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In their paper [1] Lundgren, Sethna and Bajaj have made a theoretical and experimental
study of self-induced non-planar vibrations of a flexible tube conveying a fluid. The tube
was fixed at one end and the fluid issued from a nozzle inclined to the axis of the tube at the
free end. In order to study the stability boundaries for flow-induced motions of the tube,
when the nozzle angle is small, authors of the paper [1] have used the following, represented
in operator form, equations for small in-plane (1) and out-of-plane (v) motions

A(p, ) =0 (1
with boundary conditions

Y=0goE=0 at&é=0, W =0 até=1  B(p.Opy =0 até=1, (2)

where V) is either u or v, p = \/(MU2L2/EI)(A/A}~), M is the fluid mass per unit length, U is
the flow rate, L is the tube length, EI is the flexural rigidity, 4;, A are the cross-sectional
areas of the nozzle and the tube, respectively, 0; is an angle, with the z-axis of a Cartesian
co-ordinate system, which is being made by a nozzle when the tube being in its straight
undeformed state extends along the z-axis, ¢ = s/L, where s is the arc length along the
deformed tube. Since the tube is inextensible s is used as a material variable. A and B are
linear differential operators in = and ¢ with p and 0; as parameters, t = t//(m + M)/EIL?,
7 being a dimensionless time, and m is the tube mass per unit length. Both A and B have
been expanded by Lundgren et al. in powers of 0; as follows:

Alp, 0)) = Ao(p) + 0741 (p) + -+, ©)
where
Ao(p) = 0%/0E* + p*(0?/08%) + 0%/01® + 2pp'12(0?/070¢), 4)
B(p, 0)) = 0°/0° + 07 B, (p), )
B ={M/(m + M)}(4;/A). (6)
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The linear operators A, and B, are different for the u and v problems. Those for u take the
form

0 1,0 3(dog\* o do, 02 LI redd, 0%()
/11,u(,0)—65{—2,0 6§+2<d5> 6§+3¢0dé@§2+(p0_£ [fo(ﬁaﬂdé]dé}’

(7
By.(p) = — p*(1 — cos p)(6/0¢), ®)
while those for v take the form
0 1 ,0 3(doy\* o
A1.(p) :65{_2'0265 +2<d;> 55}’ )
ldo, 0
Bi.(p)=p*| —2=()d 10
wlo) = 7| G A 0 (10

where & (&) = cosp —cosp(l — &).

It is immediately apparent that equations (1) cannot be simply solved. They can be used,
however, to calculate the critical p by using, for example, Galerkin’s method. In the analysis
presented here Galerkin’s method is used with the following shape functions, which satisfy
the boundary conditions (2):

Do = P+ 0 Pru = 2,,1,1 {Sin p(1 — &)+ pécosp
3
+ (npn)3 [nné — sin(nné)] — sinp + C,07 [nné — sin(nné)]}, (11)

¢n,v = qst?,v + 012 ¢n1,v =

{sin p(1 — &)+ pécosp

2n—1
+ (np;s [nné — sin(nné)] — sinp + C,0% [nné — sin(nni)]}, (12)
Here
_ p*(1 —cosp)(1 —cosp — (2p*/(nn)?))
= + o2 )0 — cosp)] (13
c — p> sin®p — 2(1 — cos p)(p*/(nm)* + cos p) + (2p*/(nn)*[(nm)* — p>1)(1 + cos p)
© 2(nm) (nm)* + p*07[1 — cos p — (p*/(nm)* — p*)(1 + cos p)] ’

(14)

n is an odd integer.
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One can check by substitution that the shape functions (11) satisfy the boundary
conditions (2). Substitution and differentiation shows that at £ =0

3

Ble=0)= 5 {smp(l—f)+pgcosp+ s o = sin(n)

(n

—sinp + C,0;7 [nné — sin(nné)]}

3

1
= {sinp(l —0) + pOcos p + L [nn0 — sin(n70)]

(nm)?

—sinp + C,07 [nn0 — sin(nnO)]}

1
— 5o finp —sinp} = .

3

de,.. 1
. = nl{—pcosp(l—é)+pcosp+ p

a 3 () [nt — nmcos(nné)]

+ Cu()JZ- [nm — nn COS(I’mf)]}

3)3 [nt — nmcos(nn0)]

1
= { pcosp(1—0)+pcosp+(

+ C,0j[nm — nn cos(er)]}

3

1
=51 {_ pCcosp + pcosp + (:n)3 [nm — nn] + C,0; [nm — nn]} =0.

Substitution and differentiation shows that at £ =1

p’(nm)?
(nm)®

4’
dé?

= 2%{ p?sinp(l — &) + ———— [sin(nné)] + C,0; [(nm)* sin(nnf)]}

= % {_ ,02 slnp(l — 1) + p;fz;?z [Sln(nnl)] " Cuejz [(I’lTC)Z Sln(nnl)]} -0
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Further, substituting equation (11) into equation B(p, 0;) @, ., = *$,,../0E> + 07B1 .(0) P
= 0 and performing the elementary differentiation at £ = 1 gives

P4 A6
B(6. 0) b = 0 raf0E + O3B, a(p)hns = 5% = 037(1 — cosp) %

= ZTl—l {p3 cosp(l — &)+ p:’iz;?3 [cos(nné)] + C,07 [(nn)3cos(nn§):|}

1
— 07p*(1 — cos p)F {— pcosp(l —&)+ pcosp

03

+ —— [nn — nncos(nné)] + C,07 [nn — nn cos(nné)]}
(nm)

1

=——{p3cosp(l — 1)+ p(nm)? [cos(nml)] + C,0%[(nm)*cos(nml)]
on 1 (nn)3 J

1
—02p%(1 — cosp)zn_1 {—pcosp(l — 1)+ pcosp

03

+ —— [nn — nncos(nnl)] + C,07 [nm — nn cos(nnl)]}
(nm)

1
T o1 {— C.0;(nm)’} — 07 p*(1 — cos p)

1 2 3
X3 {— p+pcosp + EZZ;? + Cu0f2(nn)}

1
= -1 {— Cqu(’m)a} — Gfpz(l — cos p)

1
1 {—p + pcosp

2(nm)p?
+ ()3 +C,,9f2(nn)}

202
J

1 2p°0
=~ 9}(nn)3Cu|:1 + (571)2 1 - cosp)]

1

+ 0%p3(1 — cos p) l—cosp—i =0
2n—1 J (nn)z

That is to say, the shape functions (11) satisfy the boundary conditions (2). Similarly, it can
be shown that the shape functions (12) also satisfy the boundary conditions (2). In
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particular, substituting equation (12) into equations

1
()]
Blp, 0) s = 0o/ O + 02 J 40 nu g _

o d& ¢
and performing the elementary integrations gives

de, 09, .,
B9, 0) e = /o + 037 [ 20 T

1 3
St (p7cos p(l — &) + (fn)3

(nm)® cos nné + C,0% (nm)® cos nné}

1 r
T 07 p° f sinp(1 — f)(pCOSp —pcosp(l —¢)
0
p? 0
)y cosnné + C07nn — C,07nmcos nn§>d§
n n

3

= an_l [p?cosp(l —1) + (: 7 (nm)® cos nnl + C,07F (nn)* cosnml]
T
1 1
— 07 I <p4cospJ sinp(l — &)d¢é — p4f sinp(1 — &)cosp(l — &)dé
0 0

p3 1
+ p3< + Cﬁfrm) J sinp(1 — f)d{)
0

(nm)?

1 3 1
+ 0%p° <(rle7T)2 + C,ﬁfnn) L sinp(1 — &)cos nnédé

3

1
710f%sin2p

1
2n71

1
=———C,0;(nn)® —

TR 07 p3 cos p(1 — cos p) +

2"

Lo P 2
Oip ()2 + C,07nm (1 — cos p)

1 4 3
I S <(p 2+cvefnn>(1+cosp)
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p?
~ 51 0; C,(nm) [(nn)Z + p20? [1 —cosp — m (1 + cos p):|:|

1 92 3 2
+ T 12'0 [sm p—2(1 —cosp) [(fn)z + cosp]}

L Lo 2p*
2712 [(nm)*[(nm)* — p?]

1+ cosp)] =0.

That is to say, the shape functions (12) also satisfy the boundary conditions (2). Note that in
deriving the above equations, expressions (13) and (14) for C, and C, have been used.

The partial differential equation (1) can be solved to the required approximation by
Galerkin’s method. Then, by developing (¢, ) on the functions ¢,(¢), which satisfy the
boundary conditions, Galerkin’s conditions can be expressed as

f A(p, O D) (@) dE =0, m=1,3,5,....N, (15)
with
MED= Y hE9= Y n@e@, k=123 (16)

where r,(t) are the time-dependent amplitude coefficients to be obtained from the ordinary
differential equations (15) by a suitable integration technique, ¢,(¢) are the shape functions
(11) or (12).
At the outset one must make the major hypothesis that equations (1) have possible
solutions having the form (16) which converge on the true solutions as N — co.
Following Lundgren et al. the stability boundary is found by seeking a solution of the
form

lﬁ(f, T) = _27 lybn(f» T) = _27 Cn¢n(5)eha k=1,2,3,... (17)

and establishing the parameter values for which Re/Z = 0. Here C,, the coefficients, form
a finite set of generalized co-ordinates, to be determined. Before solving the problem, note
that @,(¢), @..(&) are real functions and p, f are real non-negative parameters.

First consider the case 0; = 0. Substituting equation (17) into equation (15), one obtains

R Y ]
it 2 2 1/2
o 3 0, [T g e e

dg,
d¢

N 1 d4 1 d2 ., .
=et ), CJ[ ¢+p2 "5+( — I3 + 20 0k
1 0

az TP g }“’Bmdf

n=2k—

+ 208" Z C, f |:/1R¢,,+pﬁl/2 ¢"}bmdé 0, m=1,3,57.. (18
1
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where iz = Re A, Ay = Im /, 4; is the dimensionless circular frequency, /(m + M)/EIL*Q,
Q is the circular frequency of oscillation.
Equations (18) yield a system of linear equations in C, of the form

AC =0, (19)

where A is the matrix with the elements

(At AP 1240,
anm_Jvo |:d£4 +p déz +(/“R_/“I)¢n+)"R2pﬁ d—é ¢mdé

2 J 1 [xkqs,, pp dﬂ e 20)
. ac

and C is the vector with the components C,. It is in general possible to determine values of
p and f which reduce the real part of 4 to zero. Such values of p and f follow from the
equation

detA =0, with Az =0. (21)
For simplicity, one can consider a single mode approximating equation (15) for the

u problem: ie, case k=2, n=m=N =3, ¢, = ¢3,. Then, from equation (21) by
separating into real and imaginary parts, one obtains

i o, 545 : dgs.,
L [ ag TP e VR DB+ A20fT S 1 4,dE =0, (22)

d¢3,u

1
2ia [ | it 22

0

} $5.,dE =0. (23)

From equation (23), it is obvious that in the case A; # 0, the factor 2“[11(453,“ +
B2 (A5, /dE)] P, dE must be equal to zero: i.e.,

2 Jl |:/1R¢3,u + pﬂl/z d¢3’u:| ¢3,udé = 2)”R Jl (¢3,u)2 dé + Jl |:'0'Bl/2 d(¢3’u)2:|dé =0.
0 d¢ 0 0 dé
24)

It is immediately clear that for f # 0 and j o (3.,)* d& # 0 equation (24) can be re-written as

PR {pﬂ”z ) [%]dé} / {2 |, <¢3,u)2dé}

1
= —pB P[5 u(C = 1)]2/{2J (¢3.)? df}- (25)

0
Since p, f and fé(qSS,u)z d¢ remain positive i remains non-positive and hence flutter does
not occur. Substituting the appropriate expression for ¢; , at 0; = 0 from equation (11) into
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equation (25) gives the following condition of neutral stability (1gx = O):

$3..(E = 1) = poycos poy — sin pyo + pin/(Bm)* =0, (26)

where poy is the value of the mass flow parameter, corresponding to the case of neutral
stability. From equations (25) and (26), it follows that iz = 0, if

pON I 4'28. (27)
In the case where f = 0 equation (25) reduces to
Ar =0. (28)

Thus, the single mode approximation cannot exhibit flutter. This coincides with results in
reference [2] and others. With two or more modes, however, the flutter behaviour might be
expected to appear.

In a subsequent paper the authors hope to find the critical value of the mass flow
parameter for instability of flutter type by using the two-mode approximation.

In the case of instability of divergence type when 4; = 0, equation (23) becomes identically
zero and equation (22) reduces to

1 d4 " d2 y . d . q 1
J;) |: d?i’ +p2 dfz’ + /LIZQ 3u T iRzpﬁUZ fg: :|¢3,udé _ /LIZQ JO (¢3’u)2 dé
1 ! d(¢3 u)2 ! d4¢3 u d2¢3 u
1/2 o ; 2 ) _
+ Arpp fo |: d¢ dé + Jo des +p az? ¢;5,dE=0. (29)
From equation (29) the condition for the existence of a real pair g = —a + b,
where
1
a=ppPLds.(¢ =112 J (P3.)*dE, (30)
0
PB P [ hs.ulE = 1)]2}2 [ f [d4¢3 . L0 ]
=1 ’ - ‘2 S g, de, (3
B \/{ zj(l)(¢3,u)2 dé j(l)(¢3,u)2 df 0 dé‘]‘ p déZ ¢3, 5 ( )
has the form
! d4¢3,u 2 d2¢3,u
L [ acs +p ae? ¢, dE<O. (32)

Obviously, condition (32) for the existence of Az >0 in the case f#0 and that
corresponding to the case § = 0 coincide. Substituting the appropriate expression for ¢; , at
0; = 0 from equation (11) into equation (32), integrating from ¢ =0 to 1 and taking into
account that ¢;, = 0 at ¢ = 0, one obtains the following expression for determination of
the critical value of the mass flow parameter in the case of an instability of divergence type:

! d4¢3,u 2d2¢3,u
Jl) |: d£4 +p déz :|¢3,ud€

4 2 2 ) 2 1
= p;l)|:<p3(;f> — 1:| |:<p307;)> + 2cos pOD:| — 2p(3)DSIHp0D |:<p307:> — 2:| =0. (33)
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Here pyp is the critical value of the mass flow parameter for an instability of divergence type.
Equation (33) yields

Now, admissible functions (11) and (12) can be used to obtain the expressions for the
perturbation of p (since p = po + 07p; + -+, where po, = pop = 444 for instability of
divergence type) at which instability occurs. One can use equation (6.17) of reference [1]:

d*¢, d?¢, d? . d
o I 0 20 S~ — g 200 S0 200 S|
d
|:2/L0¢0+29 pH? i0:|_Ll(p0a/lO)¢0(é)' (35)

Then, for example, for the out-of-plane problem with Re A, = 0 and Re 4; = 0 equation (35)
can be written as

d4 1 . d2 1 . ) d 1 )
d?i’ + 08 d?i — (Im Zo)* @3, + 12p0BY*(Im o) fg
d2 0 0
=— P |:2Po déz 4+ Zﬁl/z(lm}o) a4z } +2(Im Zo)(Im 1) 3.,
) ﬁl/z(lm) ) ddsg,v d _ 1 2 d¢gb + d¢0 d¢g,v (36)
Po Vg Tae| T2 qe d¢ ) de |

Next, separating the real and imaginary parts of equation (36), one obtains

d4 lv dz lv dz
d?i’ +p%%—(lmlo)2¢§,v+pl,v |:2p0 4 ]—2(Im) )(Im Aq) @I,
d 1 d¢ 3(ddy\*de3, |
b -5 (S 40 |0 @
1 0
2000 i) 052 4| 29 0m ) 055 | 2o 2m g 2 0. o9

By using appropriate expressions for ¢3,, @3, from equation (12), equation (37) can be
re-written as

d*¢s,  ,d’¢3,

d*¢5.,
d54 +p0 S

4z2 —(Im20)? @3, + p1., [2100 dfz] —2(Im A9)(Im 44) @3 ,

1 ,d*¢3, do, d?®, d¢3, L3 <d<1>0> d?¢

2P0 qer TP ae ae E déz
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= — C,07(3m)*sin(3n¢) + C,07(3n) pg sin(3n&)

3
— (Im )*C,02[37E — sin(37E)] + 2pops [ phsinpo(l — &)+ £2 smBﬂé)}
— 2(Im 4o)(Im 4y ) {Sin po(l — &) + poccospo
[37¢ — sin(3né)] — sin — p—z sinpo(1 — &) + @ sin(37&)

(3 )3 Po 2 — pésin po 3n

— 3pgsin po(1 — &)cos po(l — f){— Po€os po(l — &) + pocos po
3

+ e 11— cos(3m:>]} +3 pdsin? po(1 = ©) [— p3sin po(l — &)

po . ] B
+ —sin(3n¢) [= 0. (39)

3n

Then, for & = 0, it is easily verified that equation (39) can be written as
— C,0;(3n)*sin(3n0) + C,07 (3m)*p§ sin(370)

— (Im 29)*C,07 [370 — sin(370)] + 2pop; [— pésin po(l —0) + % sm(3n0)]

3
—2(Im Z¢)(Im A4) {sin po(1 —0) + po0cospo + (3/)70)3 [370 — sin(370)] — sin po}

3
-3 [ pésin po(l — 0) + I sm(3n0)}

— 3pdsin po(1—0)cos po(l — O){ 0008 po(1—0) + pgcospy + — [1— cos(3n0)]}

(3 )2
3, ., - P . B s .
+ 3P0 sin” po(1 — 0)| — pgsinpo(l —0) + I sin(370) | = — 2ppp1..810 g
4
3
+ % sin py — 3 pgsin® py = 0. (40)

Next, assuming sin py # 0, one can re-write equation (40) as

pro =50 (1 = 3sin? po). (41)
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Solving this equation for the case of instability of divergence type results in
ot ~ —198. 42)

By following a similar procedure, the critical value of the perturbation of p at which
instability occurs with in-plane motions can also be obtained:

Pra= %(1 — 9sin? po). 43)

Substituting the value of p, obtained for the case of an instability of divergence type into
equation (43) gives

PP~ — 816 (44)

Thus, since p?, < p?, the tube becomes unstable to u perturbations as the flow parameter
is increased slowly from zero.
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