as a function of crack depth for a simply supported beam with two cracks
(c

1
/l"1/3, c

2
/l"2/3): (a) mode one, (b) mode two, (c) mode three, (d) mode four.
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location and crack depth are shown in a three-dimensional plot in Figure 9. From these
"gures, it can be seen that the crack location and crack depth ratios are directly related to
the frequency ratios. For a simply supported beam containing two cracks, which are located
at c

1
/l"1/3 and c

2
/l"2/3 from the left end, the normalized frequencies are shown in

Figure 10 as both cracks grow to a depth of a/h"0)5. The third mode has the smallest



Figure 11. Variations of the "rst four frequencies as a function of crack depth for a "xed}"xed beam (crack
location c/l"0)5): (a) mode one, (b) mode two, (c) mode three, (d) mode four.

Figure 12. Variations of the "rst four frequencies as a function of crack location for a "xed}"xed cracked beam
(crack depth ratio a/h"0)25): (a) mode one, (b) mode two, (c) mode three, (d) mode four.
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change of frequencies (about 5%), while the other modes have much larger changes, which
are 15)8, 17)5 and 13%, respectively; this is due to the fact that the nodes for the third mode
are located near the crack location.

For a "xed}"xed beam containing a crack, Figure 11 shows the normalized frequencies
for di!erent crack depths when the crack is located at the midpoint of the beam. The
changes of frequencies are similar to that for a simply supported beam. Figure 12 indicates



Figure 13. Frequencies versus crack depths and locations for a "xed}"xed beam: (a) mode one, (b) mode two,
(c) mode three, (d) mode four.
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the #uctuation of the normalized frequencies with crack depth a/h"0)25 as the crack
location moves along the beam. Unlike the simply supported beam, the maximum changes
of frequencies for the "rst and second modes occur near the ends of the beam. The reason is
that the presence of a crack at these locations would reduce the sti!ness near the supports
(the boundary constraints). The three-dimensional plot of normalized frequency versus
normalized crack location and depth are shown in Figure 13.

8. CRACK IDENTIFICATION PROCEDURE

As shown above, both crack location and depth have in#uences on the frequencies of the
cracked beam. It turns out that one frequency could correspond to di!erent crack depths
and locations, as can be seen from Figures 9 and 13. Based on this, the contour line which
has the same normalized frequency change (the same frequency change resulting from
di!erent combinations of crack depths and locations) can be plotted in a "gure having the
crack location and depth as its axes. Figure 14 shows contours for four modes of the simply
supported beam with one crack, and Figure 15 shows contours for four modes of the
"xed}"xed beam with one crack. To be clear and readable, the "gures for each mode
include only contours of two normalized frequency changes. The 0)98 contour means that
the points on the curve have 2% decrease of frequency compared to the uncracked beam.
The location and depth corresponding to any point on the curve would become the possible
crack location and depth. A crack should and must belong to one contour line for each
mode. The contour lines for di!erent modes could be plotted together, and the intersection
point(s) would indicate the crack location and crack depth. Since the frequencies could be
measured accurately for low modes (for frequencies) and the contours for low modes tend to
be simple, the contours for the "rst and second modes are plotted together to obtain the
intersection point(s). If more than one intersection point is obtained, the contour for the
third mode is also used to get the "nal point, which would indicate the crack location and



Figure 14. Frequency contours for a simply supported beam with a single crack: (a) mode one, (b) mode two,
(c) mode three, (d) mode four: **, u

c
/u"0)95, - - - - - , u

c
/u"0)98.

Figure 15. Frequency contours for a "xed}"xed beam with a single crack: (a) mode one, (b) mode two, (c) mode
three, (d) mode four: **, u

c
/u"0)96, - - - - - -, u

c
/u"0)99.
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depth. If the crack location and vibration node coincide for a mode, the contour tends to
disappear and no intersections are obtained; then the next mode is used. Basically, the "rst
four frequencies are su$cient to identify the crack in the beam.

From the results in the above section a crack, with a/h"0)25, located at the middle of
a simply supported beam, has the normalized frequencies of 0)9706 (i.e., a 2)94% decrease of



Figure 16. Crack identi"cation by frequency contours from three di!erent modes in a simply supported beam:
**, u

c
/u"0)9706; - - - - -, u

c
/u"0)9972; } ) } ) } )}, u

c
/u"0)9744 (deduction: a/h"0)25, c/l"0)5).

Figure 17. Crack identi"cation by frequency contours from three di!erent modes in a simply supported beam:
**, u

c
/u"0)9947; - - - - -, u

c
/u"0)9979; } ) } ) } )}, u

c
/u"0)9978 (deduction: a/h"0)1, c/l"0)4 or 0)6).
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frequency) for the "rst mode, 0)9744 for the third mode, and shows very small changes in
frequencies for the other two modes (0)9972 and 0)994). The contour with the value of 0)9706
is retrieved from the "rst mode and is plotted in Figure 16 . The contour with the value of
0)9744 from the third mode is shown in the same "gure. There are three intersection points
for these two contours. Therefore, the contour from the second mode is also used to
uniquely identify the crack location and depth. Three contours will give one intersection,
which indicates the crack depth and location very well. To consider the situation of
a non-central crack, the case of a simply supported beam with a crack depth a/h"0)1 and
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located at c/l"0)4 is illustrated in Figure 17. The changes in the normalized frequencies for
the above crack are, respectively, 0)9947, 0)9979 and 0)9978, for the "rst three frequencies.
The 0)9947 contour for the "rst mode, 0)9979 contour for the second mode and 0)9978
contour for the third mode are shown in Figure 17. The intersection points indicate a crack
depth a/h"0)1 and crack locations of c/l"0)4 or 0)6. Due to structural symmetry in the
simply supported beam, the three contours would give two probable crack locations. The
actual location can be identi"ed by adding an o!-center mass to the beam, which would
make the vibration modes asymmetric.

9. CONCLUSIONS

The variation of the equivalent bending sti!ness and depth (along the length) for
a cracked beam are obtained using an energy-based model. Four modes are obtained for
a simply supported beam and a "xed}"xed beam by selecting proper Galerkin's functions.
Generally, the crack size will change the frequencies; however, the changes of frequencies are
also dependent on the crack location. If the crack location coincides with the vibration node
of one mode, the frequency for that mode remains almost unchanged. The crack near the
ends would modify the boundary constraints, and thus decrease the frequencies
signi"cantly, as shown for the case of the "xed}"xed beam. The contour lines of frequency
can be plotted for various modes for a beam containing the crack. The existing crack (in the
beam) will belong to one particular contour in each mode. When these particular contours
from di!erent modes are plotted together, the intersection point(s) of the contours would
provide the location and depth of the crack. Thus, the identi"cation procedure developed in
this study proves to be an elegant and simple one.
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