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A method is proposed to obtain in a single equation the exact, closed-form displacement
response of both free undamped vibrations and the steady state of forced damped vibrations
of systems with piecewise linear springs, with continuous or discontinuous force—-deflection
relations. Since the displacement equations are exact the velocity and acceleration responses
are obtained by differentiation. The solutions are complete, they apply for any value of time
from zero to infinity. The method is designed to be handled in a computer either in
conjunction with a Symbolic Mathematics package, like Mathematica or Maple, or without
it. However, for certain relatively simple problems the phase-plane solution may be obtained
even in a hand-held calculator. Two examples are presented. © 2001 Academic Press

1. INTRODUCTION

In reference [1] a scheme was proposed to represent a “broken line” or discontinuous
function in a non-piecewise or unified equation which can be easily integrated. In that
article, the scheme was specifically applied to the Clebsch or “pointed brackets” method for
beam deflections which thus becomes an automatic process, obviating the use of the pointed
brackets altogether. Consequently, it makes the process amenable to use in the computer
with, or without, the use of symbolic mathematics software. As a matter of fact, it remains
an automatic process even when handled in a hand-held non-programmable calculator.

Furthermore, a “periodizer function” was introduced in reference [2], which together
with the unification scheme of reference [ 1] was used in the linear vibration problem with
non-harmonic or discontinuous periodic excitation. This allows the steady state
displacement response to be obtained directly, in closed form, without resorting to either
Fourier series or the Laplace, or any other, transform. Since the displacement response
obtained in this manner is exact, differentiating it yields the velocity, and differentiating the
velocity yields the acceleration. This contrasts with the drastic deterioration of convergence,
and subsequent required adjustment that results when the Fourier series representation of
the displacement is differentiated.

Pursuing further the ideas of references [1, 2], in this paper a single equation is used to
represent the force-displacement relation of a piecewise linear spring. This leads to the
analytical, single equation, phase-plane solution of the free vibrations of a system made up
of such a spring and a mass. Additionally, for both the previously mentioned system and
a forced-damped system complete displacement-time solutions, i.e., from time = 0 to oo,
are obtained in a single equation each by applying to the piecewise solution the unifying
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technique of reference [1] and two operators introduced in this paper. The single equations
for the complete velocity-time and acceleration-time relations are readily obtained by
differentiation.

The basic building block for this methodology is the Heaviside unit step function which
can be handled by Symbolic Mathematics packages like Mathematica and Maple, if so
desired [3-6]. However, it is not necessary to use any such program since a simple, closed
algebraic expression for the Heaviside function has been proposed in reference [1] which
permits its inclusion in the equation of motion.

2. MATHEMATICAL DEVICES REQUIRED IN THE SOLUTION

2.1. FUNDAMENTAL LINKING ELEMENT

The methodology proposed here relies on a compact representation of functions which
are either discontinuous themselves or have discontinuous derivatives.
Consider the following conventional representation of three well-known functions.

Absolute value or vee: V(x,a)=—x+a, x<a,
(1)
Vix,a)=x—a, x=a.
Relay or jump: J(x,a)=—1, x<a,
2
Jx,a)=1, x=a
Heaviside unit step: H(x,a)=0, x<a,
A3)

H(x,a)=1, x=>=a.

It is clear that, in this conventional representation, each of these functions is described by
four relations, i.e., two equations plus one inequality associated with each equation.
A more compact representation, proposed in reference [1] follows.

Absolute value or vee: V(x,a)=|x —a| = + /(x — a)*. 4)

. x—a V(x,a)
Relay or jump: J(x,a) = Vix.d) =~ _a (5)

Heaviside unit step:  H(x, a) = 3(1 + J(x, a)). (6)

It is worth noting that this representation (4)-(6) requires, in each case, only one equality
valid from — oo to + oo and, therefore, it requires no inequalities at all. Thus, this
representation may be incorporated, as is, directly into the equations of motion, if so
desired. The fundamental linking element is the Heaviside unit step.

2.2. UNIFIED REPRESENTATION OF BROKEN LINE OR DISCONTINUOUS FUNCTIONS

A unified representation of broken line or discontinuous functions, i.e., piecewise
continuous functions, may be built up using the Heaviside unit step as a “switch-on”
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function and its negative as a “switch off” function [1, 7]. Consequently, a composite
function, g(x), may be formed by concatenating the individual functions, f;(x), f>(x),
f3(x), ... that constitute it. Thus, if function f; (x) is valid in the interval x < x;, function f,(x)
is valid in the interval x; < x < x,, function f3(x) is valid in the interval x, < x < x3, and so
on, the concatenation is carried out according to the following scheme:

g(x) =fi(x) + H(x, x))[ = f1(x) + 2(0)] + H(x, x2) [ o(0) + 5] + - (7)

At point x = x, H(x, x;) switches off f; (x) and simultaneously switches on f,(x). At point
X = X,, H(x, x,) switches off f,(x) and simultaneously switches on f3(x) and so on.

2.3. INTEGRATION OF POLYNOMIAL FUNCTIONS

The following formula [1], is used to integrate the composite functions resulting from the
unifying procedure previously mentioned:
(X _ a)N+ 1

- N#-—-1. 8
N+1 "~ . ®)

JH(x, a)(x —aNd(x —a) = H(x, a)

In Appendix A, equation (8) is established with the aid of an ordinary table of integrals. It is
interesting to verify that symbolic integration in the Mathematica program, for a specified
value of N, yields results in accordance with relation (8). Use of relation (7) and integration
with respect to the variable shown in equation (8) results in automatic compliance of
analytical continuation.

2.4. PERIODIZER FUNCTION

The periodizer function, proposed in reference [2], is a piecewise linear, periodic
(sawtooth) function of the independent variable:

T T
p(t, T) = > arctan (Cot% t). 9)

Figure 1(a) is a direct plot of equation (9).

An interval of a non-periodic function f(¢) may be converted into a periodic function by
simply substituting the independent variable by the periodizer function, p(t, T'), where T is
the length of the interval. Thus, f(p(t, T)) is the resulting function with the chosen period, T.
Furthermore, an interval of a periodic function of period T, may be converted into
a periodic function with the different period, T, the length of the interval.

2.5. REFLECTING AND REPEATING FUNCTION
The reflecting and repeating function proposed here is

T 4
R(t, T)= e arccos <cos 771 t). (10)

It is akin to the periodizer function. Replacing the time by R in an expression representing
a quarter of a cycle of a periodic alternating function (PAF) has the effect of reflecting the
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Figure 1. Mathematical devices required in the proposed solutions: (a) periodizer function, direct plot of
equation (9); (b) reflecting and repeating function, direct plot of equation (10); (c) alternator function, equation (13).

quarter cycle, thus converting it into a half-cycle which it then repeats indefinitely.
Figure 1(b) was plotted directly from equation (10) (after assigning a numerical value to T,
of course). The R function should be used only when all four quarters of the cycle have the
same shape.

2.6. ALTERNATOR FUNCTION

Let

S =sin(2n(t — t,)/T), S,=+JS*=15|, (11,12)
to = (T/27m) ¢. The alternator function proposed here is
A, T,ty) =S/S, = S./S. (13)

Figure 1(c) was plotted directly from equation (13). It is essentially a square wave. When
a periodic non-alternating function, with period T'/2, is multiplied by 4 it is converted into
a PAF with period T.

2.7. CONVERSION OF A QUARTER CYCLE INTO A FULL PERIODIC ALTERNATING FUNCTION

If fo(t) represents the quarter cycle of a PAF, the full PAF is obtained as

J(©) = A(t, T, to) fo(R(z, T)), (14)

where T and ¢, are the period and the phase time, respectively, of f(¢). Since A is a square
wave the effect of the operation indicated in equation (14) is to multiply by — 1 every
other cycle of the periodic non-alternating function fo(R(¢, T, to)), thus converting into the
PAF, f(1).
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3. FREE, UNDAMPED VIBRATIONS

3.1. PROCEDURE, PHASE-PLANE SOLUTION

The phase-plane, or velocity versus displacement, solution is obtained in accordance with
the following steps: (1) the force—-displacement relation of the spring is expressed in a single
equation applying equation (7); (2) the force equation of Step 1 is substituted into the
differential equation of motion of the system, expressed in terms of the velocity and the
displacement; (3) the equation of motion is integrated in accordance with equation (8).

3.1.1. Example 14

The broken line, but continuous, force-displacement relation of the spring of the
vibrating system of Figure 2 is characterized by a dead zone; Figure 3(a). The phase-plane
solution will be obtained in a single equation.

The equation of motion in terms of velocity and displacement is

mxdx + F(x)dx = 0. (15)

The force-displacement equation, to represent the relation of Figure 3(a), is established by
applying equation (7):

F(x) =k(x +¢) — H(x, — e)k(x + e) + H(x, e)k(x — e). (16)

Substituting equation (16) into equation (15) and integrating in accordance with equation
(8) yields

mx? + k[x? + 2ex — H(x, — e)(x + ¢)* + H(x, e)(x — e)*] = C. (17)
The constant of integration is evaluated using the initial conditions
C = mx(0)* 4 k[x(0)*> + 2ex(0) — H(x, — e)(x(0) + e)*> + H(x, e)(x(0) — e)*]. (18)

Solving of X in equation (17) yields

X=4 \/% [—x%—2ex + H(x, — e)(x + ¢)*> — H(x, e)(x — e)*] + C. (19)

Equation (19) is the general phase-plane solution.
For the sake of concreteness the following values will be considered:

m =1 Ns?/cm, k =2 N/cm, e =3 cm, x(0) = 0 cm, X(0) =2 cm/s. (20)
X
‘ [

m

.
I/

Figure 2. Example 1: mass-piecewise linear spring system. In this particular example the springs exhibit a dead
zone condition.
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Figure 3. Example 1: (a) force-displacement diagram of the spring, plotted directly from equation (16) after
substituting values (20); (b) example 1A; direct plot of the phase-plane solution, equation (21).

Substituting values (20) into equations (18) and (19) yields

X =4/~ 2x% — 12x + 2H(x, — 3)(x + 3)> — 2H(x, 3)(x — 3)> — 14

or in more familiar terms,

X=4 /= 2x% = 12x + (x + 3> + [x + 3|(x +3) — (x — 3)> — [x — 3|(x — 3) — 14.
(21)

Figure 3(b) is a direct plot of equation (21). Note that, because of the automatic compliance
with analytical continuation previously mentioned, only one constant of integration was
required, whereas in the customary, non-unified, piecewise solution three constants of
integration would have been required. This example may be handled even in

a non-programmable calculator and equations (16) and (21) may be plotted in a graphics
calculator.

3.2. DISPLACEMENT-TIME SOLUTION, PROCEDURE

It is pertinent to point out that no new approach is proposed to obtain the
displacement-time solution. What is done here is simply to fuse into a single equation the
various pieces of the conventional piecewise solution, using the proposed mathematical
devices and in accordance with the following steps: (1) the piecewise solution of a quarter
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cycle is unified by the function concatenation procedure, equation (7); (2) the quarter cycle
solution is converted into the full periodic alternating solution by the conversion scheme,
equation (14), valid from t = 0 to oo.

3.2.1. Example 1B

The displacement-time solution for example 1A will be obtained. For the sake of
expediency, it will be considered from the outset that

x(0) =0, x(0)=v(0). (22)
The piecewise solution for the first quarter cycle is

— 00, 0<x;<e, (23)

=
x,(t) = e + v(0) f f —t) |, x,=e (24)

The time required for the mass to travel from x = 0 to x = e = 3 cm, the point at which it
makes contact with the spring, is

t, = e/v(0). (25)

The procedure to construct the single equation closed solution is easily understood by
reference to Figure 4. The functions x, and x, are shown graphically in Figure 4(a), and they
are concatenated according to equation (7):

xc(t) = x1(0) + H(t, to)(— x1(1) + x2(1)). (26)

X1

c<m
[ T NS T @ Y
r
\
x.(1)
S N R
—
S.

x. (R)
SRECINN
§

Xx=
|

Ax,(R)
BN O N A

0 5 10 15 20 25 30
1(s)

Figure 4. Example 1B. Graphs to illustrate the procedure used to establish the displacement-time solution.
(a) Superimposed plots of the functions which make up the solution, x; is represented by equation (23) and x, by
equation (24). (b) The concatenated displacement, equation (26) or (27). (c) Substitution of R instead of ¢ has the
effect of first reflecting the concatenated curve from 0 to the end of the quarter cycle about the vertical line t = t, to
complete one-half of a cycle which it then repeats indefinitely; equation (32). (d) The displacement-time response
x(t), equation (33) obtained by multiplying x(R) by the alternator function.
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The effect of this procedure is easily understood by comparing Figure 4(a) and 4(b).
Substituting equations (23) and (24) into equation (26) yields

xe(t) = v(0)t + H(, te)[— v(0)t + e + v(0) \/i sin { \/E(z - te)}:|. 27)

The concatenated displacement x, Figure 4(b), was plotted directly from equation (27).
Using equations (27) and (25), the quarter cycle time, ty, may be obtained from the

relation
k e i
n(re—si) 3 *

Solving for t, and substituting values (20) yields
to = 2:610720735s, (29)
thus the period is
T =4ty = 10-44288294 s. (30

The interval of the concatenated displacement corresponding to the first quarter cycle will
now be reflected with respect to the line ¢t = t, in order to obtain the half-cycle. This
half-cycle will now be repeated. All this is accomplished simply by first substituting the
value of T from equation (30) into equation (10) and then replacing t by R = R(¢t, T) in
equation (26):

xc(R) = x1(R) + H(R, t.)(— x1(R) + x2(R)), (1)

or, equivalently, replacing ¢ by R in equation (27):

Xc(R) =v(0)R + H(R, te)[— v(0)R + e + v(0) \/i sin {\/E(R — te)}]. (32)

xc(R), Figure 4(c), was plotted directly from equation (32).

It is now only necessary to convert the function of Figure 4(c) into an alternating function.
First, the values (30) of T and t, = 0 are substituted into the alternator function, A4;
equation (13). Then, in accordance with equation (14) the product Ax. is formed to yield the
single equation representing the displacement-time solution

x(t) = A(t, T, to) xc(R(t, T)), (33)

x, Figure 4(d), was plotted directly from equation (33). In order to obtain the velocity-time
relation for the first-quarter cycle, each of equations (23) and (24) is differentiated and then

concatenated:
ve(t) =v(0) + H(t, t,) |:— v(0) 4+ v(0) cos {\/5 (t— te)}]. (34)

Note that the same result is obtained by differentiating equation (27) maintaining
H(t,t,) constant. Resorting again to equation (14) the complete velocity-time solution
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Figure 5. Example 1B: (a) displacement-time curve, equation (27); (b) velocity-time curve, equation (35);
(c) acceleration-time curve, equation (37). The graphs were plotted directly from these equations after substitution
of values (20) and (25).

is obtained:
v(t) = Ave(R). (35)

The acceleration-time relation for the first-quarter cycle is obtained by differentiating

equation (34):
ac(t) = — H(t, t,)v(0) \/%sin {\/%(t — te)} (36)

Applying equation (14) the complete acceleration-time solution is obtained:
a(t) = Aac(R). (37

The displacement, velocity and acceleration versus time graphs are obtained by directly
plotting equations (33), (35) and (37) in Figure 5(a), 5(b) and 5(c) respectively.
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4. FORCED, DAMPED VIBRATIONS

4.1. STEADY STATE, PROCEDURE

The basic idea is to obtain the piecewise general solution, i.e., both the particular integral
and the complementary function, and to evaluate the integration constants as well as the
times that define the “pieces” or intervals so as to satisfy both periodicity and analytical
continuation requirements. Also, it is necessary to use the fact that the period of the steady
state vibrations is the same as that of the excitation.

Consider a vibrating system containing a piecewise linear spring with n intervals each
with a given different linear force-deflection relation. Suppose that the general piecewise
solutions are: xi, X,,...,X,, each containing two constants of integration still to be
evaluated. If the deflection values at the extreme points of the intervals are given as
Xo, X1,X3, ..., X,, the ranges of validity of the solutions are

XO<XI<X19 Xl <X2<X2, X2<X3<X3, LR} Xn*lgxnan'
(38)

Corresponding to each X there is a time ¢; also to be evaluated. Thus, there are 2n unknown
constants of integration plus n + 1 unknown values of the times at the extreme points of the
intervals making a total of 3n + 1 unknowns.

There are four conditions to satisfy the periodicity requirements:

x1(to) = Xo, Xu(ty) = Xo, X1(to) = X,(t,), ty—to=T. (39-42)

There are 2(n — 1) conditions to satisfy the analytical continuation requirements referring
to displacement:

x1(ty) = Xy, X5 (1) = X1, X5(t2) = Xs, x3(t2) = X, s
xn*l(tnfl):anl’ xn(tnfl):anl- (43)

There are n — 1 conditions to satisfy the analytical continuation requirements referring to
velocity:

X1(ty) = X,(ty), X, (t2) = X5(t2), ooy Xu—1(ta—1) = Xulty—1). (44)
Thus, there is a total of 3n + 1 conditions which is the same as the total number of
unknowns.
4.1.1. Example 2

The following data apply to the forced damped vibrating system of Figure 6 with
preloaded springs: m = 2 Ns?/cm, ¢ = 0-8 N's/cm, k = 2 N/cm,

Fo=20N,0=022s"!, F,=4N, (45)

Fy sin ot

m

////////////////////////////

Figure 6. Example 2: forced damped vibrating system with preloaded springs.
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where F, is the amplitude of the excitation force, w is the excitation frequency and Fp is the
magnitude of the preload. The steady state displacement, velocity and acceleration response
will be obtained.

The displacement response will be obtained in piecewise fashion and afterwards it will be
converted into a single equation. The discontinuous spring force versus displacement
relation is represented graphically in Figure 7.

There are two distinct “pieces” or intervals with different spring force-deflection
relations, ie., n=2; x; represents the positive displacement and x, the negative
displacement. As mentioned above, in the steady state, there are four conditions associated
with the periodicity requirements:

x1(to) =0, X5(t2) =0, X1(to) = X (t2), th—to=T. (46)
There are 3(n — 1) = 3 conditions associated with the analytical continuation requirements:
xy(t) =0, X5 (1) =0, Xq(ty) = X5(ty). (47)

There are 3n + 1 = 7 unknowns: the two constants of integration associated with each of
x{ and x, as well as the 3 times, t,, t; and t,. The problem may be solved handling all the
mentioned quantities as unknowns; however, it will be simplified presently.

One period of the unknown displacement response will be expected to have the general
characteristics shown in Figure 8. Due to the symmetrical arrangement of the mechanical

12

F, (N)
[

X {(cm)

Figure 7. Example 2: spring force versus displacement. The discontinuity at x = 0 is due to the preloading of the
springs. This graph was plotted directly from the single equation (67) after substituting values (45).

X

0 I f 1 t

Figure 8. Example 2: expected general form of the displacement response cycle considering the symmetry of the
mechanical arrangement.
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elements the shape of the negative half-cycle displacement curve x,, from ¢, to ¢, must be
the same as the positive displacement curve x; from ¢, to ¢, . In view of this only one interval
need be considered; consequently, n = 1 and the seven conditions of equations (46) and (47)
are reduced to the following four:

x1(to) =0, x(ty) =0, X1(to) = — X1(ty), ty —to=T/2 (48)

There are now 3n + 1 = 4 unknowns: the two constants of integration associated with x; as
well as t, and ;.

4.1.1.1. First half-cycle, ty, <t < ty. The differential equation of motion for this interval is

k F, F
B S 4 xy =2+ sinor. (49)
m m m m
The general solution of this differential equation is
x1(t) = e ¢ (Cycoswyt + Cysinwyt) + A + Bsinwt + C cos wt, (50)
where
F F
A=—L=_"1_
k mo?
B Fo(k —mow?®) Fo(w? — 0?) (51)

C(co)? + (k —mw?)? m{(w} — 0?)? + 2Llw,w)?}

Ce_ Focw _ 2Fylw,w
(cw)? + (k — maw?)? m{(w; — 0*)* + (2Lw,0)*}

The steady state frequency and period are the same as those of the excitation:
ow=022s"1 T=2n/w=28559933s. (52)

Using the last of equations (48), C, C, and t, are determined as follows. The first two
conditions (48) lead to the two equations

C2=

et cos wyt 1 (Fy/k — Bsin wty — C cos wtp) + 5" cos wto(— Fp/k + Bsin wt; + C cos wty)
k Sin wd(to — tl)

>

(53)

et (— F,/k + Bsinwty + Ccos wty) + Cysin wyty

Cl = —
COS (Udto

(54)

The third condition (48) yields
e=e (= (0,Cy + wyCr)cos wgty + (— (@,Cy — wyCy)sin wyto}
+ Bwcoswty — Cw sin wtg
+e (= {w,Cq + wyCy)cos wgty + (— (@,Cy — wyCy)sin wyty }

+ Bwcoswt; — Cwsin wt;. (55)
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In the previous equation ¢ should be equal to zero but, since it is impossible to solve
for t, analytically, ¢ is considered a residue. Thus, substituting the equations given in
Appendix B (referring to nomenclature) for w,, w, and { as well as numerical values (45) and
then minimizing &* yields the following values for the four unknowns:

to = — 0-4329009, t; = 13-847058, Cy = 369438, C, = —0620649. (56)

Values (56) are considered exact since they correspond to a value of ¢ in the order of 10~ 7.
In view of the symmetrical mechanical arrangement the displacement in the second
half-cycle is

X(t) = — x1(t = 05T) = — e c 703D LC  coswy(t — 0-5T) + C,sinwy(t — 0-5T)}
+ A+ Bsinw(t — 0:5T) + Ccosw(t —0-5T). (57)
The third half-cycle is
X3() =x1(t = T)=—e " DIC  coswy(t — T) + C,sinwy(t — T)}
+ A+ Bsinw(t —T)+ Ccosaw(t — T). (58)
Concatenating the first three half-cycles in accordance with equation (7):
xe(t) = x1(t) + H(t, t1){ — x1 () + x2(0)} + H(t, t5) { — x2(t) + x3(0)}- (59)
The concatenated displacement equation is now periodized:
x(p) = x1(p) + H(p, t){— x1(p) + x2(p)} + H(p, t2){ — x2(p) + x3(p)}- (60)

The period, T, of p is the period of the excitation: the second of equation (52). Equation (60)
is the single, closed-form equation representing the displacement response at any time t.
Figure 9(b) is a direct plot of this equation.

It must be emphasized that the periodizer function reproduces indefinitely the
displacement response it finds in its own first period, which always starts at t = 0 (Figure 1)
and, in this case, ends at t = T = 28-5599s. However, the first two half-cycles of the
displacement response occur from t =tq = — 04329 tot =ty + T = 281270 s < T. Thus,
the two half-cycles are not enough for a correct reproduction and this is why it was
necessary to include the third half-cycle.

Differentiating equation (47) yields the velocity for the first half-cycle:

xl(t) = eing {( — Cwncl + wdCZ) COS UJdt + ( — CCU"C2 — (l)dcl) sin UJdt}
+ Bwcos wt — Cow sin ot. (61)

In the same manner as with the displacements, the second and third half-cycles of the
velocity are obtained by performing the operations

Xo(t) = — X1 (t — 0-5T), X3)=x,t—T). (62)

Proceeding exactly as with the displacement, the single, closed-form velocity equation is
obtained:

X(p) = %1(p) + H(p, t1){ — X1(p) + %2(p)} + H(p, t2) { — %2(p) + X3(p)}. (63)
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Figure 9. Example 2: (a) excitation force; (b) displacement response, direct plot of equation (60); (c) velocity
response, direct plot of equation (63); (d) acceleration response, direct plot of equation (65).

Differentiating equation (61) yields the acceleration response for the first half-cycle:
%(t) = e [{(Pop — 0F) Cy — 2{m,wyC, ) cos wgt + {((Pop — 0F) Cy + 2{w,wyC4 } sin w,t]
— Bw?sinwt — Cw? cos wt. (64)

Proceeding just as in the case of the displacement and the velocity, the single, closed-form
equation for the acceleration response is obtained:

X(p) = X1(p) + H(p, t1){ — X1(p) + X2(p)} + H(p, t2) { — X2(p) + X3(p)}. (65)

Figure 9(b), 9(c) and 9(d) are direct plots of equations (60), (63) and (65) respectively.

4.1.1.2. Verification. Resorting to equation (7), the spring force as a function of the
displacement may be represented by

Fy=kx —F, + H(x,0){ — (kx — F,) + (kx + F,)}. (66)
Making use of equation (6) to simplify equation (66) yields
Fy=kx + J(x,0)F,. (67)

As a matter of fact, Figure 7 is a direct plot of equation (67). Thus, the differential equation
of motion may be represented by

mX + cxX + kx + J(x, 0)F, = Fosin wt. (68)
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Substituting equations (60), (63) and (65) into the left-hand side of equation (68) and plotting
yields the right-hand side (Figure 9(a)).

4.1.1.3. Equivalent excitation. Now that ¢, is known, equation (68) may be expressed as
mX + cX + kx = Fosinot — A(t, T, to) F,. (69)

It is interesting to note that equation (69) may be considered as referring to a linear
vibration problem with plain, non-preloaded springs with an equivalent excitation
represented by the right-hand member of the equation.

5. CONCLUSIONS

A methodology has been proposed to obtain the closed-form solutions of vibration
problems involving piecewise linear springs. These solutions refer to free, undamped
vibrations and to the steady state of forced, damped vibrations.

The procedure proposed to obtain the phase-plane solution of the free undamped
vibration problem involves unification into a single expression of all the “pieces” of the
piecewise representation of the force—deflection relation of the spring. This unified
expression is incorporated into the equation of motion which is then integrated analytically.
Only one constant of integration is required independently of the number of “pieces” of the
piecewise representation. The solution is a single equation and it is exact. Additionally,
a procedure is proposed to convert the various piecewise equations of the
displacement-time solution covering a quarter of a period into a single expression valid for
any time.

The procedure proposed to obtain the steady state response of forced, damped systems
makes use of the general piecewise solutions including both the particular integral and the
complementary function. The constants of integration and the limiting times of the intervals
that define the force-deflection relation of the springs are determined by the requirements of
periodicity and analytical continuation. The resulting displacement-time response is
a single, closed-form equation. Since the displacement response is exact the velocity and
acceleration responses are obtained by differentiation.
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APPENDIX A: INTEGRATION

Consider the integral
JXN J(x, 0)dx. (A1)

Now, according to relations (4) and (5),

fo J(x,0)dx = fo_ L /X2 dx. (A2)

The value of this integral will be obtained by resorting to the following formula, obtained
from an ordinary table of integrals [8]:
X" a4+ bxPTL a(m —q + 1)
bgp + m+1) bgp + m+ 1)

Jxm(a + bx9Pdx = Jx"’q(a + bx9rdx. (A3)

Evidently, formula (A3) applies to the right-hand member of equation (A2) for

a=0, b=1, m=N —1, q=2, p=1/2,

thus
N-2(.2\3/2 N-2.,2 /2
N X" (x%) XV TAxT /X
= = A4
Jx J(x, 0)dx N+1 N+1 (A4)
and finally
xN+1
JXNJ(X, 0)dx = N1 J(x,0), N #—1. (AS)

The procedure used to obtain expression (A5) was shown in considerable detail to point out

that /x? is kept distinct from x
Equation (8) follows from equations (5) and (AS).

APPENDIX B: NOMENCLATURE

A= A(t)= A(t, T,ty) alternator function, equations (11)-(13)
a a constant or acceleration depending on context

o = 2/ km critical damping coefficient

c damping coeflicient
¢
F force

F, amplitude of the forcing function
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spring preload force

Heaviside unit step function at point x = a, equation (6)
jump or relay at point x = a, equation (5)

spring constant

mass

number of intervals with different spring force-deflection relations
periodizer function, equation (9)

reflecting and repeating function, equation (10)

time or independent variable

phase time

period

independent variable or displacement depending on context
displacement valid during the ith interval

velocity

absolute value of x — a, equation (4)

residue

damping factor

phase angle

frequency of excitation

damped frequency

natural frequency
concatenated
referring to one-quarter of a cycle

first derivative with respect to time
second derivative with respect to time
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