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1. INTRODUCTION

In reference [1], two models were developed for the motion of a driven shaft coupled via
a U-joint to a uniformly rotating driving shaft. In one model, the shaft was treated as rigid
whereas in the other it was treated as #exible. Both models led to the prediction of #utter
and parametric instabilities. It was found that for shafts of proportions of those for a truck,
the only parametric instabilities arising in practical ranges of operation were due to the rigid
body modes (the shaft bouncing on the support springs), so that shaft #exibility can be
ignored. In reference [1] the results were obtained using the monodromy matrix technique
which is very computational intensive and number speci"c, so that parametric studies are
very time consuming. In this note, some analytic expressions are developed for computing
the principal parametric resonance zones using the methodology of Hill's in"nite
determinant. These expressions are used to determine the minimum amount of damping
required to move the principal parametric zones out of the practical torque-rotational
speed range. Note that a similar rigid body model was given by Iwatsubo and Saigo [2].
They also presented parametric studies on the in#uences of sti!ness and damping, but no
simple analytical approximations such as the ones at hand were presented. Moreover, the
question of what value(s) of damping leads to driving the instabilities out of the practical
range was not addressed.

2. EQUATIONS OF MOTION

Shown in Figure 1 is a shaft AB (length l ) driven through a U-joint by a shaft BC which is
rotating at a constant angular velocity X about its axis Z. (X>Z is an inertial set of axes).

The linearized equations of motion for the driven shaft were shown in reference [1] to be,
for the case of zero initial angles between the driving and driven shafts,
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Figure 1. U-joint system.
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where (1) c and b are Euler angles, de"ned with respect to X>Z, specifying a body "xed
frame; (2) l is a dimensionless rotational speed (l"X/X

0
); for purposes of possible

comparison with #exible models, X
0

is taken to be the "rst bending frequency of

a non-rotating pinned}pinned beam, X
0
"(n2/l2)JEI/oA (here E denotes Young's

modulus, I the area moment of inertia, o the mass density, and A the cross-sectional area);
(3) the overdot stands for d/dq, q"Xt; (4) CI
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is the torque applied to the driving shaft BC).

For KI
y
OKI

x
there are two principal parametric resonance zones (corresponding to

motions in two planes). Using a one-term Hill-type expansion, the solutions can be
approximated by
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Inserting equations (2) into equations (1), using some trigonometric identities,
and equating to zero the coe$cients of sin(q) and cos(q), results in a system of
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linear homogeneous equations for a
1
, b

1
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2
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, the determinant of which must be zero,

giving:
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For KI
y
"KI

x
"KI and CI

y
"CI

x
"CI , equation (3) can be written in the form of a cubic

polynomial in C, the roots of which can be found by using MAPLE. Two of the roots are
complex and one is real given by

C"
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Equation (4) gives the stability boundary in (C, l) space of the principal parametric
resonance zone (there is only one for KI

y
"KI

x
). It is in a form which can be readily used to

perform parametric studies.
Note that there are problems for zero damping, a feature that was also seen in the

monodromy matrix approach, where CI "0 led to #utter instabilities everywhere in (C, l)
space. An issue, as in reference [1], is the extent to which the results for small values of CI are
reasonable. Before investigating this further, the accuracy of equation (4) was checked by
comparison with the exact monodromy matrix method. Shown in Figure 2 is a comparison
for the case of a hollow shaft of truck proportions. The following parameter values are used:
l"8)96]10~1 m, o"7)83]103 Kg/m3, E"2)07]1011 N/m2, R

o
"3)4950]10~2 m

(outer radius), R
i
"3)3300]10~2 m (inner radius), X

0
"1)53]103 rad/s and

g"4)5542]10~3. The spring rates are K
x
"K

y
"2)50]103 N/m and the damping

coe$cients are C
x
"C

y
"25)0 N/(m/s). Excellent agreement is seen, lending con"dence to

the present one-term approximation.
An important question concerns the value of CI that leads to C

min
(see Figure 2) being

outside the practical region. At C
min

, dC/dl, which can be determined from equation (4), is
zero. On specifying KI and CI , the value of l can be determined for which dC/dl"0.
Substituting this value of l into equation (4) gives C

min
.

In changing CI , the process can be repeated and in this fashion a plot of C
min

versus CI can
be constructed, which is shown in Figure 3 (in dimensional form).

In the absence of damping and #utter terms, the zones would emanate from the natural
frequencies. Instead of the procedure just noted, a good approximation to the location of
C
min

can be obtained by neglecting the time-dependent coe$cients and the antisymmetric
matrix in equation (1) and setting the torque and rotational speed equal to zero, which leads
to the matrix
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Figure 2. Region of instability for truck shaft and C
min

(hashed zones given by monodromy method and
boundary curve given by Hill's method).

Figure 3. Minimum torque as a function of damping.

558 LETTERS TO THE EDITOR



Figure 4. Minimum torque as a function of damping.

Figure 5. Comparison between approaches for obtaining minimum torque.
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Figure 6. Comparison between principal regions of instability*monodromy matrix method (hashed region)
versus Hill's method (lines).
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Solving for the lowest eigenvalue of this matrix and substituting it into equation (4) leads to
C
min

. The results using this procedure are shown in Figure 4. In the practical range of
rotation the eigenvalues do not vary signi"cantly with rotational speed and so it was set
equal to zero in the calculations. A comparison between the two approaches is shown in
Figure 5. Good agreement is seen.

For very small values of CI , the results are somewhat counterintuitive in that C
min

is
predicted to decrease with increasing values of C, a result which is connected to the presence
of CI in the denominator of equation (4) and, presumably, the previous predictions [1] of
#utter everywhere in the (C, l) space for CI "0. Inspection of Figure 3 shows that C

0
(values

below which the problem starts)"5 N s/m.
The associated value of C

min
is 14% of the yield torque, which could be in the practical

range of operation. As in reference [1], direct numerical integration of equation (1)
subjected to certain speci"c initial conditions, and a logarithmic decrement procedure led to
non-dimensional damping ratios f

1
"0)28, f

2
"0)17 (associated with c and b respectively).

Thus, for designs in which K
x
"K

y
, to avoid #utter and parametric resonance problems

dampers would have to be provided to achieve the relatively high value of 0)28.
For K

x
OK

y
, the zones corresponding to vibrations in the X> and XZ planes are

di!erent and simple polynomial expressions such as equation (4) cannot be found. Instead,
equation (3) is tackled directly. On specifying K

x
and K

y
, equation (3) is solved (using

MAPLE) to obtain C as a function of CI and l. Shown in Figure 6 are the results obtained
using the one-term approximation and the monodromy matrix technique. The parameters
used here are K

x
"2)50]103 N/m, K

y
"1)06]104 N/m and C

x
"C

y
"5)0]10~1 N/(m/s)

(the corresponding damping ratios are approximately f
1
"0)007 and f

2
"0)003). The "rst

zone corresponds to the >Z plane and the second to the XZ plane. Again, excellent



Figure 7. C
min1

as a function of damping.

Figure 8. C
min2

as a function of damping.
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agreement is seen. Good estimates for C
min1

and C
min2

can be readily obtained using the
approximation noted above, namely, substituting the lowest eigenvalues in equation (3).
Figures 7 and 8 show the resulting plots for C

min1
and C

min2
versus C respectively.

Note that the problem associated with C
min

decreasing with damping, attributed to #utter,
has to all intents and purposes disappeared. This is consistent with the results presented in
Mazzei et al. [1] in which it was noted that for K

x
OK

y
very small values of damping

moved the #utter zones out of practical ranges. As noted also by Iwatsubo and Saigo [2],
having K

x
OK

y
has a stabilizing e!ect on the system.

If one regards the limit torque that the shaft should experience as being, for example, 40%
of the static yield (C

min
"0)00020, corresponding in dimensional terms to 620 Nm) as

a bound on the practical range of operation, then from Figures 7 and 8 it is seen that
C"3)5 N s/m (corresponding to f

1
"0)038, f

2
"0)035, associated with c and b) moves

both C
min1

and C
min2

out of the practical range of operation. This value of damping is very
realizable in practice.
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