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This study is dedicated to demonstrate the periodicities embedded in the averaged
responses of chaotic systems with periodic excitations. Recent studies in the "eld of
non-linear oscillations often found random-like responses for some deterministic non-linear
systems with periodic excitations, which were then named &&chaotic systems''. However, in
this study, by discretizing the initial conditions on a chosen domain and averaging the
corresponding responses, the averaged response can be calculated for the chaotic motions of
Du$ng, van der Pol and piecewise linear systems. These averaged responses exhibit
near-periodicities with primary frequency components at excitation frequency, odd
multiples or half multiples of excitation frequency. It is also found that this periodicity
becomes more evident as the number of discretized initial conditions over a "xed domain.
These results were obtained and validated by simulations.
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1. INTRODUCTION

A number of research studies [1}10] have been dedicated to investigate the dynamics of
chaotic non-linear systems that are the systems subjected to periodic excitation but exhibit
the dynamics with no periodicity. However, Lu [11] demonstrated, by using the metric
de"ned in Hausdo! space [12] as an observatory tool, that although the response of an
impact oscillator, a chaotic system at some parameter ranges, does not exhibit periodicity in
Euclidean space, it does show periodicity in Hausdo! space. In order to explore the further
possibility of periodicity embedded in chaotic motion, this study, by conducting simulations
for six cases of Du$ng, van der Pol and piecewise linear systems, succeeded in validating
the periodicities of &&averaged responses'', which are obtained by averaging the responses
over a pre-chosen domain in phase space.

In the process of acquiring &&averaging responses'', a single initial condition is "rst used to
plot responses on phase plane in order to ensure that the system and its parameters used are
in the range for generating chaotic responses. Secondly, a rectangular domain in phase
plane is chosen and discretized into N]N grid points, i.e., N2 initial conditions, which can
be utilized to simulate N2 responses. Averaging these N2 responses, an &&averaged response''
is obtained. Through frequency analysis, the periodicity of this averaged response is
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identi"ed and further quanti"ed on the levels of periodicity. In the present study, the
aforementioned process is conducted for six cases in the forms of three types of non-linear
equations.

2. CASE STUDIES

2.1. DUFFING EQUATION

Consider the Du$ng equation in the following:
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"1)2. Figure 1(a) shows the bifurcation plot of sampled

response amplitude X (n¹) by the method of PoincareH sections versus the excitation forcing
amplitude f. From this "gure, the parameter range of f corresponding to chaotic motions
can be identi"ed. For f"0)45 when the system undergoes chaotic motion, Figure 1(b)
shows the phase portrait with the initial conditions x (0)"3)0, xR (0)"3)0, while Figure 1(c)
shows the corresponding time responses. In Figure 1(c), the adjacent peak values are
di!erent; therefore, the response is non-periodic. Figure 1(d) shows the corresponding
frequency spectrum, where it can be seen that the frequency contents, which include the
excitation frequency, are continuously distributed over a "nite range of frequencies below 4.

With the chaotic motion con"rmed for f"0)45, simulations are next performed to obtain
pre-de"ned &&averaged responses''. To achieve this goal, N grid points located evenly in
a discretized rectangular domain !3)x)3,!3)xR )3 are "rst chosen as initial
Figure 1. The "rst case of Du$ng equation (a) bifurcation plot, (b) phase portrait, (c) time history, and (d)
spectrum for initial condition (3, 3).



Figure 2. The "rst case for averaged responses of Du$ng equation in initial condition domain
!3)x)3,!3)xR )3: time history of (a) 100 points and (b) 10 000 points; spectrum of (c) 100 points and (d)
10000 points.
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conditions. The averaged response is then obtained by averaging the N sets of
corresponding simulated time responses. Figure 2(a, b) show the averaged responses for
N"100 and 10 000. The corresponding frequency spectra are shown in Figure 2(c, d)
respectively. It can be seen from Figure 2(a, b) that as N increases, the characteristic of
the response gets closer to that of a perfect periodic response, that is, as the density
of domain discretization for initial conditions increases, the periodicity becomes more
evident. It is seen from Figure 2(c, d) that the location of fundamental frequency in spectra
u"1)2 coincides with the excitation frequency u

s
, and the magnitude at u"1)2 is the

same as that in Figure 1(d). It is also seen that in Figure 2(c) noise is present at low frequency
region while in Figure 2(d) no noise is visible due to the smaller number of discretized initial
conditions.

The above study is repeated to con"rm the "ndings with di!erent parameters c"0)2,
k
1
"0)0, k

3
"1)0, u

s
"1)0. Figure 3(a) shows the bifurcation plot of sampled response

amplitude X (n¹) by the method of PoincareH sections versus the excitation forcing
amplitude f, where f"8)0 is identi"ed as the parameter leading to chaos. Figure 3(b) shows
the phase portrait with the initial conditions x (0)"3)0, x5 (0)"3)0, while Figure 3(c) depicts
the corresponding time responses and Figure 3(d) shows the corresponding frequency
spectrum where three major harmonics at odd multiples of excitation frequencies, 1, 3, 5 are
present. Figure 4(a, b) show the averaged responses for N"100, 10 000. Figure 4(c, d) depict
the corresponding frequency spectra, respectively, where the peaks at odd multiples 1, 3, 5 in
both "gures with the same magnitudes as those in Figure 3(d) are observed. Very small
frequency components such as noise are found in Figure 4(c) compared to none in Figure
4(d), which is due to the small number of discretizing initial conditions in Figure 4(c). It can



Figure 3. The second case of Du$ng equation (a) bifurcation plot, (b) phase portrait, (c) time history, and (d)
spectrum for initial condition (3, 3).

Figure 4. The second case for averaged responses of Du$ng equation in initial condition domain
!3)x)3,!3)xR )3: time history of (a) 100 points and (b) 10 000 points; spectrum of (c) 100 points and (d)
10000 points.
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be easily shown, based on Figure 4(a, d) that the "ndings obtained for the "rst set of system
parameters still hold.

Based on the results from Figures 2 and 4, we "nd that the &&averaged response''
of a chaotic Du$ng system exhibits a strong near-periodicity with a fundamental
frequency the same as that of the excitation. Furthermore, this near-periodicity approaches
a perfect periodicity as the number of initial conditions in a chosen rectangular domain
increases.

2.2. VAN DER POL EQUATION

Consider the van der Pol equation in the following, which includes a non-linear damping
term:

xK#c(x2!1)xR #k
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x"f cos(u

s
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where c"5)0, k
1
"1)0, u

s
"2)46. Figure 5(a) shows the bifurcation plot of sampled

response amplitude X (n¹) by the method of PoincareH sections versus the excitation forcing
amplitude f. For f"4)8 when the system undergoes chaotic motion, Figure 5(b) shows the
phase portrait with the initial conditions x (0)"!3)0, xR (0)"0)0, while Figure 5(c) is the
corresponding time responses. In Figure 5(c, d), it is observed that the response is
non-periodic.

With the chaotic response con"rmed for f"4)8, the same procedure for simulations are
next performed to obtain pre-de"ned &&averaged responses''. The rectangular domain
Figure 5. The "rst case of van der Pol equation (a) bifurcation plot, (b) phase portrait, (c) time history, and (d)
spectrum for initial condition (3, 3).



Figure 6. The "rst case for averaged responses of van der Pol equation in initial condition domain
!3)x)3,!3)xR )3: time history of (a) 400 points and (b) 10 000 points; spectrum of (c) 400 points and (d)
10000 points.
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considered is !3)x)3,!3)xR )3, and N"400, 10 000. Figure 6(a, b) show the
averaged responses respectively. Compared to Figure 5(c), the averaged response in Figure
6(a, b) show higher levels of periodicity. The corresponding frequency spectra with N"400
and 10 000 are shown in Figure 6(c, d), respectively, where it is seen that major frequency
u"2)46 coincides with the excitation frequency. Small frequency contents with a low peak
appear around 0)6 in Figure 6(c), which, compared to Figure 6(d) are identi"ed as noise due
to insu$cient number of discretizing initial conditions.

The above study is repeated to con"rm the "ndings with di!erent parameters c"5)0,
k
1
"1)0, u

s
"5)1. Figure 7(a) shows the bifurcation plot of sampled response amplitude

X(n¹) by the method of PoincareH sections versus the excitation forcing amplitude f, where
f"39 is identi"ed as the parameter leading to chaos. Figure 7(b) shows the phase portrait
with the initial conditions x (0)"3)0, xR (0)"3)0, while Figure 7(c) depicts the corresponding
time responses and Figure 7(d) shows the corresponding frequency spectrum. Figure 8(a, b)
show the averaged responses for N"400, 10 000 and Figure 8(c, d) depict the
corresponding frequency spectra respectively. It can be easily shown, based on Figure 8(a, d)
that the "ndings obtained for the "rst set of parameters still hold.

2.3. PIECEWISE LINEAR EQUATION

Consider the piecewise linear equations in the following:

xK#cxR #g(x)"f sin(u
s
t), (3)



Figure 7. The second case of van der Pol equation (a) bifurcation plot, (b) phase portrait, (c) time history, and (d)
spectrum for initial condition (3, 3).

Figure 8. The second case for averaged responses of van der Pol equation in initial condition domain
!3)x)3,!3)xR )3: time history of (a) 400 points and (b) 10 000 points; spectrum of (c) 400 points and (d)
10000 points.
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Figure 9. The "rst case of piecewise linear equation (a) bifurcation plot, (b) phase portrait, (c) time history, and
(d) spectrum for initial condition (0, 0).
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where

g (x)"G
x for x(d,

g2x#(1!g2)d for x'd,

where c"0)02, g"80, d"1)0, u
s
"2)5. Note that the piecewise linear equations are often

used to describe the dynamics to incorporate gear backlash, corrosion, frictions and the
clearance of suspension systems, etc. Figure 9(a) shows the bifurcation plot of sampled
response amplitude X (n¹) by the method of PoincareH sections versus the excitation forcing
amplitude f. For f"6)25 when the system undergoes chaotic motion, Figure 9(b) shows the
phase portrait with the initial conditions x (0)"0)0, xR (0)"0)0, while Figure 9(c) shows the
corresponding time responses. In Figure 9(c), it can be observed that the response is
non-periodic. Figure 9(d) shows the corresponding frequency spectrum.

With the chaotic response con"rmed for f"6)25, the same procedure for simulations
are next performed to obtain pre-de"ned &&averaged responses''. The rectangular domain
considered is !0)01)x)0,!0)01)xR )0, and N"400, 10 000. Figure 10(a, b)
show the averaged responses respectively. Compared to Figure 9(c), the averaged response
in Figure 10(a, b) shows higher levels of periodicity. The corresponding frequency spectra
are shown in Figure 10(c, d). It can be also seen from Figure 10(c, d) that the peaks are
located at the fundamental frequency u"2)5 which coincides with the excitation
frequency. Small frequency contents, below 2)0 are observed in Figure 10(c), which,
compared to Figure 6(d), are identi"ed as noise due to insu$cient number of discretizing
initial conditions.



Figure 10. The "rst case for averaged responses of piecewise linear equation in initial condition domain
!0)01)x)0,!0)01)xR )0: time history of (a) 400 points and (b) 10 000 points; spectrum of (c) 400 points and
(d) 10 000 points.
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The above study is repeated to con"rm the "ndings with di!erent parameters c"0)1,
g"10, d"0)05, u

s
"0)7 and N"100, 2500. Figure 11(a) shows the bifurcation plot of

sampled response amplitude X(n¹) by the method of PoincareH sections versus the
excitation forcing amplitude f, where f"0)49 is identi"ed as the parameter leading to chaos.
Figure 11(b) shows the phase portrait with the initial conditions x (0)"0)0, xR (0)"0)0, while
Figure 11(c) depicts the corresponding time responses and Figure 11(d) shows the frequency
spectrum. It is observed that the time interval between two adjacent peaks is twice that of
the excitation period. This phenomenon is due to the period-double bifurcation e!ects.
Figure 12(a, b) show the averaged responses for N"100, 2500 and Figure 12(c, d) depict the
corresponding frequency spectra respectively. It is seen that the fundamental frequency of
the averaged response u"0)35 is half the excitation frequency u

s
"0)7 due to

period-doubling e!ects. Despite this di!erence from the "rst case studied, it can still be seen
that the averaged response exhibits a strong near-periodicity.

3. CONCLUSION

Three forms of non-linear chaotic systems namely: Du$ng equation, van der Pol
equation and piecewise linear equation were considered to validate the periodicity of the
&&averaged responses''. For each form, two sets of system parameters were employed for case
study; therefore, totally six case studies were conducted. For each case, discretization on
a closed domain in phase plane was "rst performed to specify N2 initial conditions and then
simulations were conducted for the N2 initial conditions to obtain N2 responses. Averaging



Figure 11. The second case of piecewise linear equation (a) bifurcation plot, (b) phase portrait, (c) time history,
and (d) spectrum for initial condition (0, 0).

Figure 12. The second case for averaged responses of piecewise linear equation in initial condition domain
!0)01)x)0,!0)01)xR )0: time history of (a) 100 points and (b) 2500 points; spectrum of (c) 100 points and
(d) 2500 points.
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these N2 responses, the &&averaged response'' was then attained for analysis. Based on the
results by the averaged responses presented from Figures 1}12 it is concluded that the
&&averaged responses'' of chaotic Du$ng, van der Pol and piecewise linear equations exhibit
strong near-periodicity with fundamental frequencies the same as those of the excitations.
Furthermore, the near-periodicity approaches a perfect periodicity as the number of initial
conditions in the chosen rectangular domain increases.

For the piecewise linear equations, in the second case with certain system parameters,
large frequency components are found in the middle of the spectrum (due to
period-doubling bifurcation) with each multiple of the excitation frequency and these
components weakening as the frequency increases.
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