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The identi"cation of the dynamic characteristics of linear systems is now widely used and
interest in non-linear systems has increased. The objective of this paper is to demonstrate the
performance of the restoring force surface method as far as the identi"cation of non-linear
systems is concerned. The vibrations of a clamped beam are investigated for two di!erent
kinds of non-linearity. Firstly, the beam shows a non-linear behaviour characterized by
a piecewise linear sti!ness and secondly, the non-linearity comes from a bilinear sti!ness.
Both numerical and experimental results are presented.
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1. INTRODUCTION

The aim of the identi"cation is to generate a mathematical model of a system. Generally
speaking, it requires the knowledge of the applied force and of the response of the system.
Once the model parameters are identi"ed, the model may be used afterwards to predict the
behaviour of the system.

For modal analysis, most mechanical structures are approximated by a linear model.
However, when these structures are subject to large displacement amplitudes, non-linear
e!ects may become important and the linear model consequently fails. Even when the
amplitudes remain restricted, some non-linear distortions may occur due to dry friction for
instance. Both reasons demonstrate why interest in non-linear identi"cation is increasing.

Identi"cation of non-linear systems ranges from methods which simply detect the
presence or type of a non-linearity to those which seek to quantify the dynamic behaviour
through a mathematical model. In this latter category lies the non-parametric scheme called
the restoring force surface method.

The restoring force surface method o!ers an e$cient and reliable identi"cation of
non-linear systems. Masri et al. laid down the foundations of the method [1, 2] and
signi"cant improvements were brought about since the original papers. Worden and
Tomlinson [3] presented an e!ective way of identifying the mass. Duym and Schoukens [4]
designed optimized excitation signals in order to guarantee the quality of the "t by
uniformly covering the phase plane. They also used a local non-parametric identi"cation of
the non-linear force [5].
0022-460X/01/290597#17 $35.00/0 ( 2001 Academic Press
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The present paper applies the restoring force surface method to two di!erent cases:

f a symmetrical system consisting of a beam characterized by a piecewise linear sti!ness;
f an asymmetrical system consisting of the same beam but characterized by a bilinear

sti!ness.

The authors know of, only one previous paper [6] which tried to identify such
non-linearities using the restoring force surface method and poor instrumentation forced
bad results. Even if the beam is a multi-degree-of-freedom system, the study is focussed on
identi"cation of single-degree-of-freedom (s.d.o.f.) systems. It is important to note that it is
possible to reduce the beam to an s.d.o.f. system while keeping its piecewise or bilinear
characteristics completely.

The paper is organized as follows. In the next section, the restoring force surface method
is brie#y introduced. Then, the data processing associated with the method is discussed.
Sections 4 and 5 consider the numerical simulation of a system with piecewise linear and
bilinear sti!ness respectively. In sections 6 and 7, the results of the experimental
applications are presented.

2. THEORETICAL BACKGROUND

The restoring force surface method is based on Newton's second law:

mxK (t)#f (x (t), xR (t))"p (t), (1)

where p(t) is the applied force and f (x, xR ) is the restoring force, i.e., a non-linear function of
the displacement and velocity. The time histories of the displacement and its derivatives,
and of the applied force are assumed to be measured. In practice, the data must be sampled
simultaneously at regular intervals. From equation (1), it is possible to "nd the restoring
force de"ned as f
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It is important to describe the system by a mathematical model. The usual way is to "t to
the data a model of the form:
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Least-squares parameter estimation can be used to obtain the values of the coe$cients a
ij
.
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i
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the mean-square error (MSE) indicator is de"ned as
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where N is the total number of samples and p2
x

the variance of the measured input.
Experience shows that an MSE value of less than 5% indicates good agreement while
a value of less than 1% re#ects an excellent "t. To determine which terms are signi"cant and
which terms can be safely discarded in equation (2), the signi"cance factor [7] is used:

sh"100
p2h
p2
x

, (4)
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where p2
x

corresponds to the variance of the sum of all the terms of the model and p2h is the
variance of the considered term. Roughly speaking, the signi"cance factor represents the
percentage of the contribution of the term to the model variance.

3. DATA PROCESSING

From the foregoing developments, it appears that the method requires the measurement
of displacement, velocity, acceleration and force time histories at each degree of freedom.
A pragmatic approach to the procedure demands that only one signal should be measured
and the other two should be estimated from it. Numerical integration and/or di!erentiation
may be adopted.

The di!erentiation can be carried out in the time domain or in the frequency domain.
A polynomial can be "tted to N data points such that the point at which the derivative is
required is at the centre. The analytic derivative of the "tted polynomial is then computed.
This illustrates a possible way of di!erentiation in the time domain. However, it can be
shown that numerical di!erentiation leads to an inaccurate estimation of the acceleration.
Considerably more detailed discussion is available in reference [8].

The practical solution is to measure the acceleration and numerically integrate it to "nd
velocity and displacement. Various methods for achieving integration exist: trapezium rule,
Simpson's rule, integration in the frequency domain, and so forth. There are two main
problems associated with the integration, the introduction of low- and high-frequency
components. The trapezium rule only su!ers from the introduction of low-frequency
components and does not require the use of a low-pass "lter. Furthermore, it is the simplest
integration process and o!ers considerable saving of time. For these reasons, the trapezium
rule is considered throughout the paper.

It can be argued [9] that the transfer function of the trapezium rule is

H(u)"
F¹(estimated results)

F¹ (true results)
"cos (u/2)

u/2

sin (u/2)
, (5)

where F¹ is the Fourier transform and u the normalized frequency, i.e., the frequency of
interest divided by the sampling frequency. Equation (5) means that the trapezium rule only
integrates constant signals without error and underestimates the integral at all other
frequencies. Therefore, the sampling frequency must be chosen to be high enough in order
that the highest frequency of interest is characterized by a low normalized frequency.
A sampling frequency 10 or 20 times higher than the highest frequency of interest seems to
be a reasonable choice.

Since the trapezium rule basically acts as an ampli"er of the low-frequency components,
the integrated signals are to be high-pass "ltered. High-pass "ltering with cut-o! n/2NDt
is equivalent to a polynomial trend removal of order n where N is the number of
points and Dt the sampling interval [8]. Accordingly, choosing a cut-o! frequency
higher than 0 Hz immediately imposes the "ltered signals to be of zero mean since
a polynomial trend of order 0, i.e., a constant, is removed. This leads to an inaccurate
estimation of velocity and displacement of asymmetrical systems and particularly for the
bilinear case.

4. NUMERICAL SIMULATION OF A SYSTEM WITH PIECEWISE LINEAR STIFFNESS

The experimental beam is mounted vertically with a clamped end and a free end as shown
in Figure 1. If the amplitude of the transverse motion exceeds a "xed limit, the beam makes



Figure 1. The piecewise linear beam.
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contact with a steel bush. Thus, the beam possesses a piecewise linear sti!ness. The system is
"rst simulated. For this purpose, the vibrations of the "rst mode of the beam are analyzed
and an s.d.o.f. system with a piecewise linear sti!ness is chosen to model the experimental
beam. This system is described by the following equations:

25xR #15xR #330000x"p(t) if DxD(0)0004, (6)

25xK#15xR #1500000x"p(t) if DxD*0)0004, (7)

where p(t) is a white noise sequence band-limited into the 10}25 Hz range. It can be noted
that equation (7) takes the increase in sti!ness into account as the beam makes contact with
a bush.

The system is simulated using a Runge}Kutta procedure. The sampling frequency is set
to 1000 Hz and white Gaussian noise is added to the data in such a way that the noise
contributes to 5% of the signal r.m.s. value. The sampling frequency may appear too high
while the frequencies of interest are below 100 Hz. It is worth recalling that the sampling
frequency chosen should be 10 or 20 times higher than the frequencies of interest in order to
give an accurate integration procedure (see section 3). For the sake of simplicity, all signals
are assumed to be known during the identi"cation procedure. The acceleration and its
power spectral density (PSD) are presented in Figure 2. The presence of a sequence of
harmonics in the PSD at nu where n"3, 5, 7, etc. is the sign of the non-linearity of the
system.

A major problem usually encountered in identi"cation is the choice of a model which has
to represent the system. Since the sti!ness is piecewise linear, it is easily understandable that
a polynomial model will not "t the behaviour of the beam perfectly. Hence, it is worth
comparing the results obtained via a polynomial model for the restoring force, i.e.,
f (x, xR )"+m

i/1
a
i
xi#+n

j/1
b
j
xR j , with those given by a non-polynomial model which should

obviously be the following:
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xR if x*d,

f (x,xR )"kx#cxR else,



Figure 2. (a) Acceleration time history and (b) its PSD.

IDENTIFICATION OF A NON-LINEAR BEAM 601
where d is the clearance value. If there is no a priori knowledge about the non-linearity,
plotting the sti!ness curve (Figure 3), i.e., the measured restoring force versus the
displacement, clearly indicates that the sti!ness is piecewise linear.

In the non-polynomial model, another problem arises: the clearance d is unknown
a priori. Inspection of the sti!ness curve points out that the change in sti!ness occurs
around 0)0004m. To increase the accuracy, the MSE is computed for a hundred values of
d regularly spaced between 0)0003 and 0)0005m. The evolution of the MSE with the
clearance is presented in Figure 4. It turns out that the optimum value for d is 0)000401m.
This value is almost identical to the exact one while 5% of noise is added to the data.



Figure 3. Sti!ness curve.

Figure 4. MSE versus clearance.
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Having chosen a value for the clearance, the results obtained with the polynomial model
can now be compared with those given by the non-polynomial model. Tables 1 and 2
present the identi"ed parameters and their signi"cance factors for the polynomial and
non-polynomial models respectively.

f For the polynomial model, model orders higher than 3 have no more in#uence on the
MSE which is 1)79%.



TABLE 1

Identi,cation results for the polynomial model (piecewise linear case)

Order 1 Order 2 Order 3

Displacement: parameters 278 003 !206 354 6)93]1011
Displacement: signi"cance factors 60'19 2)02]10~6 6'19
Velocity: parameters 22)02 !63)17 !1169)3
Velocity: signi"cance factors 5)41]10~3 4)12]10~5 5)69]10~5

TABLE 2

Identi,cation results for the non-polynomial model (piecewise linear case)

k
~

k k
`

c
~

c c
`

Parameters 1)46]106 330 459 1)45]106 95)37 18)48 50)43
Signi"cance factors 99'53 99'99 99'91 0)17 5)65]10~3 4)59]10~2
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f For the non-polynomial model, it is not necessary to include higher order terms than 1. In
this case, the MSE is equal to 0)71%.
Analysis of these tables is straightforward. Both models provide a reliable identi"cation

since the mean square errors are around 1%. Nevertheless, the non-polynomial model is
more accurate which is expected since the sti!ness is piecewise linear; also it is preferred as
the polynomial model is input dependent. Finally, it should be noted that the damping
coe$cients are badly estimated although damping should actually be in the model. The
reason is probably because damping in aluminium is low. Hopefully, this is not a problem
since the corresponding signi"cance factors are negligible.

5. NUMERICAL SIMULATION OF A SYSTEM WITH BILINEAR STIFFNESS

It is of interest to study the case of a bilinear sti!ness because it is not an odd
non-linearity. The beam is the same as for the piecewise linear case except that only one
bush is present and that the clearance value is di!erent. Again, it was decided to concentrate
attention on the vibrations of the "rst mode of the beam. An s.d.o.f. system with a bilinear
sti!ness models the experimental beam. Before investigating the experimental data, "rst
simulate the following bilinear system:

25xK#15xR #330000x"p(t) if x(0)00072, (8)

25xK#15xR #930000x"(t) if x*0)00072, (9)

where p(t) is a white noise sequence band-limited into the 10}25 Hz range. Figure 5
illustrates the PSD of the acceleration obtained through the simulation process. The
bilinear characteristic of the system introduces a sequence of harmonics at nu where n"2,
3, 4, etc.

In practice, only the acceleration is measured and the displacement and velocity have to
be estimated. Thus, it is meaningful to compare the estimated signals with those resulting



Figure 5. PSD of the acceleration.

Figure 6. Exact and estimated displacements:**, exact; } } - , estimated.

604 G. KERSCHEN E¹ A¸.
from the simulation. If the integrated and "ltered velocity is nearly identical to the exact
velocity, it is not the case for the displacement represented in Figure 6. The distortions
between both displacements are due to the high-pass "ltering procedure as explained in
section 3.
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The identi"cation is realized using the estimated signals and a bilinear model for the
restoring force:

f (x, xR )"k
`
x#c

`
xR if x*d,

f (x, xR )"kx#cxR else,

where d is the clearance value and needs to be estimated. To this end, the same procedure as
the one used for the piecewise linear model can be exploited i.e., plotting the evolution of the
MSE as a function of the clearance. However, inspection of the estimated sti!ness curve
illustrated in Figure 7 reveals that the change in sti!ness occurs at around 0)00075 m. This
value is almost identical to the exact one (0)00072 m) even if the displacement is badly
estimated.

The second row of Table 3 displays the identi"cation results. The results are not as bad as
expected. Indeed, the identi"ed parameters are not so di!erent from the exact ones. This is
con"rmed by the MSE equal to 1)46%. Nevertheless, the results can be substantially
improved. Since the estimated displacement mainly di!ers from the exact displacement by
Figure 7. Exact and estimated sti!ness curves: **, exact; } } -, estimated.

TABLE 3

Identi,cation results for bilinear case

k k
`

c c
`

Exact parameters 330 000 930 000 15 15
Identi"ed parameters (estimated displacement) 384 864 773 958 12)16 48)65
Identi"ed parameters (improved displacement) 334 553 817 966 15)96 !27)67



Figure 8. Evolution of the identi"cation and displacement MSEs as a function of the constant signal amplitude.

Figure 9. Exact and &&improved'' displacements: **, exact; } } -, improved.

606 G. KERSCHEN E¹ A¸.
a constant signal, it is of interest to add this kind of signal to the estimated displacement and
to look at evolution of the MSE as a function of the amplitude of the signal. Figure 8 shows
that the MSE for the identi"cation procedure is minimum for a value of the constant signal
amplitude equal to 2)15]10~4m. Moreover, this value almost corresponds to the
minimum of the MSE between the exact displacement and the estimated displacement
improved by the constant signal. Figure 9 compares both displacements and con"rms that
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the &&improved'' displacement is close to the exact displacement. The third row of Table 3
presents the identi"cation results when the &&improved'' displacement is used. Much better
results are obtained and the MSE is now equal to 0)65%.

In conclusion, attention should be paid to the estimation of the displacement. Even if
signi"cant improvements are obtained when a constant signal is added to the estimated
displacement, it will always be preferred in practice to measure displacement as well as
acceleration signals.

6. EXPERIMENTAL STUDY OF A PIECEWISE LINEAR BEAM

The aim of this paragraph is to study the vibrations of the "rst mode of the experimental
beam described in section 4. The "rst mode is located at around 18 Hz. If a band-limited
white noise centered on this "rst natural frequency is used, one may reasonably expect the
beam to behave as an s.d.o.f. system. With this assumption in mind, a white noise sequence
band-limited in the 10}25 Hz range [Figure 10(a)] is produced using the LMS 3.4.08
software and a DIFA SCADAS II. The signal is ampli"ed using a Gear and Watson
ampli"er. The shaker is attached to the beam by a rigid link and the input force is measured
using a PCB 208B force transducer. The response [Figure 10(b)] is measured with a PCB
338M12 accelerometer. Finally, the data are acquired on an HP9000 Unix machine with
a sampling frequency set to 1000 Hz.

The acceleration is integrated once to give the velocity and twice to obtain the
displacement. The integrated signals are "ltered using a high-pass Butterworth "lter with
a cut-o! at 10 Hz. Nevertheless, this is not su$cient. Indeed, the use of a low-pass "lter is
also necessary, as shown in Figure 11(a). This plot illustrates the evolution of the MSE with
the cut-o! frequency of the low-pass "lter. It can be noticed that the MSE greatly increases
in the frequency interval from 100 to 150 Hz. This observation means that the second mode
(around 115 Hz) participates signi"cantly in the response of the beam. Therefore, despite the
band-limited excitation signal, it is di$cult to excite only the "rst mode. Thus, the
contribution of the second mode is to be discarded but keeping in mind that it is important
to capture as many harmonics as possible. The choice of a 70 Hz cut-o! frequency is found
to be the best compromise. Figure 11(b) compares the PSD of the acceleration before and
after "ltering. The contribution of the second mode is well rejected while the "rst harmonic
(around 70 Hz) is still present.

Since it is now sure that the response is that of an s.d.o.f. system, the identi"cation can be
achieved with the same models as for the numerical simulation. Again, a comparison
between the polynomial and non-polynomial models is studied. If the mass was assumed to
be known in the numerical example, it is no longer the case for the experimental application.
Hence, an estimation of the mass is essential in order to compute the restoring force. At this
point, two ways exist for identifying the mass. One solution consists of including the mass in
the model and instead of "tting the restoring force, the applied force is "tted. The other
solution is to perform a linear test, i.e., to reduce the excitation level in such a way that the
beam does not make contact with the bushes. This latter alternative is preferred because it is
much better to limit the parameters to be estimated in the nonlinear model.

Therefore, a second test was carried out and the acceleration and the applied force were
measured. A polynomial model is used for the identi"cation and a model order higher than
one does not improve the MSE (0)19%) any more. The mass is found to be equal to
24)96 kg.

The clearance value also needs to be determined. Using the same procedure as for the
numerical example, the optimal clearance value is found to be 0)00039 m. The MSE is 1)70



Figure 10. Measured signals. (a) Force time history; (b) acceleration time history.
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and 1)80% for the polynomial and non-polynomial models respectively, which is an
indication of a good identi"cation. It is rather surprising to note that the polynomial model
is superior to the non-polynomial one. However, it might reasonably be expected that the
change in sti!ness will be smoother in practice than for the numerical example. This may be
the reason why a cubic sti!ness better matches this change. The identi"ed parameters
and their signi"cance factors are listed in Tables 4 and 5. For the non-polynomial model
(Table 5), it is worth pointing out that k

`
"k

~
as it should be for a symmetrical system.

Figure 12 presents the measured and reconstructed sti!ness curves. Both reconstructed
curves provide a close match to the measured curve, which con"rms that the identi"cation
has provided good results.



Figure 11. (a) MSE versus cut-o! frequency; (b) PSD of the acceleration before and after "ltering: **,
measured; } } -, "ltered.

TABLE 4

Identi,cation results for the polynomial model (piecewise linear case)

Order 1 Order 2 Order 3

Displacement: parameters 248 903 !2)14]107 5)89]1011
Displacement: signi"cance factors 27'89 0)037 25'13
Velocity: parameters !32)09 1487 12 949
Velocity: signi"cance factors 8)40]10~3 0)052 0)064
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TABLE 5

Identi,cation results for the non-polynomial model (piecewise linear case)

k
~

k k
`

c
~

c c
`

Parameters 885 783 281 011 871 787 !77)99 71)46 11)32
Signi"cance factors 99'87 99'51 99'99 0)13 0)46 2)78]10~3

Figure 12. Comparison between the measured and reconstructed sti!ness curves:**, reconstructed (polyn.);
#, reconstructed (non-polyn.); }} -, measured.
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7. EXPERIMENTAL STUDY OF A BILINEAR BEAM

Section 5 has pointed out that it is always better to measure the displacement when
studying an asymmetrical system. Unfortunately, it was not possible to measure the
displacement when the measures were acquired and only the acceleration and the input
force were measured. This latter consists of a white noise sequence band-limited into the
10}25 Hz range.

The "rst step of the signal processing was to "lter the acceleration in order to keep only
the contributions of the "rst mode. Figure 13 corresponds to the comparison between the
PSDs of the measured and "ltered accelerations. Afterwards, the acceleration was
integrated once and twice to obtain velocity and displacement respectively. Both signals
were then "ltered using a Butterworth "lter with cut-o! at 4 Hz. In order to know the
clearance value, the sti!ness curve was computed and is presented in Figure 14. This graph
underlines perfectly the bilinear behaviour of the beam and the clearance is found to be
equal to 0)000762 m.

The identi"cation is carried out in two cases. On the one hand, a constant signal is not
added to the estimated displacement and on the other hand, this signal is added. The results
are illustrated in Table 6. The MSE is equal to 2)56% when the displacement is not



Figure 13. Comparison between the PSDs of the measured and "ltered accelerations: **, measured; } } -,
"ltered.

Figure 14. Sti!ness curve.

TABLE 6

Identi,cation results for the bilinear case

k k
`

c c
`

Identi"ed parameters (estimated displacement) 356 813 765 733 55)08 40)45
Identi"ed parameters (improved displacement) 312 521 846 963 52)27 !62)93
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Figure 15. Measured and reconstructed restoring forces: **, measured; } } - non improved; ) ) ) ) ), improved.
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improved. The MSE falls to 1)66% when the displacement is improved. Better results
obtained with the improved displacement are con"rmed in Figure 15 which compares the
measured restoring force with the reconstructed restoring forces.

8. CONCLUSIONS

The aim of this study was to compare the numerical and experimental identi"cation of
symmetrical and asymmetrical non-linear beams using the restoring force surface method.
The beam could be considered as an s.d.o.f. system since the "ltering procedure was able to
discard all the contributions of the other modes while completely keeping the piecewise or
bilinear characteristics.

For the piecewise linear sti!ness (symmetrical case), two models were applied to the
experimental beam and gave similar results. The polynomial model identi"ed a signi"cant
cubic sti!ness with an MSE of 1)70% and the non-polynomial model led to an MSE of
1)80%.

For the bilinear sti!ness (asymmetrical case), the MSE and the good "t of the restoring
force allows it to be concluded that a quite reliable identi"cation of a bilinear beam has been
achieved using the restoring force surface method while the displacement was not measured.

In conclusion, the restoring force surface method is con"rmed as an e$cient tool as far as
the identi"cation of s.d.o.f. systems is concerned. However, since it requires the knowledge
of acceleration, velocity and displacement signals, great e!ort has to be spent in processing
the data.
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