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This study discusses a modal optimal control procedure for defective systems with
repeated eigenvalues. From the view point of mathematics, although near defective close
eigenvalues are distinct, the characteristic of the system is also defective. Therefore, we have
to transform near defective systems into the defective one, and then modal optimal control
procedure for the defective systems can be extended to deal with the corresponding problems
for near defective systems with close eigenvalues. Because of the defective characteristic of
the system, we have to use an invariant sub-space recursive method with numerical stability
to calculate the generalized modes of the defective and near defective systems. The Potter's
approach is extended to solve the Riccati equations in the generalized model subspace of the
defective system. Because the order of the Jordan block matrix of the defective eigenvalues,
m, is much smaller than that of the state matrix, n, i.e., m@n, the present modal optimal
control procedure is very simple and reduces the computing e!ort for the complex system
with large number of degrees of freedom. A numerical example is given to illustrate and
verify the validity of the procedure.
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1. INTRODUCTION

In vibration optimal control, the continuous Riccati equation plays a fundamental and
important role. Many methods for solving the Riccati equation have been proposed. The
main algorithm includes the matrix transformation [1, 2], the eigenvector method [2, 3], the
Schur method [1] and the iterative algorithm [4], and so on. For the matrix transformation
method, the price for replacing the solution of a set of linear equations is to double the order
of the set; for the eigenvector method, it needs to solve all the eigensolutions of the matrix
with order 2n which may be impossible if the order n is very large; for the iterative
algorithm, it is simple, but its results depend on the selection of the initial value.

Recently, reference [5] presents a new block simultaneous iterative algorithm for solving
the Riccati equation using its special feature in optimal shape control. Because in this
algorithm the three equations are solved simultaneously and some items are common ones,
it can both save the computer memory and raise the computing e$ciency.

The standard modal control theory can be found in reference [8]. However, the above
discussions on the modal control mainly involve the control problem of the non-defective
system, which has the complete eigenvectors to span the eigenspace, i.e., the state matrix
A can be diagonalized. However, in actual engineering problems, such as general damping
systems, #utter analysis of aeroelasticity, and so on, the system which is called a defective
system has no set of complete eigenvectors to space the eigenspace [6]. In these special
cases, the state matrix A cannot be diagonalized. It is well known that the defective system
with repeated eigenvalues is ill-conditioned because the dynamic characteristic is very
0022-460X/01/310113#20 $35.00/0 ( 2001 Academic Press
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sensitive to the changes of parameters of the defective system with repeated eigenvalues, and
it can be changed into a near defective system with close eigenvalues [7]. Therefore, the
di$culty arises for designing the modal control of the defective or near defective system.
The major di$culty is that the generalized right and left modal matrices, U and V, cannot
be obtained with the standard methods for extracting the modal matrix, and that from the
view point of mathematics, the close eigenvalues of near defective systems are distinct, but
the dynamic characteristic is still defective. For these reasons, the standard methods for
obtaining the feedback matrix presented by references [1}5] cannot be directly used to deal
with the modal control problems of the defective and near defective systems.

This study will present the modal control procedure for the defective system with
repeated eigenvalues based on the modal control equations. For a near defective system, we
"rst transform it into a defective one, and then apply the same method to deal with the near
defective system. The theory is illustrated by a numerical example to prove the validity.

We start with a brief review of the generalized modal theory of the defective system with
repeated eigenvalues [6], and then give a procedure for extracting the generalized right and
left modal matrices, U and V. Finally, the Potter's algorithm for solving the Riccati
equation is extended to deal with the defective and near defective system.

2. GENERALIZED MODAL THEORY OF THE DEFECTIVE SYSTEMS

Consider linear vibrational equation

MxK#(D#G)x5 #(K#H)x"0, (1)

where it is assumed that M, D, G, K, and H are real matrices, M, D, K are symmetric
matrices, M"MT, D"DT, K"KT, corresponding to mass, damping, and sti!ness, and G,
and H are skew-symmetric matrices, GT"!G, HT"!H, corresponding to gyroscopic
and circulatory (or non-conservative positional) forces, and M is assumed to be positive
de"nite. The eigenvalue problem is as follows:

(Mj2#(D#G)j#(K#H))x"0. (2)

Using the state vector

u"C
jx

x D (3)

one has

Au"ju, (4)

where

A"C
!M~1(D#G)

I

!M~1(K#H)

0 D. (5)

In equation (5) I is the unit matrix and O is the zero matrix of the same order.
It is assumed that AM is used to denote the algebra multiplicity of the eigenvalue j in

equation (4), and GM is used to denote the number of the linear independent eigenvectors
corresponding to j. If AM"GM for the distinct or repeated eigenvalues, the system is
non-defective; if AM'GM, the system with repeated eigenvalues is defective.
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From the algebra theory for the defective matrix A, there exists non-singular matrix U,
such that

AU"UJ, (6)

where U is the generalized modal matrix of A, J is the Jordan block of A given by

J"

J
1

J
2

}
J
r

, (7)

J
i
"

j
i

1
j
i

}
} 1

j
i m

i
]m

i

r
+
i/1

m
i
"n. (8)

Equation (6) can be written in the following manner:

(A!j
i
I)u(i)

1
"0

(A!j
i
I)u(i)

j
"u(i)

j~1
, j"2, 3,2 , m

i
,

22 i"1, 2,2, r.
(9)

The conjugate and transpose of A is called adjoint system, i.e., for AH the generalized modes
satisfy the following equation:

AHV"VJH, (10)

where AH and JH are the conjugate and transpose of A and J, respectively, V is the
generalized modal matrix of the AH.

Equation (10) can be also written as follows:

(AH!j3
i
I)v(i)

j
"v(i)

j`1
, j"1, 2, 3,2 , m

i~1
,

(AH!j3
i
I)v(i)

mi
"0, i"1, 2,2 , r,

(11)

where j3
i

is the conjugate of j
i
. In general, u

i
(i"1, 2,2, r) are known as the right

eigenvectors, v
i
(i"1, 2,2 , r) are known as the left eigenvectors, u

i`1
,2 , u

i`mi~1
and

v
i`1

,2 , v
i`mi~1

are the right and left generalized modes corresponding to j
i
respectively.

The right generalized modal matrix U and the left generalized modal matrix V satisfy the
following orthogonal condition:

VHU"I. (12)

3. INVARIANT SUBSPACE RECURSIVE METHOD FOR COMPUTING
THE GENERALIZED MODES

It can be seen that if the system is non-defective, the eigenspace can be obtained by using
the normal methods such as the Gauss elimination for solving the linear equations; if the
system is defective or near defective, i.e., the eigenspace is incomplete or near incomplete,
fatal mistakes may occur while computing the generalized modes. Therefore, it is very
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important to give a reliable method for computing the generalized modes corresponding to
the defective eigenvalues j

i
.

In this section, we discuss a reliable method with digital stability, the invariant subspace
recursive method, to calculate the generalized modes of defective or near defective system.

It should be noted that equation (9) is equivalent to the following equations:

(A!j
i
I)u(i)

1
"0,

(A!j
i
I)2u(i)

2
"0,

) ) ) ) ) ) ) )

(A!j
i
I)(mi)u(i)

mi
"0,

where the eigenvector u(i)
1

is known as the "rst order generalized mode, u(i)
2
, u(i)

3
,2, u(i)

mi
are

known as the second, third,2 , m
i
th order generalized modes of j

i
respectively.

According to these de"nitions, to determine the generalized modal subspace is equivalent
to determining the "rst, second, third,2, order generalized modes of j

i
to span the

generalized modal subspace.
Assume that j

i
is the eigenvalues of A and A is the defective or near defective matrix. If the

dimension of the null space, Ker(A!j
i
I), is t

1
, the t

1
linearly independent vectors can be

found from the following equation:

(A!j
i
I )u(i)

1
"0. (13)

If the t
1

orthogonal vectors u(i)
1,1

, u(i)
1,2

,2 , u(i)
1,t1

, have been found, we use D
1

to denote the
invariant subspace spanned by u(i)

1,1
, u(i)

1,2
,2 , u(i)

1,t1
. Since the elements in D

1
are the

solutions of equation (13), D
1

is the eigensubspace of j
i
.

From equation (8) we have t
1
(m

i
, otherwise, J

mi
is a diagonal matrix. Next, we turn to

the equation

(A!j
i
I )2u(i)

2
"0. (14)

Assume that the dimension of Ker (A!j
i
I )2 is t

2
(t
2
'0). Similarly, there exists a set of

orthogonal basis u(i)
2,1

, u(i)
2,2

,2, u(i)
2,t2

, which are known as the second order generalized
modes. The basic vectors of D

1
can be extended to

u(i)
1,1

, u(i)
1,2

,2 , u(i)
1,t1

; u(i)
2,1

, u(i)
2,2

,2, u(i)
2,t2

. (15)

Therefore, the invariant subspace D
2

spanned by the set of equation (15) contains all of the
"rst and second order generalized modes. It can be shown that D

1
LD

2
and t

2
)t

1
.

According to the above recursive procedure, we get the following condition for
termination of the computation:

Ker(A!jI)k"Ker(A!jI)k`1. (16)

In such a way we obtain a set of the orthogonal basis vectors

u(i)
1,1

, u(i)
1,2

,2 , u(i)
1,t1

u(i)
1,1

, u(i)
1,2

,2 , u(i)
1,t1

; u(i)
2,1

, u(i)
2,2

,2, u(i)
2,t2

) ) ) ) ) ) ) ) )

u(i)
1,1

, u(i)
1,2

,2 , u(i)
1,t1

; 2u(i)
k,1

, u(i)
k,2

,2 , u(i)
k,tk
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and corresponding a set of the invariant-subspaces, D
1
, D

2
,2, D

k
, they satisfy

(1) t
k
)t

k~1
)2)t

2
)t

1
;

(2) D
1
LD

2
L2LD

k
.

Thus, D
k
obtained by the recursive procedure is the generalized modal subspace we need.

The invariant subspace recursive procedure for computing the generalized modes of the
defective systems is summarized as follows:

(1) Form A and compute j
i
(i"1, 2,2, m

i
) which are repeated defective eigenvalues;

(2) Let M"A!j
i
I, W"I, t"0;

(3) Identity if m
i
"t turn to 8, otherwise, turn to 4;

(4) Take the singular value decomposition of M

M"UH

p
1

p
2

}

p
t1

}

0

W.

(5) Compute
M"W3 HMW3 ,

W3 "C
W

ID.
(6) Record W"WW3 ;
(7) t"t#t1, turn to 3;
(8) Output W, stop.

Here, W is the right generalized modes U that we need. The details of the invariant
subspace recursive procedure can be found in reference [7].

4. MODAL OPTIMAL CONTROL ALGORITHM FOR SOLVING RICCATI
EQUATIONS OF THE DEFECTIVE SYSTEMS

4.1. THE POTTER ALGORITHM [2]

Consider the control system indicated by the following state equation:

X0 (t)"AX#BZ(t),
(17)

y(t)"CX(t),

where the state matrix A as given by equation (5). X(t)3Rn]1 is the state vector, Z(t) is the
input, y(t)3Rn]1 is the output vector, B3Rn]1 and C3Rq]n were called the actuator
distribution matrix and sensor distribution matrix, respectively, indicating the locations of
control forces and sensors.
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The object is to determine an optimal control minimizing the quadratic performance
measure [8].

J"
1

2
XT(t

f
)HX(t

f
)#

1

2 P
t
f

t
0

[XT(t)QX(t)#ZT(t)RZ(t)] dt, (18)

where H and Q are real symmetric positive semide"nite matrices and R is a real symmetric
positive-de"nite matrix. We assume that X(t

f
) is free and t

f
is "xed. The optimal control

problem using the performance measure (18) can be interpreted as the problem of driving
the initial state as close as possible to zero. The optimal feedback control gain matrix has
the form

G"R~1BTK3 (t), (19)

where K3 (t) is an n]n Riccati matrix and satis"es the Riccati equation

K30 (t)"!Q!AT(t)K3 (t)!K3 (t)A(t)#K3 (t)BR~1BTK3 (t) (20)

and subject to the boundary condition

K3 (t
f
)"H (t

f
)"H. (21)

If A, B, Q, and R are constant, the Riccati matrix approaches a constant value as the "nal
time increases without bounds, K3 (t)PK3 "constant as t

f
PR. In this case, the matrix

Riccati equation, equation (20), reduces to

!Q!ATK3 !K3 A#K3 BR~1BTK3 "0, (22)

which constitutes a set of algebraic equations called the steady state matrix Riccati
equation.

Using the Potter's algorithm, the solution of equation (22) can be reduced to an algebraic
eigenvalue problem as follows [2]:

M
1 C

E
2

F D"C
E
2

F D J
1
, (23)

where

M
1
"

AT F Q

22 F 2

BR~1BT F !A

. (24)

Solving eigenproblem (23), we can obtain the eigenvalues with positive real parts and the

corresponding eigenvector matrix C
E
2

F D. The steady state solution of the matrix Riccati
equation (21) can be obtained as

K3 "EF~1. (25)

Equation (24) indicates that the Potter's algorithm requires to compute all the
eigenvalues and corresponding eigenvectors of M

1
of order 2n. If the degrees of freedom of

the large complex system, n, is very large, the use of the Potter's algorithm is di$cult.
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4.2. MODAL OPTIMAL CONTROL ALGORITHM FOR SOLVING THE RICCATI EQUATION

OF THE DEFECTIVE SYSTEMS

Assume that j
1
"j

2
"2"j

m
"j are defective eigenvalues of A, and rest of the

eigenvalues j
m`1

,2 , j
n
are distinct, the corresponding right and left generalized modal are

U and V, which can be obtained by the invariant subspace recursive method given by
section 3.

Transforming equation (17) into the generalized modal co-ordinates through the
following modal transformation

x(t)"Um(t) (26)

yields

C
mQ
m

2

mQ
d
D"

J
m

F 0

2 F 2

0 F A
d
C
m
m

2

m
d
D#C

VH
m

2

VH
d
D BZ (t), (27)

where J
m

is the Jordan form matrix with m defective repeated eigenvalue j, K
d
the diagonal

matrix with (n!m) distinct eigenvalues

J
m
"

j 1 0

j }

} 1

0 j m]m

, (28)

K
d
"

j
m`1

0

}

}

0 j
n (n!m)](n!m)

, (29)

In equation (27), the right and left generalized modal matrices can be expressed as the
partitional form

U"[U
m
, U

n~m
], V"[V

m
, V

n~m
]. (30, 31)

m
m

and m
d

donate the generalized modal co-ordinates corresponding to the defective
repeated and distinct eigenvalues, respectively.

From equation (27) we obtain the modal control equations corresponding to the defective
repeated eigenvalues and distinct eigenvalues

mQ
m
"J

m
m
m
#VH

m
Bz

m
(t), (32)

mQ
d
"K

d
m
d
#VH

n~m
Bz

d
(t). (33)

If the following notations are introduced:

P
m
"VH

m
B, P

d
"VH

n~m
B. (34)
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Equation (32) and (33) become

mQ
m
"J

m
m
m
#P

m
z
m
(t), (35)

mQ
d
"K

d
m
d
#P

d
z
d
(t). (36)

Equations (35) and (36) indicate that the state control equation (27) has been transferred
into two set of modal control equations in terms of the modal transformation, the "rst is in
the modal subspace corresponding to the defective repeated eigenvalues, the second is in the
modal subspace corresponding to the rest of the distinct eigenvalues. Since J

m
is the Jordan

form matrix, equation (35) is still coupled, J
m

is an order of m]m, m@n. Therefore,
the solution based on equation (35) for optimal control is simpler than that of the original
state control equation (27), and the conventional algorithm for optimal control, such as the
Potter's algorithm, can be conveniently applied. In the following section, we extend the
Potter's algorithm to deal with the optimal control based on the modal control equation
(35) in the modal subspace corresponding to the defective repeated eigenvalues.

The object is to determine an optimal control minimizing the modal quadratic
performance measure based on equation (35)

J
m
"

1

2
mT
m
(t
f
)H

m
m
m
(t)#

1

2 P
tf

t0

[mT
m
(t)Q

m
m
m
#zT

m
(t)R

m
z
m
(t)] dt. (37)

Hence, the optimal modal control is given by

z
m
(t)"!R~1

m
PT

m
K

m
(t)m

m
(t)

(38)
"G

m
m
m
(t),

where the modal gain matrix G
m

is given by

G
m
"!R~1

m
PT
m
K

m
(t). (39)

The modal Riccati matrix, (K
m
)m]m , satis"es the Riccati equation

K0
m
(t)"!Q

m
!JT

m
K

m
(t)!K

m
(t)J

m
#K

m
(t)P

m
R~1

m
PT

m
K

m
(t). (40)

If Q
m
, R

m
, J

m
and P

m
are constant, the modal Riccati matrix K

m
(t)PK

m
"constant, as

the t
f
PR. In this case, equation (40) becomes

!Q
m
!JT

m
K

m
!K

m
J
m
#K

m
P
m
R~1

m
PT

m
K

m
"0. (41)

If the Potter's algorithm is used to solve equation (41) for K
m
, we have to solve the

following eigenproblem and retain the eigenvalues with positive real parts:

JT
m

F Q
m

22 F 2

P
m
R~1

m
PT

m
F !J

m
C
E
m

2

F
m
D"C

E
m

2

F
m
D J

1
. (42)

The steady state solution of the modal Riccati matrix equation (41) is as follows:

K
m
"E

m
F~1

m
. (43)
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Equation (42) shows that if the Potter's algorithm is extended to that of the modal
subspace corresponding to m repeated eigenvalues of the defective system, only 2m
eigenvalues and eigenvectors are required for computation in equation (42).

Using equation (39) we obtain the modal gain matrix

G
m
"!R~1

m
PT
m
E

m
F~1

m
. (44)

Using equation (38), the optimal modal feedback control is given by

z
m
(t)"!R~1

m
PT
m
E
m
F~1
m

m
m
(t)

(45)
"G

m
m
m
(t).

Substituting equation (45) into equation (32), we obtain the closed-loop modal equation in
the modal subspace corresponding to the m repeated eigenvalues

mQ
m
"J

m
m
m
#VH

m
Bz

m
(t)

(46)
"(J

m
!VH

m
BR~1

m
PT
m
E
m
F~1

m
)m

m
.

The characteristic equation for the closed-loop system in modal subspace corresponding to
the m repeated eigenvalues is

det [J
m
!VH

m
BR~1

m
PT

m
E
m
F~1
m

!oI]"0. (47)

From equation (47), m closed-loop eigenvalues can be obtained.
Using the generalized modal orthogonal condition (12), and equation (45) the actual

feedback control corresponding to the m repeated eigenvalues of the defective system can be
obtained

Z
m
(t)"!R~1

m
PT
m
E
m
F~1

m
VH

m
x(t). (48)

If the Potter's algorithm is used to deal with the optimal control based on the modal
equation (36), we have to solve the following eigenproblem and retain the eigenvalues with
positive real parts:

K
d

F Q
d

2 F 2

P
d
R~1

d
P
d

F !K
d
C
E
d

2

F
d
D"C

E
d

2

F
d
D J

2
, (49)

where K
d
, Q

d
, R

d
, E

d
and F

d
are the corresponding notations associated with the distinct

eigenvalues, and the corresponding solution of the modal Riccati equation is

K
d
"E

d
F~1
d

. (50)

The modal gain matrix corresponding to the distinct eigenvalues is

G
d
"!R~1

d
PT
d
E
d
F~1
d

(51)

and the optimal modal feedback control is

Z
d
(t)"G

d
m
d
. (52)



122 Y. D. CHEN E¹ A¸.
From equation (36), we obtain that the closed-loop modal equation is the modal
subspace corresponding (n!m) distinct eigenvalues

mQ
d
"K

d
m
d
#P

d
G

d
m
d

(53)

"(K
d
#P

d
G

d
)m

d
.

The corresponding characteristic equation is

det [K
d
#P

d
G

d
!oI]"0 (54)

and the actual feedback control can be expressed as

Z
d
(t)"G

d
VH

n~m
X(t). (55)

The input Z(t) in equation (17) is

Z(t)"Z
m
(t)#Z

d
(t)

"G
m
VH

m
X(t)#G

d
VH

n~m
X(t) (56)

"(G
m
VH

m
#G

d
VH

n~m
)X(t).

5. MODAL OPTIMAL CONTROL ALGORITHM FOR NEAR DEFECTIVE SYSTEMS
WITH CLOSE EIGENVALUES

The numerical analysis results show that if some changes of parameters in the defective
systems are made, the system with defective repeated eigenvalues can be perturbed into one
with close eigenvalues and the corresponding eigenvectors to near parallel, which is called
a near defective system [7]. For such a special case from the view point of mathematics,
although the close eigenvalues are distinct, the dynamic characteristic of the system is still
defective. Thus, the formula for obtaining the gain matrix in equation (51) of systems with
the distinct eigenvalues cannot be used for the case of the near defective system. In addition,
the formula for obtaining the gain matrix in equation (44) of systems with repeated
eigenvalues of defective system as discussed in the above cannot be also directly used to deal
with a near defective system with close eigenvalues. Therefore, to discuss the optimal
control problem a near defective system with close eigenvalues is necessary.

Assume that the "rst m eigenvalues j
1
, j

2
,2 , j

m
of A are close, and the rest of the

eigenvalues, j
m`1

,2 , j
n
, are distinct, and the modal matrices U and V satisfy the following

equations:

AU"UJ, AHV"VJH (57, 58)

and the orthogonal condition

UHV"VHU"I. (59)

The modal matrices U and V can be partitioned as

U"[U
m
, U

n~m
], V"[V

m
, V

n~m
], (60, 61)
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where U
m
"[u

1
, u

2
,2 , u

m
] and V

m
"[v

1
, v

2
,2, v

m
] are the right and left modal matrices

corresponding to eigenvalues, j
1
, j

2
,2, j

m
, U

n~m
and V

n~m
are the right and left modal

matrices corresponding to eigenvalues, j
m`1

,2 , j
n
. The matrix A can be expressed as

A"UJVH

"U
m
J
m
VH

m
#U

n~m
J
n~m

VH
n~m

, (62)

where

J
m
"

j
1

}

j
m

, J
n~m

j
m`1

}

j
n

. (63)

J
m

can be expressed as

J
m
"

j
0

1

j
0

}

} 1

j
0

#

j
1
!j

0
!1

j
2
!j

0
}

} !1

j
m
!j

0

, (64)

"J
m0

#dJ
0

where

J
m0

"

j
0

1

j
0

}

} 1

j
0

, (65)

dJ
m
"

j
1
!j

0
!1

j
2
!j

0
}

} !1

j
m
!j

0

, (66)

j
0
"

1

m

m
+
j/1

j
j
. (67)

Substituting equation (64) into equation (62) yields

A"U
m
J
m0

VH
m
#U

m
dJ

m
VH

m
#U

n~m
J
n~m

VH
n~m (68)

"A
r
#dA,

where

A
r
"U

m
J
m0

VH
m
#U

n~m
J
n~m

VH
n~m

, (69)

dA"U
m
dJ

m
VH

m
. (70)
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If j
i
(i"1, 2,2 , m) are the close eigenvalues, and d"max

i
Dj

i
!j

0
D , it can be shown that

the error matrix dA"U
m
dJ

m
VH

m
is a small perturbation one and its norm satis"es

EdAE
2
)EU

m
E
2
EdJ

m
E
2
EVH

m
E
2

)EdJ
m
E
2
)dm. (71)

Since the eigenvalues cannot be changed by the orthogonal transform, the eigenvalues of
A

r
are equal to m repeated defective eigenvalues, j

0
, and n!m distinct eigenvalues.

Equation (68) indicates that matrix A is equal to the sum of the defective matrix A
r
with

m repeated eigenvalues and the perturbation matrix dA, and that the dynamic characteristic
of A is also defective.

Transforming the state control equation (17) into the generalized modal co-ordinates
through the following modal transformation:

x(t)"[U
m
, U

n~m
]

m
m

2

m
d

(72)

yields

mQ
m

2

mQ
d

"

J
m

F 0

2 F 2

0 F K
d

m
m

2

m
d

#

VH
m

2

VH
n~m

BZ (t). (73)

From equation (73), we have

mQ
m
"J

m
m
m
#VH

m
BZ

m
(t), (74)

mQ
d
"K

d
m
d
#VH

n~m
BZ

d
(t). (75)

Using equation (64), equation (74) becomes

mQ
m
"(J

m0
#dJ

m
)m

m
#VH

m
BZ

m
(t), (76)

where J
m0

and dJ
m

are given by equation (65) and (66).
Equation (76) can be approximated by the following equation:

mQ
m
+J

m0
m
m
#VH

m
BZ

m
(t). (77)

Equation (77) is the same as the modal control equation (35) corresponding to the
defective system with m repeated eigenvalues j

0
which is equal to the average of the m close

eigenvalues j
i
, i.e., j

0
"1/m +m

i/1
j
i
. Therefore, the modal optimal control algorithm for

solving the Riccati equations of the defective systems discussed in the above can be used to
deal with those of the approximate system of the near defective system with close
eigenvalues.
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Using equation (45), optimal modal feedback control of the defective system is as follows:

z
m0

(t)"!R~1
m

PT
m
E
m0

F~1
m0

m
m
(t). (78)

If this modal feedback control law is used, we obtain the closed-loop modal equation of
a near defective system

mQ
m
"J

m0
m
m
#VH

m
Bz

m
(t)

(79)
"(J

m0
!VH

m
BR~1

m
PT
m
E
m0

F~1
m0

)m
m

and the corresponding characteristic equation is

det [J
m0

!VH
m
BR~1

m
PT
m
E

m0
F~1
m0

!oI]"0, (80)

which can be used to compute m closed-loop eigenvalues.
It should be noted that if the control equation of a near defective system with close

eigenvalues is expressed as one of the non-defective system with distinct eigenvalues

mQ (t)"diag (j
1
, j

2
,2 , j

n
)m(t)#VHBZ(t) (81)

thus, we have that since equation (81) represents a set of independent equations, the analysis
results based on this equation will be misleading. In addition, because the system is near
defective, the right and left modal matrix U and V in equation (57) and (58) cannot be
obtained using the following equations:

AU"UK, AHV"VK3 , (82, 83)

where K"diag(j
1
, j

2
,2 , j

n
), K3 is the conjugate of K.

From above discussions it is known that for a near defective system with close
eigenvalues, we should use the invariant subspace recursive method to compute the
generalized modal matrices U and V based on equation (9) and (11), and then the method
presented to obtain modal optimal control law of the defective system with repeated
eigenvalue can be used to deal with the problem of a defective system with close eigenvalues.

6. PERTURBATION ANALYSIS OF GAIN MATRIX OF NEAR DEFECTIVE SYSTEMS

From the above discussion, it can be seen that since the feedback gain matrix is obtained
by neglecting by perturbation of close m eigenvalues from their average value, the stability
analysis for a near defective system is required. To this end, the perturbation analysis of the
gain matrix is given as follows.

Recalling the modal control equation (76) for near defective systems, equation (42)
becomes

(JT
m0
#dJ

m
)T F Q

m
22 F 22

P
m
R~1

m
PT
m

F !(J
m0
#dJ

m
)

E3
m

2

F3
m

"

E3
m

2

F3
m

J3
1

(84)
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or

A
JT
m0

F Q
m

22 F 22

P
m
R~1

m
PT
m

F !J
m0

#

dJT
m

F 0

2 F 2

0 F !dJ
m

B
E

m0
#DE

m0

22

F
m0
#DF

m0

"

E
m0
#DE

m0

22

F
m0
#DF

m0

(J
10
#DJ

10
) . (85)

Equation (85) can be expressed in the following form

(M
10
#DM

10
) A

E
m0

2

F
m0

#

DE
m0

2

DF
m0

B" A
E

m0

2

F
m0

#

DE
m0

2

DF
m0

B (J
10
#DJ

10
). (86)

In the above equations,
DE

m0
2

DF
m0

is the change of the eigenvector matrix
E

m0
2

F
m0

and DM
10

is

the change reduced by the perturbation of close m eigenvalues. The adjoint system of
equation (86) is

(M
10
#DM

10
)T A

H
m0

2

P
m0

#

*H
m0

2

*P
m0

B" A
H

m0

2

P
m0

#

DH
m0

2

DP
m0

B (J
10
#DJ

10
). (87)

Using the perturbation theory,
DE

m0
2

DF
m0

can be obtained [7]

DE
m0

2

DF
m0

"

E
m0

2

F
m0

C1, (88)

where

C1
ij
"

!R1
ij

s
0j
!s

0i

( jOi, i, j"1, 2,2 ), (89)

R1"

H
m0

2

P
m0

T

DM
10

E
m0

2

F
m0

. (90)

Therefore, the feedback gain matrix of actual near defective system is

G
m
"!R~1

m
PT

m
(E

m0
#DE

m0
) (F

m0
#DF

m0
)~1 (91)

and corresponding optimal modal feedback control is

Z
m
(t)"!R~1

m
PT
m
(E

m0
#DE

m0
) (F

m0
#DF

m0
)~1m

m
. (92)
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The closed-loop modal equation of an actual near defective system is

mQ
m
"(J

m0
!VH

m
BR~1

m
PT
m
(E

m0
#DE

m0
) (F

m0
#DF

m0
)~1)m

m
(93)

and the corresponding characteristic equation is

det [J
m0

!VH
m
BR~1

m
PT

m
(E

m0
#DE

m0
) (F

m0
#DF

m0
)~1!oI]"0, (94)

which can be used to compute m closed-loop eigenvalues of an actual near defective system.
The modal optimal control algorithm for near defective systems with close eigenvalues is

summarized as follows:

(1) From state matrix A, and compute close m eigenvalues, j
1
,2 , j

m
, of near defective

system.
(2) Compute

j
0
"

1

m

m
+
j/1

j
j
.

(3) Compute generalized modal matrices U and V using the invariant subspace recursive
procedure presented in Section 3.

(4) Form approximate defective system using equation (77).

(5) Compute eigenvectors
E

m0
2

F
m0

using equation (42).

(6) Compute G
m0

from equation (44) for an approximate system with a defective repeated
eigenvalue j

0
G

m0
"!R~1

m
PT

m
E

m0
F~1

m0
.

(7) Using equation (88), compute

DE
m0

2

DF
m0

.

(8) Compute G
m

from equation (91) for an actual near defective system.
(9) Compute m closed-loop eigenvalues from equation (94) for an actual near defective
system.

7. NUMERICAL EXAMPLE

In order to illustrate the application of the present modal control theory, a numerical
example of a near defective system is given as follows.

Assume that the state matrix is given by

A"

17 0 !24)99999

0 3 0

9 0 !13

and the control matrix B for single input control force, Z(t), is B"C
1
1
1D. The system has two

close eigenvalues, i.e., J"diag(j
1
, j

2
, j

3
)

j
1
"2)009487, j

2
"1)990513, j

3
"3)0.
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The algebra average of j
1
, j

2
, is

j
0
"

1

2

2
+
i/1

j
i
"2)0.

The Jordan form matrix is

J
m
"J

m0
#dJ

0
"C

j
0

1

j
0
D#C

j
1
!j

0
!1

j
2
!j

0
D .

Therefore, a near defective system with close eigenvalues can be transformed into one of
the defective system. With a recursive procedure the right and left generalized modes,
U"[;

m
, ;

d
] and V"[<

m
, <

d
], corresponding to j

0
and j

3
can be obtained as follows:

U"

0)857493 !0)514496 0)0000000

0)000000 0)000000 1)0000000

0)514496 0)857493 0)0000000

,

V"

0)857493 !0)514496 0)0000000

0)000000 0)000000 1)0000000

0)514496 0)857493 0)0000000

.

If H
m
, Q

m
, and R

m
in equation (37) are given by

H
m
"C

1

0

0

1D , Q
m
"C

1

0

0

1D , R
m
"C

1

0

0

1D
and

P
m
"VH

m
B"C

1)371989

0)342997D .

We obtain the following eigenproblem:

2)000000 0)000000 1)000000 0)000000

1)000000 2)000000 0)000000 1)000000

1)882354 0)470588 !2)000000 !1)000000

0)470588 0)117647 0)000000 !2)000000

E
m0

2

F
m0

"

E
m0

2

F
m0

J
1
.

Solving this eigenproblem, we obtain the eigenvalues with positive real part

s
1
"2)581228, s

2
"1)826817,

E
m0

2

F
m0

"

!0)434316 !0)178581

!0)862084 0)983404

!0)252437 0)030927

!0)066752 0)008272

.
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The steady state solution of the modal Riccati matrix is

K
m0
"E

m0
F~1
m0

"103]C
0)652663

!2)461682

!2)461682

9)322307D
and the corresponding modal gain is

G
m0
"!R~1

m
PT

m
E

m0
F~1
m0

"102][!0)510966 1)798767].

The optimal modal control is given by

Z
m0

(t)"!R~1
m

PT
m
E

m0
F~1

m0
m
m
(t)

"102][!0)510966 1)798767]m
m
(t)

and the corresponding actual control law in the state space is

Z
m0

(t)"!R~1
m

PT
m
E
m0

F~1
m0

VH
m
x(t)

"102][!1)363608 0 1)279539] x(t).

From the following characteristic equation:

det [J
m0
#P

m
G

m0
!oI]"0,

we obtain the eigenvalues of the modal closed-loop system as

o
1
"!2)581236, o

2
"!1)825602.

For the distinct eigenvalues, K
d
"j

3
"3)0, if H

d
"1, Q

d
"1, R

d
"1, P

d
"VH

3
B"1, we

have the following eigenproblem:

C
3)0

1)0

1

!3)0D
E

d
2

F
d

"

E
d

2

F
d

J
2
.

Solving this eigenproblem, we obtain the eigenvalue with positive real part

s
3
"3)162278

and corresponding eigenvector

E
d

2

F
d

"

!0)987087

22

!0)160182

.

The solution of the modal Riccati equation is

K
d
"E

d
F~1
d

"6)162278

and the corresponding modal gain is

G
d
"!R~1

d
PT

d
K

d
"!6)162278.
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The optimal modal control is

Z
d
(t)"G

d
m
d
"!6)162278m

d

and the corresponding characteristic equation of the modal closed-loop system is

det [K
d
#P

d
G

d
!oI]"0.

So, we get the eigenvalue of the modal closed-loop system as

o
3
"!3)162278.

Using equation (66), we obtain the input Z(t) in equation (13) as

Z(t)"Z
m0

(t)#Z
d
(t)

"(G
m0

VH
m
#G

d
VH

3
)X (t)

"(102[!1)363608 0 1)279540]#[0 !6)162278 0])X (t)

"102[!1)363608 !0)061623 1)279540]X(t).

In the following, we give the perturbation analysis of gain matrix G
m0

. To obtain C
DE

m0
2

DF
m0
D ,

we need to solve the following eigenproblem:

2)0 0)0 1)0 0)0
1)0 2)0 0)0 1)0
1)8822354 0)470588 !2)0 !1)0
0)470588 0)117647 0)0 !2)0

T H
m0

2

P
m0

"

H
m0

2

P
m0

J
10

.

For the eigenvalues, s
01
"2)581228, s

02
"1)826817, we have

H
m0

2

P
m0

"

!0)963011 !0)835533

!0)168343 0)470927

!0)210208 !0)218336

0)009138 0)180114

.

Using equation (90) yields

R
1
"

H
m0

2

P
m0

T dJT
m

F 0

2 F 2

F !dJ
m

E
m0

2

F
m0

"C
!0)057001

0)225763

!0)028537

0)079392D .
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From equation (88), we have

DE
m0

2

DF
m0

"

E
m0

2

F
m0

C1"

!0)053442 !0)016429

0)294291 !0)032610

0)009255 !0)009549

0)002475 !0)002525

,

C1
ij
"

!R1
ij

s
0j
!s

0i

, i"1, 2; j"1, 2; iOj.

So, from equation (91) and (94), we obtain

G
m
"102][!0)511930 1)802409],

o
1
"!2)581860, o

2
"!1)832298.

These results show that the perturbations of the gain matrix and eigenvalues of the
closed-loop system of a near defective system are small, and the stability can be guaranteed.

8. CONCLUSIONS

The vibration control of the systems with repeated or close eigenvalues is an important
problem in engineering. This paper focuses on the case of a defective or near defective
systems with repeated or close eigenvalues and presents a modal optimal control algorithm
based on the generalized modal co-ordinates. From the view point of mathematics,
although the close eigenvalues of near defective system are distinct, the dynamic
characteristic of the system is still defective. For such a case, we have to use an invariant
subspace recursive method to obtain the reliable generalized modes, and then the standard
modal optimal control method, such as the Potter's method, can be extended to deal with
the corresponding modal optimal control problem. A near defective system can be
approximated by the defective one with repeated eigenvalues equal to the average value of
the close eigenvalues. Since the norm of the perturbation matrix dA of the approximate
defective systems is small, the changes in closed-loop eigenvalues of defective system are
small, and the stability can be checked by perturbation analysis. The conclusions are
supported by the given numerical example.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation (19872028) and the
Mechanical Technology Development Foundation of China.

REFERENCES

1. A. J. LAUB 1968 IEEE ¹ransactions, AC-24, 913}921. A Schur method for solving algebraic Riccati
equations.

2. J. E. POTTER 1966 SIAM Journal of Applied Mathematics 14, 496}501. Matrix quadratic solutions.
3. H. KWAKERNAAK and R. SIVAN 1972 ¸inear Optimal Control Systems. New York: Wiley.
4. D. L. KLEIMAN 1968 IEEE ¹ransactions AC-13, 114}115. On an iterative technique for Riccati

equation computation.



132 Y. D. CHEN E¹ A¸.
5. G. F. YAO and S. H. CHEN 1998 Computer Methods in Applied Mechanics and Engineering 187,
173}180. A block iterative algorithm of the continuous Riccati equation in the optimal shape
control.

6. T. XU and S. H. CHEN 1994 Computers and Structures 52, 1377}1380. Perturbation sensitivity of
generalized modes of defective systems.

7. S. H. CHEN 1999 Matrix Perturbation ¹heory in Structural Dynamic Design (in Chinese). Beijing:
Science Press.

8. L. MEIROVITCH 1990 Dynamics and Control. New York: Wiley.


	1. INTRODUCTION
	2. GENERALIZED MODAL THEORY OF THE DEFECTIVE SYSTEMS
	3. INVARIANT SUBSPACE RECURSIVE METHOD FOR COMPUTING THE GENERALIZED MODES
	4. MODAL OPTIMAL CONTROL ALGORITHM FOR SOLVING RICCATI EUATIONS OF THE DEFECTIVE SYSTEMS
	5. MODAL OPTIMAL CONTROL ALGORITHM FOR NEAR DEFECTIVE SYSTEMS WITH CLOSE EIGENVALUES
	6. PERTURBATION ANALYSIS OF GAIN MATRIX OF NEAR DEFECTIVE SYSTEMS
	7. NUMERICAL EXAMPLE
	8. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

