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Energy equations analogous to the thermal conductivity equation are derived to examine
the propagation of longitudinal waves and in-plane shear waves in finite thin plates. The
derived energy equations are expressed with the time- and locally space-averaged energy
density, and can be used as the prime equations for the prediction of in-plane structural
vibration energy and intensity at middle-high-frequency ranges. To the cases of finite
coupled structures connected at a certain angle, the derived in-plane wave energy equation
and developed flexural wave energy equation have been applied by changing the frequency
and the damping loss factor to evaluate the proposed methods for the predictions of
middle-high-frequency vibration energy and intensity distributions.
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1. INTRODUCTION

Until recently, many of the plate vibration researches have been mainly executed for
transverse vibration problems with diverse approaches, while the in-plane vibration effects
and the related phenomena have not been deeply studied. For instance, in the power flow
analysis (PFA) method, the energy governing equations of thin plates and membranes were
derived for the propagation of flexural waves [1, 2] and thus, a single plate can be analyzed
with the PFA method when transverse exciting forces are applied. However, for coupled
plate structures which are joined at a certain angle and on which transverse exciting forces
are applied, in-plane waves come out with the flexural waves since the incident flexural
waves are partially converted to the in-plane waves at the joint part. Moreover, in high
frequency ranges, the in-plane wave components can be important in the transmission of
vibrational energy through the built-up structures. Therefore, to obtain reliable results, the
in-plane wave components should be taken into account with the appropriate
high-frequency analysis methods [3, 4].

In this paper, to analyze the vibrating structures of in-plane motions using the PFA
method, the energy governing equations for the propagation of longitudinal and in-plane
shear waves in thin plates are derived. Firstly, the differential equations governing the
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in-plane motions of thin plates are separated into two uncoupled equations of longitudinal
and in-plane shear wave components by using the displacement potential functions. The
displacement solutions to each wave equation are substituted into the expressions for the
time-averaged in-plane energy density and intensity. Then, the energy density and intensity
expressions are simplified by space-averaging over a half wavelength of each in-plane wave
component and can be rearranged into compact forms by neglecting all of the second and
higher order terms of the structural damping loss factor with the assumption that the
damping loss factors of the plates are sufficiently small. Through these steps, the general
relations of in-plane wave energy and intensity are obtained, and the energy governing
equations for longitudinal and in-plane shear waves are derived respectively. The developed
equations are used to predict the vibrational energy and intensity distribution of thin plate
structures coupled at a certain angle and excited by the transverse harmonic forces of
middle-high-frequencies.

2. EQUATIONS OF LONGITUDINAL AND IN-PLANE SHEAR WAVES IN THIN PLATES

The equations governing the free in-plane vibration of an isotropic thin plate with
uniform thickness have the following partial differential equation forms [5, 6]:

u (1—v)o*u (1+v) v (1 —v?)pd?u
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Here, u and v are x and y components of in-plane displacement in the middle plane of the
plate, and p, E. and v indicate the mass density, complex Young’s modulus and the Poisson
ratio of the plate respectively. Using the displacement vector d = ui + vj, equations (1) and

(2) are simply rewritten as [7]
14+ (1 —v*)po*d
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Since the two displacement components u and v are coupled with each other as seen in
equation (3), it is quite difficult to obtain the general displacement solution of this equation.
Using potential functions, Lamé represented the displacement vector d in the form of

dix,y,t) = Vo(x,y,t) + Vx¥(x, y, 1), 4

where ¢(x, y,t) is a scalar quantity representing the displacement potential which
corresponds to the dilational motion of plate particles, and ¥(x, y, t) is the displacement
potential which corresponds to the rotational motion and is a vector quantity normal to the
plate. Substitution of equation (4) into equation (3) gives the following equation:
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Since V-V = V?¢ and V-V x ¥ = 0, equation (5) can be rewritten as

(1 —=v*po? (1—=v (1 —v*)p 0>¥P
V(‘ﬂ“"Tpa—g R e e e RN G

Clearly, the displacement representation of equation (4) satisfies the equations of motion if

1 Po(x,p,0)

2 —
V (P(x, ya t) - Clz 6t2 (7)
and
1 0*¥(x, y, 1)
2 - v
V \P(xa y’ t) - cs atz . (8)

Equations (7) and (8) are longitudinal and in-plane shear wave equations respectively. ¢; and
¢, are the phase velocities of longitudinal and in-plane shear waves, expressed as follows:

€= &7 Cs = & (9)
\ ph N op

K. = E.h/(1 —v?) is the complex extensional stiffness. G, is the complex shear modulus of
the plate and h is the thickness of the plate.

To represent the vibrational displacements as expressed in equation (4), the following
equation must be satisfied:

V-¥(x,yt)=0 (10)

and since the vector potential ¥(x, y, z)(= ¥(x, y, t)k) is normal to the plate and is
a function of position (x, y) and time ¢, the following relations can be obtained:

V-¥(x, y,t)=0%(x, y,t)/0z = 0. (11)

From the longitudinal wave equation, equation (7), ¢(x, y, t) can be expressed as follows:
0(x, p, 1) = [Aei kv k) | Beitur—ku) 4 Cei(—kuxtku) D elkuxtinn] x giot  (12)
Here, k;, and k;,, indicate the x and y components of the complex longitudinal wave number
k;, respectively, and o is the circular frequency. From equations (4) and (12), the

longitudinal wave components ; and v, of the in-plane displacements u and v are written as

ul(x’ Y, [) = COS 0[ [Aej(*kzxx*ktyw _ Bej(kux*kty)’) + Cej(*kux*kzy}’) _ Dej(kzxx+ktyw:| X ej&ﬁ’

(13)

Ul(x, Y, t) — Sin 0! [Aej(*ku—xsz,v}') + Bej(ku—xfktyy) _ Cej(*ktxerkLyY) _ Dej(klxx+k1yy)] X ej(JJt,
(14)
Where = _jklAla = _jleh = —jklcl, = _jlela COSQ[ = klx/kl, and

Sin 0[ = kly/kl'
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From the in-plane shear wave equation (8), ¥(x, y, t) can be expressed as follows:

Y’(x, y, t) — [Asej(—ksxx—k.wy) + Bsej(k.ux—ks,-y) + Csej(—k.ux+ks,vy) + Dsej(ksxx+ksyy>] x e ot (15)
Here, kg, and kg, indicate the x and y components of the complex in-plane shear wave
number k, respectively. From equations (4) and (15), the in-plane shear wave components

us and v, of the in-plane displacements u and v are written as

Ug(X, y, 1) = sin O,[ — Aed k¥ —kam) _ Beiiux k) 4 Cel(—haxthyd) | Dotk ki 5 glot

(16)

04(X, Vs 1) = 08 O, [ AeH k¥ k) _ Beilkaex ko) 4 Ceil~kat Hhad) _ Deilhuwx than) | ¢ gio,
(17)
where A = _jksAsa = _jksBsa = _jkscsa = _jksta Cos gs = ksx/ksa and

sin 0 = kg, /ks.

3. IN-PLANE VIBRATIONAL ENERGY AND INTENSITY OF THIN PLATES

The x component {g,) and y component (g, » of the time-averaged in-plane vibration
intensity in the thin plates are written as

1 ou Ov)\ ov* ou ov\ ou*
= Re| G (L D)k (X, ) 18
> ==3 e[ ‘ <6y+6x> o C<8x+vé’y> az} (18)
1 ou Ov)\ ou* ov ou '\ ov*
= Re| G+ O) A k(L M) 19
4o =-3 e[ ‘ <6y+6x> o C<5y+v(3x> 5t:| (19)

and the time-averaged total energy density of in-plane vibration of thin plates is written as

1 ou Ov\[ou* Ov* ou v\ ou*
=-R h—+=— ) =—+—=— K|l—+v—)—
er=4 G[GC <8y+6x><8y +6x>+ C<8x+v6y> ox

ov ou \ Ov* Oou ou*  Ov dv*
K. |+ — | = hl——+—— 20
* ‘(ay+vax>ay+p <az a T azﬂ’ (20
where the asterisk notation indicates a complex conjugate.

4. POWER FLOW MODEL OF LONGITUDINAL WAVES IN THIN PLATES

Energy governing equations are generally expressed with group velocity [8, 9], and the
in-plane vibration of thin plates has two different wave modes known as longitudinal and
in-plane shear waves which have different group velocities. For this reason, the energy
governing equation of in-plane vibration cannot be expressed with a single differential
equation as seen in the thermal conductivity equation, but with two independent energy
equations for each wave component.

Firstly, the energy governing equation for the propagation of longitudinal waves in thin
plates is derived. Substituting equations (13) and (14) into equations (18)-(20), the
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time-averaged intensity and total energy density of the longitudinal waves are obtained as
iy = —3Re[(1 —v)K kwcosO;sin?0,{—|A" " |>+|B* |2 = |[C”T|>+|D**|?
CATT(BT TR+ (A )BT — BT (CT )+ (BYT)*C T
CCTFDTY 4 (CTTEDT 4 AT (DY) — (4D
+ A" (C )Y+ (AT C"T =BT (DT )*— (BT )*D* "}
— K.k, cos0,(cos? 0, + vsin?0,) {|4~ |2 — |[B* 7|2+ |C~ "> —|D"7|?
— A" BT+ (A" )BT+ BT (CTT)*— (BT )*C T
_CTHDFTY 4 (CTT)DT — A (DT 4 (AT DT
+ATT(CT)F (AT T)CTT = BT T(DT ) — (BT DT, 1)
{qiyy = —5Re[(1 = VK Kkwsin0,cos*0,{—|4""|>—[B*" |2+ |C "|>+|D"*|?
+ A" TBT)*F+ (A )BT +BT(CTT)F—(BT)*C T
_CTH(DFTY —(CTT)DT + AT (DT —(A- DT
— AT (CT T+ (A TYCT T — BT (DY) 4+ (BT )*DT )
— K. k;wsin0,(sin® 0, + vecos?0)) {|A~"|> + |B* | —|C” | — |D"*|?
+ A" BT )+ (A" )BT —BY* (C"H)*+ (BT )*C™ T
_CTHFDTYE —(CTTFDTT — AT (DY) 4 (47D
— A" (CTT)Y (AT )XCT T =BT (DT )+ (BT )*DT )], (22)
Cery =3 Re[2(1 — v)K,|k|*sin? ,cos*0,{|A~ " |> + [B* " |* + |C”"|* + [D*"|?
— A" (BT )*— (A" )BT+ BT (CTT)*+ (BT )*C T
_CTHDFTT) = (CTT)DT + AT (DT 4 (A7 )FDT
— AT (CT ) — (A TYC T — BT (DY) — (BT D)
+ K.|kj|*(cos* 0, + 2vcos? 0;sin* 0, + sin* 0,) {|A~ |+ |B" 7|2 +|C~*|?
+[D"F|P+ AT (BT ) +(A” )BT + BT (C" )+ (BT )*C™ T
FCTDT ) 4 (CTTYDT AT (D) 4 (47D

+A**(C*+)*+(A**)*C*+ +B+*(D++)*+(B+*)*D++}
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+ Kk {|[A~ ">+ |B* |+ |C ">+ |D*"|?

— ATT(BT ) — (A7) — BT (CT ) — (BT RO
_ C—+(D++)* _(C—+)*D++ _A——(D++)* —(A__)*D++
+ A" (CTT)F A T)FCTT BT (DT 4 (BT DT, (23)

where [ ] * means [ ] x exp(+jk;.x + jki,»), and k;, and k;, are the x and y components of
the complex longitudinal wave number k; respectively. For small damping, complex wave
numbers k;, k;, and k;, are well approximated as

kl=ku<1—j’;’>, k1x=k1x1<1—j’;’>, k,y=k,y1<1—j’;’>, (24

where k;y, kix; and kj,,; are the real parts of k;, k;, and k;,, respectively. In equation (21), the
square terms, |4~ "|?,...,|D" *|? are exponentially decayed in space due to structural
damping, and the other terms, A~ ~(B* 7)*,...,(B* 7)*D* " are spatially harmonic. Here,
no obvious relations between intensity (equations (21) and (22)) and energy density
(equation (23)) are found.

Assuming that the structural damping for the longitudinal motion of the plate is
sufficiently small, all of the second and higher order terms of the structural damping loss
factor are neglected. Then, the intensity and energy density are space-averaged over a half
wavelength of the longitudinal wave as follows [2]:

_ klxl klyl n/kiyy nt/kixq
e = ey dxdy, (25)
T 0 0
k . k n/kiyy nt/kixq
=1 [T o avay 6)
T 0 0

The space- and time-averaged intensity and energy density are obtained as

{(Tiny =3Kko(|A|*e”~ — |B]?¢* ™ + |C|?¢™* — [D|%e* ), (27)
(Tyy = 3Kk io(|A]%e” " + [B[?e*~ —|C|% " — |D|%e" ™) (28)

and
(&) =3Kkii(JAl?e” ™ + |B]%e*~ + |C|%¢™ " + |D|%e" ™), (29)

where for simplicity, e**

the following manner:

= exp(=+ ki1 x £ mik;y1 y) and these expressions are related in
¢t (0. 0.
@y =—— | -i+ )@ (30)
mw \0x Jy

Equation (30) is the expression for the energy transmission of longitudinal waves in thin
plates with damping and is analogous to Fourier’s law of heat transfer.
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If no input powers flow into the medium, the steady state energy balance equation of an
elastic medium has the form [2]

_V-q+ndis5'=05 (31)
where 7, is the dissipated power due to the structural damping of the plate. Since it is
known that the time-averaged dissipation power at a point in an elastic medium vibrating

at circular frequency w is proportional to the time-averaged total energy density, (e ), we
can write that [10]

<7Idiss> = 7’ICU<e> (32)

The combination of equations (30)-(32) yields an energy governing equation for the
space- and time-averaged longitudinal wave energy density in plates with the form

_ G (OO ey b ped@d = 0 (33)
mow \ox> = 0y? ! g S

where ¢, is the group velocity of the longitudinal waves in a plate expressed as follows and is

equal to the phase velocity:
K
Co1 = E . (34)

Here, we have obtained the energy governing equation, equation (33), for the longitudinal
plane waves in a thin plate, and the primary variable is the total longitudinal wave energy
density space-averaged over a half wavelength and time-averaged over one period.

5. POWER FLOW MODEL OF IN-PLANE SHEAR WAVES IN THIN PLATES

In this section, the energy governing equation for the propagation of in-plane shear waves
in thin plates is derived. Substituting equations (16) and (17) into equations (18)—(20), the
time-averaged intensity and total energy density of in-plane shear waves are obtained as

{qsxy = — 5 Re[G hkyw cos O(sin? 0, — cos?0,) {|A~"|> —|B* |2 +|C *|2 —|D**|?
—A BT+ (A" )BT+ BT (CTT)*— (BT )*C™ T
CCTFDTY 4 (CTTEDT — AT (DY T)E 4 (A- D
+ATT(CT ) (A TCT T — BT (DT — (BT D)
+ (1 — v)K.kswcos O;sin*0,{ — A~ 7[> +|B*7|> —|C” "2+ |D"*|?
AT (BT (A )BT — BT (CTY 4+ (BT T)FC Y
CCTTDT) 4 (CTT)DT 4 AT (DT — (A” DT

+ATT(CTE (AT TFCTT = BT T(DT ) — (B )DL, (35)



658 D.-H. PARK ET AL.
{qsy> = — 3 Re[G.hkywsin Oy(sin? O — cos? 0,) {— |4~ " |> = |B* |2+ |C~ *|> +|D" 7|2

— A (BT — (A" )*B*~ +B*(C" ) —(B* )C
F O DT (C DT 4 A (D) — (A Dt
FATT(CT ) (AT T)CF BT (D) — (BYT)*D )

— (1 —v)K kg cos?O,sinO0,{|A~ |2+ |[B*7|>—|C~ "> = |D**|?
AT (B T) — (A" )B* T — Bt (CT ) 4 (BTTC
O DT+ (CT)DT — AT (DY 4 (A7 )D
—ATT(CTFH (AT T)CT T =BT (DT )+ (BT DT, (36)
(ey> =4 Re[G h|ky|*(sin* 0, — 2sin? O, cos? 0, + cos* 0,){| A~ |2 +|B* |2 +|C~ " |2+ |D**|?
F AT (BT) 4 (A BT 4 BT(CT )+ (BT U)C
FCTH DT (C DT 4 A (DY) 4 (A D
FATT(CT Y L (ATTFCT T A BT (D) 4 (BT DT
+2(1 — K.k 2 cos2 O,sin® 0,{| A~ "|2 + [B* |2 + [C~ |2 + [D* |2
A (BTT)F— (A" )BT + BT (C ) + (Bt )*CH
DY —(CT DT £ A (DY) 4 (A D
L ATT(CT)F — (A T)FCt — BT (DT ) — (BT T)DtH)
+ w? phsin?0,{|A” |12+ BT 7|2+ |C” |+ |D*"|?
FATT(BT ) 4+ (A )BT — BT (CT )¢ — (B )*C
FC DT 4 (C DT — A (DY — (A D
— AT (CT Y — (A TFC T — BT (DT — (BT D)
+ w?phcos? O0,{|A""|>+|B* |2+ |C" ">+ |D"F|?
— A" (BT )= (4" )BT =B (CT)*—(BT)*C™
O —(CTHDT T — A (D) — (A" Dt

+ATT(CTTF A (ATTFCTT 4 B (D) 4 (BY)*D T, (37)
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where k. and k,, are the x and y components of the complex in-plane wave number k;
respectively. For small damping, kg, kg, and k;, are well approximated as

k—kﬂ( ’;) ksx=ksx1<1—j%>, ksy=ksy1<1—j%>, (39)

where kg, ko.; and kg, are the real parts of kg, k. and k;, respectively. In equation (35), the
square terms, |4~ "|?,...,|D" *|? are exponentially decayed in space due to structural
damping and the other terms, A~ ~(B* 7)*,...,(B* 7)*D™* * are spatially harmonic. At this
stage, no obvious relations between intensity (equations (35) and (36)) and energy density
(equation (37)) are found as in the previous case for longitudinal waves.

Assuming that the structural damping for the in-plane shear motion of the plate is
sufficiently small, all of the second and higher order terms of 7, are neglected. Then the
intensity and energy density are space-averaged over a half wavelength of the in-plane shear
wave as follows [2]:

k k m/kgy1 /K1
(&> = j f (e dxdy, (39)
s 0 0
ks‘x ks n/kgy /Kyt
(@ =—J j (g, dxdy. (40)
U 0 0

The space- and time-averaged intensity and energy density are obtained as

(Tx) = 3Ghkeyo(|A|?e” " — |B|?¢* ™ + |C|%e™ " — [D|%e* "), (41)
(@) = 3Ghky (| A]?¢” " + |B|?e*~ — |C|%e™* — |D|%e* ™) (42)
and
(&) =3GhkG (| A%~ + |B|?e" ™ + [C|?e™* + [D|?e* ™), (43)
where for simplicity, e** = exp(z+ n3ks1 X + 115ksy1)), and these three expressions are

related in the following manner:

G0 0N,
@ = (5x +a—yJ><€s>- (44

Equation (44) is the expression for the energy transmission of in-plane shear waves in thin
plates with damping and is analogous to Fourier’s law of heat transfer.

The combination of equations (30), (31) and (44) yields an energy governing equation for
the space- and time-averaged in-plane shear wave energy density in plates with the form

(az 62><e>+nw<e>—o (43)
ox?
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where ¢, is the group velocity of in-plane shear waves in a plate expressed as follows and is
equal to the phase velocity:

G
= (46)

Equation (45) is a differential equation for the in-plane shear waves assumed to be plane
waves in a finite thin plate and the primary variable is the total in-plane shear wave energy
density space-averaged over a half wavelength and time-averaged over one period.

6. POWER FLOW ANALYSIS OF FINITE COUPLED THIN PLATES

In this section, the time- and space-averaged energy density and intensity distributions
for the flexural, longitudinal and in-plane shear waves of a coupled plate structure are
predicted by using the energy governing equations of in-plane waves in finite thin plates,
equations (30), (33), (44) and (45) and the equation of the flexural wave developed by
Bouthier [2]. The coupled structure is composed of two thin plates connected at a certain
angle and excited by a transverse harmonic point force. The power due to the exciting force
is applied to plate I as shown in Figure 1, and zero energy outflow (intensity) boundary
conditions for each wave component at the plate edges are used. To examine the
partial transmission and reflection of the power at the plate joint, the wave transmission
approach is applied [11]. Both plates I and II are Imx1mx 1 mm in dimensions.
The Young’s modulus of the plates is E =7-1x10°N/m? and the mass density
is p = 2700 kg/m?3.

The computations are performed by using the single Fourier series (the Lévy solution)
approximation, which is commonly known to converge much faster than the double
Fourier series (the Navier solution). Since the energy outflows at all edges perpendicular to
the y-axis as seen in Figure 1 are zero, the energy density of each wave component can be
expressed with the single cosine series of y as follows:

@i= Y Ealx)cos (I"f y>. 1)

n=0 y

Here, the subscript o indicates a longitudinal wave (I), an in-plane shear wave (s) or
a flexural wave (f). The subscript i indicates the region (1), Q) or (3), demarcated by the
position of the input power and the joint of the two plates as illustrated in Figure 1(a) and
1(b). L, is the length in the y direction of each plate. Substituting equation (47) into the
energy governing equation of each wave component, the series coefficient of the energy
density, E,;,(x), is expressed as

Eain = Aain exp( - ;“ou'n X) + Bain eXp(/lain x)> (48)

where A2, = (nm/L,)* + (n,0/cei)*, and the intensity of each wave type, (@, );, is obtained
from the following relation:

c%fxi a . 6 . —
(qri=—-—" <I+J><ea>i- (49)
Ny \ 0x dy
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(a)

Plate 1

L Plate I

®

q,=0 @ @

Figure 1. Two-plate structure coupled with a certain angle ¢ and zero energy outflow boundary conditions; (a)
dimensions of the structure, (b) zero energy flow boundary conditions.

The input power due to a point exciting force can also be expressed as

II6(x — x0)0(y — yo) =

n

M8

I1,(x)cos <Z y), (50)

0

where I1 is the magnitude of the input power and J represents the Dirac delta function.
X, and y, are the x and y positions of the exciting force. The series coefficient of the input
power, I1,(x), can be obtained from the Fourier integral as follows:

fya(x %) (n=0),
,(x) = (51)
21T

o <’Z y0> 5(x —xo) (n#0).

To determine the unknowns A,;, and B, in equation (48), the energy and intensity
boundary conditions are required. Since the energy outflows are zero at the edges
perpendicular to the x-axis, we write

(Fux?1 =0, (Tx>3=0. (52)
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From the equilibriums of energy flow and the continuity of energy between regions (1) and
), the following relations are satisfied:

{qyx22 = {qyx>1 = 1(y — yo), (53)
(Tx22 =21 =0, (T2 —<{Fsx)1 =0, (54)
(&1 =<&). (55)

At the joint of plates I and 11, the incident waves are converted to other types of waves, and
the power transmission and reflection of the incident wave must be examined. From the
wave transmission approach, the power flows away from the joint in this plate are expressed
as follows [11]:

{Tr=02 = Vrr22€Taz + Mp22{Txv2 + Vsr22{Tx 2

+ Tr32{qrx 03 + Tr32{qix )3 + Tsr32{Tx 03 » (56)
(T2 = Vr122€Trx s + 22Tz 0z + Vsi22{Tox 02

+ Tr132{Trx 03 + Tu32{qixr3 + Ta32{Tsx)3 > (57)

(T2 = Vrs22Trnrs + Vis22{Tix )2 + Vss22{Tsx 2
+ 532 qrx03 + Ts32{qix )3 + T6s32<{Tsx )3 » (58)

(T3 = Tp23{Trars + Tp23lTixrs + Tsr23{Tx )3
+ Vrr338qrx 03 + 71338 qx 03+ Vsr338Tx 03 » (59)

(Tx>3 =123 Tpx2 + 23{Tixy2 + Ta23{Tsx 02

+ 91338 qrx 03 + Y3303 + Va33{Tx )3 > (60)

(Toxr3 = T5523<Trnr2 + Ts23{Txrs + Ts523{Ton 2
+ 7533 qrx03 + V1533{qx 03 + V6533 Tsx )3 - (61)
Here, the superscripts (+) and (—) represent wave propagation in the + x and — x
directions respectively. 7,4, 1S the f wave-type power transmission coefficient in region j due
to the incident o wave type in region i(i,j = 2, 3; o, f =, 5, f), and 7,5; is the  wave-type
power reflection coefficient in region i due to the incident o wave type in region i. Since the
coefficients vary with the incidence angles, the mean coefficient values for the incidence
angles were selected for the analysis by the assumption that the wave fields in the structure
are well diffused. From the boundary conditions, the unknowns in each mode of the series
are determined, and the energy and intensity for all wave types are finally obtained. To

assure the convergence of the series, the lowest 100 modes are calculated and summed. The
input power is located at x, = 0-5m and y, = 0-3m in plate I and its magnitude is 101-7dB
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Figure 2. Energy and intensity distributions of two-plate structure coupled with @ = 90° when f'= 1 kHz,
7 =001, xo =05m and y, = 0-3m. The reference energy is 1x10 '2J/m? and the reference intensity is
1 x 10~ '2W/m?; (a) flexural wave energy, (b) flexural wave intensity, (c) longitudinal wave energy, (d) longitudinal
wave intensity, () in-plane shear wave energy, (f) in-plane shear wave intensity.

re 1 x 10712 W/m?2. The joint angle is & = 90°. The damping loss factors of three wave types
are assumed to have the same value #.

In the first example, the frequency is f = 1 kHz and the damping loss factor is # = 0-01.
The flexural wave energy is discontinuous at the plate joint showing the lower level in plate
IT as seen in Figure 2(a), and the energy levels of longitudinal and in-plane waves are higher
in plate II than in plate I as shown in Figure 2(c) and 2(e), as expected. The energy levels of
all wave types are nearly constant in each plate. From the intensity distributions of Figure
2(b), 2(d) and 2(f), the power flow pattern of each wave is visualized.

In the second example, the damping is changed to # = 0-1. The distributions of energy
and intensity of three wave types are shown in Figure 3. The average energy level of flexural
wave of this case is reduced by 10-1 dB compared with that of the first example and the
average energy levels of longitudinal and in-plane waves are reduced by 17-5 and 17-8 dB
respectively. The energy level of flexural wave is dissipated more rapidly than those of
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Figure 3. Energy and intensity distributions of two-plate structure coupled with @ =90° when f = 1 kHz,
7 =01, xo=05m and y, = 0:3m. The reference energy is 1x107*2J/m? and the reference intensity is
1x 10~ '2W/m?; (a) flexural wave energy, (b) flexural wave intensity, (c) longitudinal wave energy, (d) longitudinal
wave intensity, (¢) in-plane shear wave energy, (f) in-plane shear wave intensity.

in-plane waves which are still nearly constant in each plate because the group velocities of
longitudinal and in-plane waves are much larger than that of flexural wave. It is shown that
the energy difference of each wave between plates I and II at the joint is increased as the
damping is increased. The corresponding intensity distributions are illustrated in Figure
3(b), 3(d) and 3(f).

In the next example, the frequency and the damping loss factor are f= 10kHz and
n = 0-01 respectively. Comparing Figure 2 with Figure 4, the global variation of the energy
increases and the average energy level is reduced as the frequency is increased. The energy
transmission paths are not changed significantly. If the damping is increased to # = 0-1 with
the same frequency, the energies decrease more rapidly, as shown in Figure 5. It can be
found that the in-plane wave energies have the maximum values at a place in the joint near
the location of the input power. At the right end of plate II, the in-plane wave energies are
higher than the flexural wave energy. From these results, it is verified that the in-plane
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Figure 4. Energy and intensity distributions of two-plate structure coupled with @ = 90° when f= 10kHz,
7 =001, xo =05m and y, =0-3m. The reference energy is 1x 10" '2J/m? and the reference intensity is
1 x 10712 W/m?; (a) flexural wave energy, (b) flexural wave intensity, (c) longitudinal wave energy, (d) longitudinal
wave intensity, () in-plane shear wave energy, (f) in-plane shear wave intensity.

waves are important in transmitting the vibration energy of a coupled plate structure with
large damping at a high-frequency range. The corresponding intensity distributions are
shown in Figure 5(b), 5(d) and 5(f).

In addition to the previous figures, Figure 6 shows the energy level of each wave type
averaged through plate IT as a dependent variable of the joint angle @ varying from 0 to 90°.
When the joint angle is 0° (a single-plate case), the average flexural wave energy level of
plate II has maximum value, but in-plane wave energy levels are 0 dB, as shown in Figure 6.
However, if the joint angle is slightly increased, in-plane wave energies increase very fast,
but the flexural wave energy decreases a little. In the case that the frequency is f = 1 kHz
and the damping is # = 0-01, the energy level of every wave type has nearly constant values
in the range where @ is above about 20°, as shown in Figure 6(a). If the frequency is
increased to f= 10kHz on the same damping condition, the energy levels are nearly
constant in the range above about 30°, as shown in Figure 6(c). When the damping is
changed to n = 0-1, the energy levels are shown in Figure 6(b) and 6(d).
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Figure 5. Energy and intensity distributions of two-plate structure coupled with @ = 90° when f= 10kHz,
N =01, xo=05m and y, = 0-:3m. The reference energy is 1x 10 *2J/m? and the reference intensity is
1x 10712 W/m?; (a) flexural wave energy, (b) flexural wave intensity, (c) longitudinal wave energy, (d) longitudinal
wave intensity, () in-plane shear wave energy, (f) in-plane shear wave intensity.

7. CONCLUSIONS

Power flow models of finite thin plates have been developed for longitudinal and in-plane
shear waves with the assumption that all of the waves are plane waves. The derived energy
equations are applied to predict the energy and intensity distributions of a two-plate
structure coupled at a certain angle. For finite coupled plates, it has been found that the
in-plane wave energy levels are higher than those of the flexural waves at relatively
high-frequency ranges and high damping when the transverse exciting force is applied to the
structure. Moreover, the energy transmission paths are understood.

The derived power flow models can be used to predict the time- and space-averaged
energy and intensity distributions of plate structures undergoing in-plane vibration in the
middle-high-frequency ranges.



POWER FLOW OF COUPLED PLATES 667

90 90
80 M LD 80 | ®
70 - 70 F
@ 60 8 60
ER  — N :g 50
% 40 g 40 —
c |5} A N N
5 30 5 30
20 20
10 | 10
0 1 1 1 1 1 1 1 1 0_ 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Joint angle (deg) Joint angle (deg)
90 90
© d
80 - 80 I @
70 70 F
g 60 260
3 50 50+
g 2 NH—G—@—QY
2 30 230F '
20 20 |
10 ¢ 10 b
0 1 1 1 1 1 1 1 L 0 1 1 1 1 1 Il Il 1
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Joint angle (deg) Joint angle (deg)

Figure 6. Average energy levels of plate II for various joint angles; (a) f = 1 kHz and = 0-01, (b) f = 1 kHz and
n =01,(c)f=10kHz and n = 0-01, (d) f = 10kHz and 5 = 0-1: <&, flexural wave energy; -A-, longitudinal wave
energy; ——, in-plane shear wave energy.
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