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1. INTRODUCTION

In this paper direct and inverse time-domai8n scattering of ultrasonic pulses from a rigid,
homogeneous and isotropic porous medium are investigated. The Green function of the
wave propagation of a transient "eld in one-dimensional porous media is established. The
solutions of direct and inverse problems are given in the time domain by using the concept
of fractional derivatives. The viscous and thermal losses of the medium are described by the
Johnson et al. and Allard models [1, 2] modi"ed to be usable in the time domain.
Experimental and numerical results are given as a validation of our model.

2. MODEL

The determination of the properties of a medium from waves that have been re#ected by
or transmitted through the medium is a classical inverse scattering problem. Such problems
are often approached by taking a physical model of the scattering process generating
a synthetic response for some assumed values of the parameters, adjusting these parameters
until reasonable agreement is obtained between the synthetic response and the observed
data. Most publications concerned with such acoustical investigations are devoted to
frequency-domain methods. However, because of the transient nature of signals and to
avoid the computation of numerous Fourier transforms, it is more appropriate to compare
the synthetic signal and the data in the time domain. There are several other relevant
reasons for dealing with time-domain techniques: (i) they allow the rapid acquisition of data
over a large band width; (ii) they allow the separation of di!erents events by time gating in
the time domain; (iii) a time-domain model is often the most natural description of the way
in which the actual experiment is performed.

In the acoustics of porous materials, one distinguishes two situations according to
whether the frame is moving or not. In the "rst case, the dynamics of the waves due to the
0022-460X/01/270359#08 $35.00/0 ( 2001 Academic Press



360 LETTERS TO THE EDITOR
coupling between the solid skeleton and the #uid is well described by the Biot theory [3, 4].
In air-saturated porous media the structure is generally motionless and the waves
propagate only in the #uid. This case is described by the model of an equivalent #uid which
is a particular case of the Biot model, in which the interactions between the #uid and the
structure are taken into account in two frequency-dependent response factors: the dynamic
tortuosity of the medium a (u) given by Johnson et al. [1] and the dynamic compressibility
of the air included in the porous material b (u) given by Allard [2]. In the frequency domain,
these factors multiply the density of the #uid and its compressibility respectively and
represent the deviation from the behaviour of the #uid in free space as the frequency
increases. In the time domain, they act as operators and in the high frequency
approximation their expressions are given by Fellah and Depollier [5] as
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In these equations, d (t) is the Dirac function, Pr is the Prandtl number, g and o
f

are
respectively the #uid viscosity and the #uid density and c is the adiabatic constant. The
relevant physical parameters of the model are the tortuosity of the medium a

=
and the

viscous and thermal characteristic lengths K and K@ introduced by Johnson et al. [1] and
Allard [2]. In this model t~1@2 is interpreted as a semi-derivative operator following the
de"nition of the fractional derivative of order l given by Samko et al. [6],
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where C (x) is the gamma function.
In this framework, the basic equations of the model can be written as
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where * denotes the time convolution operation, p is the acoustic pressure, v is the particle
velocity and K

a
is the bulk modulus of the air. The "rst equation is the Euler equation, and

the second one is a constitutive equation obtained from the equation of mass conservation
associated with the behaviour (or adiabatic) equation.

For a wave propagating along the x-axis, these equations become
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In these equations the convolutions express the dispersive nature of the porous material.
They take into account the memory e!ects due to the fact that the response of the medium
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to the wave excitation is not instantaneous but needs more time to become e!ective. The
retarding force is no longer proportional to the time derivative of the acoustic velocity but is
found to be proportional to the fractional derivative of order 1

2
of this quantity. This occurs

because the volume of #uid participating in the motion is not the same during the whole
length of the signal as it is in the case of a fully developed steady #ow. The phenomenon may
be understood by considering such a volume of #uid in a pore to be in harmonic motion. At
high frequencies, only a thin layer of #uid is excited: the average shear stress is high. At
a lower frequency, the same amplitude of #uid motion allows a thicker layer of #uid to
participate in the motion and consequently, the shear stress is less. The penetration distance
of the viscous forces and therefore the excitation of the #uid depends on frequency. In the
time domain, such a dependence is associated with a fractional derivative.

3. DIRECT PROBLEM

The direct scattering problem is that of determining the scattered "eld as well as the
internal "eld, that arises when a known incident "eld impinges on the porous material with
known physical properties. To compute the solution of the direct problem one needs to
know the Green function of the modi"ed wave equation in the porous medium. In that case,
the internal "eld is given by the time convolution of the Green function with the incident
wave and the re#ected and transmitted "elds are deduced from the internal "eld and the
boundary conditions.

The generalized lossy wave equation in the time domain is derived from the basic
equations (5) and (6) by elementary calculation in the form

L2p

Lx2
!A

L2p

Lt2
!B P

t

~=

L2p/Lt@2

Jt!t@
dt@!C

Lp

Lt
"0, (7)

where the coe$cients A, B and C are constants respectively given by
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The "rst one is related to the velocity c"1/Jo
f
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of the wave in the air included in the

porous material. a
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appears as the refractive index of the medium which changes the wave
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in the porous medium. The other

coe$cients are essentially dependent on the characteristic lengths K and K@ and express the
viscous and thermal interactions between the #uid and the structure. The constant
B governs the spreading of the signal while C is responsible for the attenuation of the wave.
Obviously, a knowledge of these three coe$cients allows the determination of the
parameters a

=
, K and K@. One way to solve equation (7) with suitable initial and boundary

conditions is by using the Laplace transform. The approach is quite simple although the
inverse Laplace transform requires tedious calculus [6]. A suitable setting for the
introduction of the time-domain solution of the modi"ed wave propagation equation (7) is
provided by the following model. Consider a homogeneous porous medium which "lls the
half space x*0 and an incident signal gi(t) which impinges normally on the surface x"0
from the left at time t"0. For porous media having a high porosity like plastic foams, the
re#ected signal can be neglected. These materials have such a small amount of rigid frame
that the incident wave does not feel its e!ects. In that case, the direct problem lies in "nding
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the solution of equation (7) with the following boundary and initial conditions
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The initial conditions mean in physics that the medium is idle for t"0. The solution of the
propagation equation (7) is given by the convolution of the Green function G(x, t) with the
input signal gi(t),
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Within the porous medium, the Green function of the direct problem is given by the
expression
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where h(q, m) is of the form

h (q, m)"!

1

4n3@2

1

J(q!m)2!x2/c2

1

m3@2 P
1

~1

expA!
s (k, q, m)

2 B (s(k, q, m)!1)
kdk

J1!k2
,

(12)

with the notations s(k, q, m)"(DkJ(q!m)2!x2/c2#b@ (q!m))2/8m, b@"Bc2Jn,
c@"C.c2 and D"b@2!4c@. It is easy to show that this solution is continuous on the surface
x"0 of the porous material:
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As an application of the model, some numerical simulations are compared to
experimental results. The simulated signals are computed from equation (10) in which gi (t)
is the signal given out by the transducer. The experimental data are deduced from the
transmitted "eld scattered by a slab of plastic foam of "nite depth 0)x)¸. In dealing
with a slab of high porosity foam, as already mentioned above, the signals re#ected by the
front wall (x"0) and by the back wall (x"¸) of the slab can be neglected. Thus, near the
back wall, the signal propagating in the foam is nearly identical to the transmitted one
p(¸!e, t)"gt(¸#e, t). For foams having low porosity this approximation breaks down
and in that case, re#ected signals must be taken into account [7, 8]. Experiments are
performed in air with two broadband Panametrics V389 piezoelectric transducers having
a 200 kHz central frequency in air and a bandwidth at 6 dB extending from 60 to 420 kHz.
Pulses of 900V are provided by a 5058PR Panametrics pulser/receiver (see Figure 1).
Received signals are ampli"ed up to 90 dB and "ltered above 1 MHz to avoid



Figure 1. Experimental set-up of the ultrasonic measurements.

Figure 2. Incident signal given out by the transducer.
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high-frequency noise. Figure 2 shows the incident signal given out by the transducer. In
Figure 3, experimental and simulated results are presented for two plastic foams F

1
and

F
2

having di!erent #ow resistivities. The parameters of the foam F
1

are: thickness 5 cm,
a
=
"1)055, K"234 lm, K@"702 lm, #ow resistivity p"9000 Nm~4 s and porosity

/"0)97; those of the foam F
2

are: thickness 1)1 cm, a
=
"1)26, K"60 lm, K@"180 lm,

p"38 000Nm~4 s and /"0)98. The good agreement for foams with low or high #ow
resistivity, especially for the maximum value of their amplitudes, may be regarded as being
in support of the quite realistic assumption about the replacement of the transmitted signal



Figure 3. (a) Experimental (solid line) and simulated signals (dashed line) for the foam F1; (b) experimental (solid
line) and simulated signals (dashed line) for the foam F2.
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by the internal one. The slight di!erence observed between the two curves is probably due
to experimental measurements rather than to the lack of re#ection on the walls of the slab.

4. INVERSE PROBLEM

The interior of the slab of porous material is characterized by three parameters, a
=

,
K and K@, the values of which are crucial for the behaviour of the sound waves. So, it is of
some importance to work out new experimental methods and e$cient tools for their
estimation. Therefore, a basic inverse problem associated with the slab may be stated as
follows: from the measurements of the transmitted signals outside the slab determine the
parameters of the medium. As shown in section 2, the solution of the direct problem can be
considered as a three-parameter family of functions (the coe$cients A, B and C can be
expressed in a

=
, K and K@). The problem of "nding the values of the parameters of the slab

can be formulated as a "tting problem: "nd the values of the parameters a
=

, K and K@ such
that the transmitted signal describes the scattering problem in the best possible way (e.g., in
the least-squares sense).

The inverse problem is to "nd values of coe$cients a
=

, K and K@ which minimize the
function
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where gt(t) and p (¸, t) are respectively the experimental transmitted signal, and the solution
of the wave equation (10) near the back wall of the slab, and ¹ is the length of the signal.



Figure 4. (a) Experimental (solid line) and simulated signals (dashed line) with the parameters given by the
Leclaire method [9] for the foam F3; (b) experimental (solid line) and simulated signals (dashed line) with the
parameters given by the authors' method.
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However, because of the non-linearity of the equations and of the numerous local
minima, the solution of the inverse problem by the conventional least-squares methods is
tedious. In our case, one can seek the numerical solution which minimizes the ; (A, B, C)
de"ned by
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represents the discrete set of values of the transmitted signal and
p(x, t

i
)
i/1,2,2,N

represents the discrete set of values of the solution p (x, t) as a function of A,
B and C.

The values of the parameters of the material given by the inverse problem are a
=
"1)062,

K"319 lm and K@"957 lm. Moreover, for the materials under consideration, the
merely slight change of agreement between measurement and simulation under variations
of the coe$cient C shows that thermal e!ects are irrelevant for the estimation of the
parameters, the best "t being obtained for K@+3K.

Figure 4 shows the experimental signal transmitted through the plastic foam F
3
. The

thickness of the slab is equal to 5 cm, the #ow resistivity is p"2850 and porosity is
/"0)97. The other parameters that characterize the material are estimated by the classical
ultrasonic method [9] (a

=
"1)055, K"300 lm and K@"90 lm (see Figure 4(a)) and by

optimization from the inverse problem (see Figure 4(b)). This comparison shows that this
time-domain method leads to better results than the previous one and is more e$cient in
that the criterion for "tting it does not require external intervention.
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5. CONCLUSION

In this note, the time domain Green function for the wave equation in porous media is
established. The direct problem is solved by using the concept of fractional derivatives and
an experimental validation of the model is presented. The physical parameters of the
medium are evaluated from the solution of the scattering inverse problem given by
a least-squares method. Finaly, a comparison between experimental results and numerical
simulation obtained from the optimized parameters shows the e$ciency of the method.
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