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In this paper, a new estimate for periodic non-sticking (i.e., zero stop per cycle) solutions is
presented for the steady state responses of the Coulomb friction oscillator subjected to
harmonic loading. Compared with the Den Hartog (1931 ¹ransactions of the American
Society of Mechanical Engineers 53, 107}115 [1]) estimate, the new estimate leads to the
same formulae for the maximum displacement and its time lag, but only the new estimate
o!ers the closed-form formulae for the maximum velocity and its time lag. More
importantly, a simple formula is derived for estimating the minimum driving force amplitude
needed to prevent an oscillating object from sticking to the friction surface on which it slides.
The validity of the assumptions made for the new estimate and the accuracy of the formulae
developed are con"rmed by comparing with the exact solutions (Hong and Liu 2000 Journal
of Sound and <ibration 229, 1171}1192 [2]). It is also found that there exists the best driving
force amplitude for maximum dissipation e$ciency.
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1. INTRODUCTION

Friction is present in all machines and structures incorporating parts with relative motion.
In some instances the motion may be induced by vibration and may result in a stick}slip
interaction. Friction is also the principal source of dissipation, which may be a desirable
property in some machinery and building applications, such as brakes and base isolators.
To prevent an oscillating object from sticking to the friction surface on which it slides is an
important issue in engineering sciences and industrial applications; see, e.g., references [3,
4]. As early as in 1931 Den Hartog [1] was able to simplify the frictional oscillation
problem, presenting a periodic non-sticking (i.e., zero stop per cycle) solution of the steady
state responses of the Coulomb friction oscillator subjected to simple harmonic loading.
The same problem was treated by using a number of techniques, such as various time
domain numerical integration methods [5],various phase plane methods [1, 6, 7], the
incremental harmonic balance method [8], equivalent linearization method [9, 10], etc.

Den Hartog's formulae are simple yet signi"cant in the sense that they are a handy tool
for the engineer's judgement. The signi"cance is that it e!ectively reveals the factors of
in#uence. The simplicity comes from a crucial assumption typical of the phase plane
methods on the phase plane which is close to reality on many occasions. The study based
0022-460X/01/300883#16 $35.00/0 ( 2001 Academic Press



Figure 1. The mass}spring-friction oscillator, where the friction refers to Coulomb's perfect dry friction between
the mass and the ground surface.
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upon the exact solutions (see, e.g., references [2, 5]) made clear the prevalence of the motion
of zero stop per cycle in the steady state, thus con"rming the signi"cance of the formulae.
However, Den Hartog's method could only estimate the maximum displacement and its
phase lag (and hence its time lag), but failed to estimate the maximum velocity and its time
lag. Moreover, an even more important issue is to develop a simple yet e!ective formula for
predicting the minimum driving force amplitude to prevent an oscillating object from
sticking to the friction surface. This issue has not yet been solved in the literature including
Den Hartog [1], and several recent articles studying the base isolation behavior with
friction [11}17].

The present paper thus aims to extend Den Hartog's work, developing simple formulae
for use in engineering applications. The derived formulae are exact solutions of an
approximate theory, the accuracy of which is also examined critically in the paper.

To begin with, we show the governing equation of the harmonically excited oscillator as
follows (see Figure 1):

mxK (t)#r(t)"p
0

sinu
d
t, (1)

where p
0

and u
d

are the amplitude and angular frequency, respectively, of the driving
harmonic force; t is time; a superposed dot represents time di!erentiation; x, xR , xK and
m denote the position co-ordinate, velocity, acceleration and mass, respectively, of the body
of the oscillator. The co-ordinate x is chosen such that x"0 is the static equilibrium
position. In the Coulomb friction oscillator the constitutive force r is composed of the
spring force r

b
and the friction force r

a
, with two prescribed positive constants: the spring

sti!ness k and the friction bound r
y
. That is, r"r

a
#r

b
, r

b
"kx, and Dr

a
D)r

y
.

If the body of the oscillator is subjected to a harmonic base translation u
g
(t)"u

g0
sin u

d
t,

u
g0

being the amplitude of the periodic base excitation, the equation of motion may be
recast to the same equation (1) by setting p

0
"ku

g0
and re-designating x, xR , xK to be relative

to the base.

2. A NEW ESTIMATE OF THE STEADY STATE RESPONSES

Let us consider a steady state non-sticking cycle and assume the phase curve of such
a cycle in the phase plane (x, xR ) to be symmetrical with respect to the origin as shown in
Figure 2. Therefore, the phase curve is closed in the phase plane and it su$ces to consider
only one half of the curve, say the right branch. (One can also choose the left branch and
obtain the same results as ours, but neither the upper branch nor the lower branch each of
which gives the Den Hartog results.) Let us denote by D

0
and <

0
the maximum

displacement and velocity, respectively, of the steady motion. Here, we do not assume that
the points of the maximum and minimum velocities are located on the xR -axis, and allow



Figure 2. A typical steady state non-sticking oscillatory response in the phase plane, where t
1
, t

2
, D

0
, <

0
and D

1
are to be determined.
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these two points to deviate from the xR -axis with an unknown deviation D
1

as shown in
Figure 2. In view of the periodicity of the input and the symmetry assumption, we further
assume (x, xR ) equal to (D

1
, <

0
), (D

0
, 0), (!D

1
, !<

0
) and (!D

0
, 0) at time t

1
, t

2
, t

3
and t

4
,

respectively, with

t
3
"t

1
#

n
u

d

, t
4
"t

2
#

n
u

d

, (2, 3)

where t
2

is the time at which x (t) reaches its maximum value in a steady state cycle, while t
4

is the time at which x (t) obtains its minimum value; similarly, t
1

is the time at which xR (t)
reaches its maximum value, while t

3
is the time at which xR (t) obtains its minimum value.

We now determine the "ve parameters, namely the maximum displacement D
0
, the

maximum velocity <
0
, the deviation D

1
and the time instants t

1
and t

2
so as to match

the exact solutions of the steady state responses. In the time interval t
1
)t)t

2
the steady

state solution of equation (1) is
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Here

A :"
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k (1!X2)
, B :"

(1!X2)A
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n
:"S

k

m
, a :"

p
0
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y

, X :"
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d
u

n

, (5}9)

in which u
n
is the natural frequency, a the force amplitude ratio, and X the frequency ratio.

B"r
y
/k may be viewed as a virtual friction displacement at which the slider just sustains

enough spring force to overcome the friction bound and to start the sliding. Similarly, in the
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time interval t
2
)t)t

3
we have

x
2
(t)"A sinu

d
t#B#a

2
sin u

n
(t
3
!t)#b

2
cosu

n
(t
3
!t). (10)

The four constants a
1
, b

1
, a

2
and b

2
can be determined using the following four conditions:
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As a result we obtain
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With equations (15), (16), (2) and (3) the four conditions
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1
(t
2
)"D

0
, x
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become the following four equations:
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At the same time, letting xK
2
(t
1
#n/u

d
)"0 for the minimum velocity at t"t

3
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1
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d
,

we obtain
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where
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1
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u
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t
1
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Equations (21)} (25) taken together can be used to determine the "ve unknowns t
1
, t

2
,<

0
, D

0
and D

1
.
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3. VALIDITY OF THE ASSUMPTIONS

Until now we have not yet checked the validity of the symmetry assumption [cf.
equations (2), (3), (11)}(14) and (17)} (20) in the above, and also the assumptions used by
Den Hartog [1]]. In order to account of such problems let us de"ne four error measures as
follows:

Error 1 :"D maxx (t)#minx(t)D/maxx(t),

Error 2 :"G
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,

in which ¹ :"2n/u
d
is the period of the driving force.

First, the exact solutions in the steady state were derived by Hong and Liu [2]:
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when time t is large. Here, t
i

is the initial time, and x(t
i
), xR (t

i
) and r (t

i
) are the initial

displacement, initial velocity and initial constitutive force respectively. On the basis of the
calculated values of the exact solutions, the four error measures were calculated for the
frequency ratio X in the range 0)6}2)0 and for di!erent values of 1/a"0)3, 0)4, 0)5, wherein
all the steady motions had zero stop per cycle [2]. The errors were found rather small, of the
order of 10~7}10~5 for most of the cases, but near the resonance point, that is X"1, some
peaks appeared and the errors were of the order of 10~4}10~2 as shown in Figure 3. The
results suggest that the assumption made for the new estimate (and the Den Hartog
estimate) is acceptable.

4. CLOSED-FORM SOLUTIONS OF THE MAXIMUM DISPLACEMENT

Eliminating AX cosu
d
t
2

from equations (21) and (22), and A sinu
d
t
2

from equations (23)
and (24) we obtain
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Figure 3. The errors of the assumptions.
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From these equations it follows that
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The solutions of equations (28) and (29) are
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which together give
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From equations (32) and (35) it is obvious that
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Employing this in equation (27) yields

<
0

u
n

"AX cosu
d
t
1
#S

2B2

1#cos n
1

!(B#D
1
!A sin u

d
t
1
)2 . (37)



OSCILLATION FORMULAE FOR COULOMB FRICTION 889
Equations (33), (34), (30), (31) and (35) together lead to
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Substituting equations (37)}(39) into equation (23) gives

A sinu
d
t
2
"D

0
. (40)

Similarly, substituting equations (37)} (39) into equation (21) leads to

A cosu
d
t
2
"
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1

X (1#cosn
1
)
. (41)

However, the substituting of equations (37)} (40) into equation (24), and of equations
(37)}(39) and (41) into equation (22), give no new equation but equation (36) again.

From equations (40) and (41) it follows that

D
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2
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By equations (40) and (41) we have

t
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D
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A
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Note that the value of t
2

is taken in the range n/(2u
d
)(t

2
(3n/(2u

d
). The above equations

give the closed-form solutions of D
0

and t
2

respectively. Equation (42) can be
non-dimensionalized such that the formula

D
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depends only on two dimensionless parameters X and a. In Figure 4, the results
calculated by the above new estimate are compared with the exact responses in the steady
state for several values of a. For the calculations of the exact responses we "xed the values
with m"50 kNs2/m, r

y
"5 kN, u

d
"2n rad/s, and the other parameters were then

computed by u
n
"u

d
/X, k"mu2

n
, and p

0
"ar

y
. On the other hand, for the estimation

done here the parameters X and a were restricted to render the oscillator non-sticking. It
can be seen that the new estimate gives a very accurate estimation of the maximum
displacement for all a investigated. The precise criterion for non-sticking will be derived in
section 7.



Figure 4. The comparison of the dimensionless maximum displacement between the exact solution and the new
estimate for six values of 1/a: **, exact; j, estimated.
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5. CLOSED-FORM SOLUTIONS OF THE MAXIMUM VELOCITY

Combining equations (38) and (39) gives

B(1#cosn
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According to equation (25), we replace the term B#D
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by A(1!X2) sinu
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so that
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On the other hand, equation (25) can be written as
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Figure 5. The two phase lags u
d
t
1

and u
d
t
2

for six values of 1/a.
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by equations (5)} (9). Substituting the above equation into equation (37), we obtain
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2
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Similarly, a dimensionless version of the above equation can be written as
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(49)

where D
1
/B is the non-dimensionalized deviation.

We "rst solve equation (46) for t
1
, then formula (47) for D

1
, and "nally formula (48) for<

0
.

According to t
1

solved from equation (46) and t
2

solved from equation (43), we plot the two
phase lags u

d
t
1

and u
d
t
2

in Figure 5 for 1/a"0)1, 0)2, 0)3, 0)4, 0)5 and 0)6. The



Figure 6. The variation of the dimensionless deviation D
1
/B with respect to the frequency ratio X for six values

of 1/a.
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dimensionless deviations D
1
/B are plotted in Figure 6, which show that the larger the force

ratio a is, the larger the deviation D
1
/B will be in the range when X(1. When X'1, these

curves merge together and tend to zero values. In Figure 7 the results calculated by equation
(49) are compared with the exact responses in the non-sticking steady state for the values of
1/a"0)1, 0)2, 0)3, 0)4, 0)5 and 0)6. It can be seen that the estimation "ts very well with the
exact maximum velocity [2].

6. REMARKS ON DEN HARTOG'S ESTIMATE

A famous estimate of Den Hartog [1] and Hundal [6] that matches only the following
conditions:

x(0)"D
0
, xR (0)"0, x (n/u

d
)"!D

0
, xR (n/u

d
)"0, (50}53)

under p
0
cos(u

d
t#/) has been proposed by Den Hartog [1] to derive the steady state

non-sticking oscillation solutions. There are only two unknowns D
0
and / that are required

to be matched. In the lower branch of the phase curve in the plane (x, xR ) (see Figure 2), the
resulting steady state response was found to be

x(t)"A cos(u
d
t#/)#B#C

1
sinu

n
t#C

2
cos u

n
t (54)

in the range 0)t)n/u
d
, where A and B were de"ned in equations (5) and (6) respectively.

Using the "rst two conditions in equations (50)}(53) he obtained

C
1
"XA sin/"

!B sinn
1

1#cosn
1

, C
2
"D

0
!B!A cos/"!B. (55, 56)

Then, by matching the remaining two conditions in equations (50)} (53) the maximum
displacement D

0
was given by equation (42) and it phase lag was /"u

d
t
2
!n/2 (and hence

its time lag t
2
!n/(2u

d
)) with t

2
given by equation (43). It is thus concluded that the new



Figure 7. The comparison of the dimensionless maximum velocity between the exact solution and the new
estimate for six values of 1/a: **, exact; j, estimated.
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estimate and the estimate of Den Hartog provide the same formulae for the maximum
displacement D

0
and its time lag t

2
!n/(2u

d
) (and hence its phase lag u

d
t
2
!n/2), but the

new estimate does give additional information about the maximum velocity<
0

and its time
lag t

1
!n/(2u

d
) (and hence its phase lag u

d
t
1
!n/2).

7. MINIMUM DRIVING AMPLITUDE REQUIRED TO AVOID STICKING

What is the minimum driving amplitude required to avoid sticking? More precisely, in
the parametric space, what is the border line bounding the domain of non-sticking
oscillations? Derived below is a precise formula for the border line based on the
zero-duration criterion of the sticking phase [2]:

Dp
0
sinu

d
t!kx(t)D*r

y
. (57)

Accordingly, the border line is determined by the following conditions:

xR (t
2
)"0, Dp

0
sin u

d
t
2
!kx(t

2
)D"r

y
. (58, 59)



Figure 8. The minimum driving force amplitude required to prevent sticking; the solid curve represents
equation (61).
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With the aid of equations (17)} (20), (40) and (42) the conditions (58) and (59) are reduced to

B2AC
aX

1!X2D
2
!C

sinn
1

1#cosn
1
D
2

BA
k

r
y

!

p
0

r
y
AB

2
"X2, (60)

which, on using equations (5)} (9), is further re"ned to

a"SA
1

X2
!1B

2

C1#A
X sinn

1
1#cosn

1
B
2

D. (61)

This equation gives a closed-form formula for the border line bounding the domain of steady
state non-sticking oscillatory responses in the space of parameters a and X. It provides
engineers the minimum driving force amplitude required to prevent sticking, for di!erent
friction bounds and di!erent frequency ratios. In Figure 8 it is displayed as a solid line;
besides, the points of zero stop per cycle obtained from the exact solutions [2] are also
displayed for comparison. It can be seen that the above formula gives a very accurate
estimation of the border line of the domain of steady state non-sticking oscillatory responses.
The value of a which is greater than what the above formula predicts will make the oscillator
vibrate without stops in the steady state, so that the criterion for zero stop per cycle is

a*SA
1

X2
!1B

2

C1#A
X sinn

1
1#cosn

1
B
2

D. (62)
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In passing we note that the rationale for the above derivation is markedly di!erent from
that of Den Hartog [1], who derived a formula [equation (21a) therein] to specify the
validity domain of non-sticking oscillation motions based on the assumption that xR (t)(0
in the range 0(t(n/u

d
. Thus, this formula depends on time t and hence fails to give

a de"nite estimation of the minimum driving force amplitude to avoid sticking.

8. SIZE OF THE DISSIPATION LOOP

For the engineering purposes of dissipating undesirable power through contact friction
we now investigate the energy dissipation capacity of the friction oscillator. The size of the
energy dissipation loop is

s"4r
y
D
0
, (63)

where D
0
is the maximum displacement in the steady state. Substituting equation (42) for D

0
into equation (63) and normalizing s, we obtain

K
1
:"

2ks

p2
0

"

8

aD1!X2DS1!A
(1!X2) sinn

1
aX(1#cosn

1
)B

2
. (64)

Some remarks on the above formula follow. (1) The left-hand side may be understood as the
dissipation per unit elastic energy, since p

0
/k is the lossless static displacement of the elastic

response and p2
0
/(2k) is the lossless static elastic energy. (2) The "rst term on the right-hand

side decreases with a for each "xed X; conversely, the second term increases with a.
Therefore, there exists a particular value of the best a to maximize K

1
for each "xed X;

letting dK
1
/da"0 for each "xed X we can obtain such a and the corresponding maximum

of K
1

as follows:

a"
J2 D(1!X2) sinn

1
D

X(1#cos n
1
)

, (65)

Kmax
1

"

4X(1#cosn
1
)

(1!X2)2Dsin n
1
D
. (66)

The variations of the above a and Kmax
1

with respect to X are plotted in Figures 9(a) and (b)
respectively, where only applicable points are shown and non-zero stop points had been
excluded by using equation (62). Now, we are in a good position to assess the in#uence of
the control parameter a on K

1
. Equation (64) is used to investigate the variation of the

non-dimensionalized size of the dissipation loop with respect to a, when k, p
0

and X are
"xed, that is, the in#uence of the friction bound r

y
on the size of the dissipation loop. In

Figure 10(a) the variation of K
1
with respect to 1/a is plotted for X"1)2, 1)3, 1)4, 1)5, 1)6, 1)7

and 1)8. For energy dissipation purposes we usually choose the best a to maximize the
dissipation loop size. Under this a the friction oscillator will achieve the best performance of
dissipating as much energy as it can.

Similarly, in order to account for the in#uence of the sti!ness k on the size of the
dissipation loop when m, p

0
, u

d
and a are "xed, we may introduce the following

non-dimensionalized size of the dissipation loop:

K
2
:"

2mu2
d
s

p2
0

"

8X2

aD1!X2DS1!A
(1!X2) sinn

1
aX(1#cos n

1
)B

2
. (67)



Figure 9. (a) The variation of the best a with respect to X. (b) The variation of the maximum dissipation loop size
with respect to X.
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Let mu2
d
": k

d
be the pseudo-elastic sti!ness. The left-hand side of the above equation may

be written as s/(p2
0
/(2k

d
)), which, corresponding to (1) in section 8, may be deemed as the

dissipation per lossless static pseudo-elastic energy. Equation (67) is used to investigate the
variation of the non-dimensionalized size of the dissipation loop with respect to X, when
m, p

0
, u

d
and a are "xed, that is, the in#uence of the elastic sti!ness k on the dissipation loop.

In Figure 10(b) the variation of K
2

with respect to X is plotted for 1/a"0)1, 0)2, 0)3, 0)4 and
0)5.

9. CONCLUDING REMARKS

A new estimate was developed for the steady state non-sticking oscillatory responses. The
resulting formulae (42) and (43) can be used to determine the maximum displacement and its
time lag t

2
!n/(2u

d
). Since the maximum velocity point in the phase plane may deviate

from the velocity axis with a deviation D
1
, which increases when the force ratio a decreases,

we proposed equations (48) and (46) for the estimation of the maximum velocity and its time
lag t

1
!n/(2u

d
). It supplied very good results when compared with the exact maximum

velocities. The formulae for the maximum size of the dissipation loop were derived. It is
found that for a "xed frequency ratio there exists a value of the best driving force amplitude
to maximize the dissipation loop size. The closed-form formula (61) of the border line of



Figure 10. (a) The variation of K
1
with respect to 1/a for seven values of X. (b) The variation of K

2
with respect to

X for "ve values of 1/a.
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non-sticking oscillation motions was derived. In view of the detrimental e!ect of sticking on
the operation and performance of oscillators, this simple formula must be very useful for
engineers in selecting a minimum driving force amplitude to prevent an oscillating object
from sticking to the friction surface.
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