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A simple two-degree-of-freedom linear model is used to derive a number of analytical
formulae describing the dynamic behaviour of passively suspended vehicles running on
randomly pro"led roads. Two di!erent power spectral densities are considered for
modelling the road irregularity. The derived analytical formulae can be used either during
preliminary design or for other special purposes, especially when approximated results are
acceptable.

An optimization method, based on Multi-Objective Programming and Monotonicity
analysis, is introduced and applied for the symbolic derivation of analytical formulae
featuring the best compromise among con#icting performance indices pertaining to the
vehicle suspension system, i.e., discomfort, road holding and working space. The optimal
settings of the relevant vehicle suspension parameters (i.e., tyre radial sti!ness, spring
sti!ness and damping) are derived either symbolically and/or numerically.

( 2001 Academic Press
1. INTRODUCTION

In this paper the dynamic response of road vehicles running on rough roads is dealt with by
deriving simple analytical formulae. This is useful for academic purposes but also for
designers who may bene"t from a simpli"ed but general theory. In addition to the study of
the dynamic response, the optimization of vehicle parameters is performed on the basis of
Multi-Objective Programming, (MOP) a branch of Operations Research. The analytical
formulae derived in the "rst part of the paper are used in conjunction with MOP to "nd
symbolically the optimal suspension parameters ensuring the best compromise between
discomfort (i.e., the standard deviation of the vehicle body vertical acceleration), road
holding (i.e., the standard deviation of the vertical force applied between tyre and road) and
body}wheel working space (i.e., the standard deviation of the relative displacement between
wheel and vehicle body).

In the literature, a number of papers exist dealing with the problem of deriving simple
analytical formulae for the estimation of the dynamic response of road vehicles subject to
random excitations generated by road irregularity [1}6]. In each of the cited papers the
derived formulae refer to a very simple power spectral density of road irregularity (of the
form 1/u2 [7]). Here a more complex power spectral density (of the form 1/(u2#s2

c
)) is

used which estimates more accurately the amplitudes of the road irregularity at low
excitation frequencies.
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With reference to wheel and body vibrations, a number of authors have dealt with the
problem of deriving basic concepts useful for road vehicle suspension tuning [3, 8}15].
Many important relationships have been highlighted among vehicle suspension parameters
and suspension performance indices. However, an ultimate general theory was not derived.
This was mainly due to the fact that a theoretical de"nition of the best compromise between
con#icting performance indices was not explicitly introduced and properly exploited.
Another limitation was that authors often resorted to numerical simulations even when
dealing with simple models.

In this paper, an attempt to introduce a comprehensive general theory is performed by
deriving analytical formulae de"ning the optimal relationship among vehicle suspension
parameters and suspension performance indices. The derivation of these analytical
formulae has been made possible by exploiting Multi-Objective Programming (MOP).
MOP represents a rigorous theoretical way for selecting parameters when a number of
con#icting requirements on system's performances have to be satis"ed. In references
[16}25] the adoption of MOP has been proposed to solve many engineering problems,
with particular reference to vehicles. Basically, the optimization procedures based on
MOP allow the best trade-o! among user-de"ned con#icting performance indices to be
found. Given the model, the designer is often charged with the hard task of "nding
one optimal solution by changing a number of parameters. When many performance
indices have to be taken into account at the same time, and many parameters may
be changed, often the optimization problem cannot be handled easily, i.e., a solution cannot
be found in a straightforward way. Moreover, in this case, the concept of optimal solution
is not obvious and requires a special de"nition (see e.g. reference [17]). The concept
of optimal solution which will be considered may be synthesized by stating that if more
than one criterion (performance index) has to be satis"ed by changing one or
more parameters, the possible optimal solutions constitute a set. This implies that
the designer has to choose a preferred solution among those solutions (and only
those) belonging to the set. As the solutions of the set are directly related to performance
indices, the task of the designer is to consider performance indices (or criteria) instead of
considering parameters. The methods (and related computer programs) that allow such
a procedure (and thinking) are presented or reviewed in references [17}19]. Successful
applications of the method in the "eld of ground vehicle design are reported in references
[16, 21}26].

In the "rst part of the paper, analytical formulae describing the motions of road vehicles
on rough road are derived. These formulae are used in the second part of the paper for
deriving, by means of Multi-Objective Programming, the optimal tuning of the vehicle
suspension parameters.

2. SYSTEM MODEL

2.1. EQUATIONS OF MOTION AND RESPONSE TO STOCHASTIC EXCITATION

The adopted quarter-car system model is shown in Figure 1. The mass m
1

represents
approximately the mass of the wheel plus part of the mass of the suspension arms,
m

2
represents approximately 1/4 of the body mass (m

2
could be computed more precisely

taking into account the position of the centre of gravity along the wheelbase, as shown in
references [4, 8]. The excitation comes from the road irregularity m. The model is generally
reputed to be su$ciently accurate for capturing the essential features related to discomfort,
road holding and working space (see reference [8]). The linear equations of motions of the



Figure 1. Quarter car vehicle model.
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system model are
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The responses of the vehicle model are, respectively, the vertical vehicle body acceleration
(xK

2
), the force applied between road and wheel (F

z1
), the relative displacement between

wheel and vehicle body (x
2
!x

1
).

The discomfort is evaluated by computing the standard deviation of the vertical vehicle
body acceleration (pxK

2
). The higher the standard deviation, the higher is the discomfort. This

approach seems to provide very good correlation with subjective ride comfort ratings
[2, 27].

The standard deviation of the tyre radial force (p
Fz

) is related to road holding. The
variation of tyre radial force can lead to a loss of contact with the ground and poor handling
ability [2].

The standard deviation of the relative displacement between the wheel and vehicle body
(p

x2~x1
), i.e., the rattlespace or working space, is related to design and packaging constraints,

as well as to wheel lateral vibrations.
Discomfort (pxK
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), road holding (p
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) and working space (px

2
!x

1
) are the performance

indices to which reference will be made in the paper.
The transfer function [25] between the displacement m and x

1
is given by
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The transfer function between the imposed displacement m and x
2

is
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The transfer function between m and xK
2

is
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The displacement m (road irregularity) may be represented by a random variable de"ned
by a stationary and ergodic stochastic process with zero mean value [7, 28]. The power
spectral density (PSD) of the process may be determined on the basis of experimental
measurements and in the literature there are many di!erent formulations for it (e.g., see
references [7, 9]).

In this paper, two spectra have been considered:

Sm1(u)"
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b
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, (7)

Sm2(u)"
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v
s
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c
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, (8)

where s
c
"av. The value of the coe$cient a (rad/m) depends on the shape of the road

irregularity spectrum.
In a log}log scaled plot (abscissa u), the spectrum of equation (7) takes the shape of a line

sloped at rate !2. The simple expression (7) approximates various roads with di!erent
degrees of accuracy. It generally overestimates the amplitudes of the irregularity at low
frequency. In the following, equation (7) will be shown as one slope power spectral density
(1S-PSD).

A better correlation with measured spectra can be obtained by resorting to more complex
spectra as suggested in reference [7]. Equation (8) has been reported in references [9, 29]. In
a log}log scaled plot (abscissa u) equation (8) takes the shape of a two slope curve, thus
reference will be made by the acronym 2S-PSD.

The parameters A
b

and A
v

are obviously uncorrelated as they refer to two di!erent
excitation spectra.

The power spectral density (PSD) S
l
of the output of an asymptotically stable system can

be computed as (see, e.g., reference [1]))

S
l
(u)"DH

l
( ju) D2Smq (u), l"1,2, 3, q"1, 2. (9)

For l"1, S
l
represents the PSD of the vertical acceleration of the vehicle body, for l"2,

S
l

represents the PSD of the vertical force at the wheel}road interface, and for l"3,
S
l
represents the PSD of the relative displacement chassis}wheel (suspension stroke), the

index q"1 refers to the 1S-PSD and the index q"2 refers to the 2S-PSD.
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2.2. DERIVATION OF STANDARD DEVIATIONS IN ANALYTICAL FORM

By de"nition (see reference [1]) the variance of a random variable described by
a stationary and ergodic stochastic process is

p2
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1

2n P
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~=
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(u) du. (10)

In reference [30] it is shown that an analytical solution exists for p2
l

if S
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can be written

as
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where D
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is a polynomial of degree k, and N

k~1
is a polynomial of degree k!1 (k*1). By

inspection of equations (4}9) one may understand that S
l
can be written as in equation (11);

in fact, for example, considering the vertical acceleration of the vehicle body (xK
2
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from equation (9)
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(see equations (3, 4))
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It is important to notice that S
l
can be written as in equation (11) if Smq ( ju) can be

expressed as

Smq( ju)"
Nm ( ju)Nm (!ju)

Dm ( ju)Dm(!ju)
.

This occurrence was "rst exploited in reference [4], with reference to the simple 1S-PSD
(q"1). The more re"ned 2S-PSD (q"2) has been introduced in this paper.

The analytical formulae presented in the following subsections have been derived by
means of the analytical solutions of integral (10) introduced in reference [30] and reported
in Appendix A.

2.2.1. Formulae referring to the 1S-PSD (equation (7))

The analytical formulae giving the discomfort, road holding and working space are
reported. They have been obtained by solving analytically equation (10) (1S-PSD).
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These formulae were already derived and presented in references [3, 4, 5, 25].
Figure 2 shows, respectively, the discomfort (pxK

2
), road holding (p

Fz
) and working space

(p
x2~x1

) as function of the vehicle speed (v) considering the reference vehicle.

2.2.2. Formulae referring to the 2S-PSD (equation (8))

The analytical formulae giving the discomfort, road holding and working space are
reported. They have been obtained by solving analytically equation (10) (2S-PSD).
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Figure 2. Discomfort (pxK
2
), road holding (p

Fz
), working space (p

x2~x1
) as function of the vehicle speed. Data of the

reference vehicle in Table 1, running condition data in Table 2. **, 1S-PSD; ) } ) } ) } ), 2S-PSD.
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The main di!erence between the formulae referring to the 1S-PSD (equation (12}17)) and
those referring to 2S-PSD (equation (18}20)) is that in the "rst formulae the running
condition parameters A

b
and v are always not mixed with system model parameters (m

1
, m

2
,

k
1
, k

2
, r

2
). The opposite occurs for 2S-PSD formulae in which running condition

parameters s
c
, c

rv
are mixed with model parameters (m

1
, m

2
, k

1
, k

2
, r

2
). This implies that for

1S-PSD excitation, the minima of pxK
2
, p

Fz
, p

x2~x1
(as function of the suspension parameters)

do not depend on running conditions (A
b
, v).
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2.3. PARAMETER SENSITIVITY ANALYSIS

The dynamic response of the road vehicle system model in Figure 1 is analyzed on the
basis of equations (12, 14, 16, 18}20). A typical, small-sized sports car is taken into
consideration (vehicle data in Table 1 and road roughness data in Table 2). All graphical
results in the paper refer to this vehicle, and thus they do not have a general meaning and
might even be qualitatively inaccurate for another (quite di!erent) vehicle. However, the
formulae derived in the previous paragraph do have a general meaning and can be used for
simulating the comfort, road holding and working space of every road vehicle that could be
modelled as in Figure 1.

The results of the parameter sensitivity analysis are shown in Figures 3}5. The
parameters are varied within wide ranges. The data are presented in non-dimensional form,
i.e., the standard deviation of interest p

j
is divided by the corresponding one (p

jr
) computed

by considering the parameters at their reference values reported in Table 1, i.e.,
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The non-dimensional standard deviations given by equations (12, 14, 16) do not depend
on vehicle speed. The opposite occurs for the non-dimensional standard deviations derived
from equations (18}20) referring to excitation given by 2S-PSD (equation (8)). For this
reason these non-dimensional standard deviations are analyzed at two di!erent vehicle
speeds, low speed (10 m/s) and high speed (50 m/s).
TABLE 1

Data of the reference road vehicle taken into consideration

Parameter Reference value Lower and upper bound-

m
1r

(kg) 229 114}458
m

2r
(kg) 31 15}62

k
1r

(N/m) 120 000 60 000}240000
k
2r

(N/m) 20 000 10 000}40 000
r
2r

(N s/m) 1200 600}2400

-Lower and upper bounds refer to parameter sensitivity analysis.

TABLE 2

Data of the road roughness taken into consideration

Parameter Reference value

A
b

(m) 1)4e}5
a"s

c
/v (rad/m) 0)4

A
v

(m2) 3)5e}5



Figure 3. pxK
2
/pxK

2r
: non-dimensional standard deviation of the vertical body acceleration as function of model

parameters. Data of the reference vehicle in Table 1, running condition data in Table 2. Each diagram has been
obtained by varying one single parameter, the other ones being constant and equal to those of the reference vehicle.
}} } }, 2S-PSD: v"10 m/s; ) } )} ) } ), 2S-PSD: v"50 m/s; **, 1S-PSD: any speed.
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2.3.1. Standard deviation of the vertical body acceleration (discomfort)

By inspection of Figure 3 it may be noted that

(1) the tyre radial sti!ness k
1

in#uences signi"cantly pxK
2
(the in#uence is stronger at high

speed considering the 2S-PSD),
(2) pxK

2
increases with the suspension sti!ness k

2
,

(3) pxK
2
does not depend signi"cantly on the wheel mass m

1
,

(4) pxK
2
depends strongly on the vehicle body mass m

2
,

(5) the suspension damping r
2

has in#uence on the standard deviation pxK
2
.

Some of the above considerations can be derived by inspection of equation (12) or
equation (18).

2.3.2. Standard deviation of the dynamic wheel load (road holding)

Figure 4 shows that

(1) p
Fz

depends linearly on the tyre sti!ness k
1
,

(2) p
Fz

increases with the suspension sti!ness k
2

(almost the opposite occurs at high speed
considering the 2S-PSD),

(3) p
Fz

increases with the wheel mass m
1
,



Figure 4. p
Fz

/p
Fzr

: non-dimensional standard deviation of road holding as a function of model parameters. Data
of the reference vehicle in Table 1, running condition data in Table 2. Each diagram has been obtained by varying
one single parameter, the other ones being constant and equal to those of the reference vehicle. } } } }, 2S-PSD:
v"10 m/s; ) } ) } ) } ), 2S-PSD: v"50 m/s; **, 1S-PSD: any speed.
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(4) p
Fz

does not depend signi"cantly on the vehicle body mass m
2
,

(5) the suspension damping r
2

has signi"cant in#uence on the standard deviation p
Fz

.

Some of the above considerations can be derived by inspection of equation (14) or
equation (19).

2.3.3. Standard deviation of suspension stroke (working space)

By inspection of Figure 5, it may be noted that
(1) p

x2~x1
is not in#uenced by k

1
and k

2
for the 1S-PSD excitation,

(2) the remarkable in#uence of m
2

on p
x2~x1

is less important at high speed for the 2S-PSD
excitation,

(3) p
x2~x1

is strongly in#uenced by the suspension damping.

The above considerations can be derived by inspection of equation (16) or equation (20).

3. MULTI-OBJECTIVE PROGRAMMING

3.1. PROBLEM FORMULATION

The theory of Multi-Objective Programming (MOP) can be found in references [17, 20,
31]. Here a brief introduction on the main issues of MOP will be given, with reference to the
problem of a vehicle running on rough road. Consider a system model as the one depicted in
Figure 1. The relevant performance indices of the system are, as shown in the previous part
of the paper, discomfort, road holding and working space. These performance indices are



Figure 5. p
x2~x1

/p
x2~x1r

: non-dimensional standard deviation of working space as function of model
parameters. Data of the reference vehicle in Table 1, running condition data in Table 2. Each diagram has been
obtained by varying one single parameter, the other ones being constant and equal to those of the reference vehicle.
}} } }, 2S-PSD: v"10 m/s; ) } )} ) } ), 2S-PSD: v"50 m/s; **, 1S-PSD: any speed.
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con#icting, i.e., improving one of them implies at least worsening another one. Usually,
designers are interested in "nding the best compromise among these performance indices by
varying the system's model parameters (e.g., suspension sti!ness k

2
and damping r

2
).

Finding the best compromise implies, in this case, the contemporary minimization of the
performance indices (often called &&objective functions'' or &&objectives''). Thus, a vector
composed of many objective functions has to be minimized. Consider the minimization of
a vector composed of two objective functions, e.g., discomfort p6 2xK

2
and road holding p6 2

Fz
,

which are assumed to be functions of suspension sti!ness k
2

and damping r
2
. If discomfort

and road holding were to be minimized separately, the suspension parameters minimizing
p6 2xK

2
and p6 2

Fz
would read as

minp6 2xK
2
(k

2
, r

2
)P (k

2,minpN 2
xK 2
, r

2,minpN 2
xK 2
),

minp6 2F
z
(k

2
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2,minpN 2
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).

Obviously, there are two di!erent vectors of parameters (namely k
2,minpN 2

xK 2
, r

2,minpN 2
xK 2

and
k
2,minpN 2

Fz
, r

2,minpN 2
Fz
) which minimize separately p6 2xK

2
p6 2
Fz

. If p6 2xK
2
and p6 2

Fz
were to be minimized
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contemporarily, i.e.,

minA
p6 2xK

2
(k

2
, r

2
)

pN 2
Fz

(k
2
, r

2
)B ,

the solution would be, by de"nition (25), function of parameters k
2
, r

2

f (k
2
, r

2
)"0.

There are many methods to "nd f (k
2
, r

2
)"0 (see reference [17]).

The designer should tune the suspension parameters according to the above equation.
The function f (k

2
, r

2
)"0 will be derived below (equation (32)).

In general, a Multi-Objective Programming (MOP) problem can be formulated as

min g(z)"min A
g
1
(z

1
, z

2
,2, z

n
)

g
2
(z

1
, z

2
,2 , z

n
)

2

g
k
(z

1
, z

2
,2, z

n
)B , (24)

where z
1
, z

2
,2, z

n
are the n model's parameters and g

1
, g

2
,2, g

k
are the k model's

performance indices. For computational purposes, the performance indices or objective
functions g

k
should at least be continuous functions of the model's parameters. The aim is to

"nd the optimal solutions, i.e., those solutions which minimize the vector g(z) as indicated
above. The model parameters (z) may vary within a pre-de"ned domain Z (feasible domain).
These optimal solutions are often called e.cient solutions or Pareto-optimal solutions.

In a multi-objective optimization problem the &&best'' solutions (&&Pareto-optimal''
solutions) do exist and can be found by using the following de"nition. The solution z* is
Pareto-optimal (non-dominated) if another solution z does not exist such that

g
r
(z))g

r
(z*), r"1, 2, 3,2, k,

&l : g
l
(z)(g

l
(z* ).

(25)

The designer will skip all dominated solutions and choose the "nal preferred solution
among the non-dominated ones only.

Pareto-solutions are in general not unique and constitute a set. Methods to "nd the
whole set of e$cient solutions are reported in references [17, 20, 31}35].

3.2. CONSTRAINTS METHOD TO FIND OPTIMAL SOLUTIONS

One useful method to "nd Pareto-optimal solutions is the Constraints Method [17, 20,
32, 36]. It may be introduced with an example. Consider a problem in which two con#icting
performance indices g

i
(i"1, 2) and n parameters z

i
appear

minA
g
1
(z

1
, z

2
,2 , z

n
)

g
2
(z

1
, z

2
,2 , z

n
)B . (26)

By constraining the performance index g
2

to a level gN
2
, the problem can be transformed

into the following Non-Linear Programming problem:

min g
1
(z

1
, z

2
,2, z

n
),

(27)
g
2
(z

1
, z

2
,2, z

n
))gN

2
.
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The values of the parameters which minimize g
1

are e$cient (i.e., optimal) solutions. By
properly varying the value of gN

2
and searching for the new minimum of g

1
, it is possible to

"nd the whole set of optimal solutions. The designer is aware of all possible choices when
the whole set of optimal solutions is known.

3.2.1. ¹wo performance indices

If two con#icting performance indices g
i
, which are analytical functions of two system

model's parameters z
i
are considered, it is possible to directly apply the Constraints Method

to "nd the analytical expressions of both the optimal performance indices and the optimal
parameters, that is,

(1) g*
1
"g*

1
(g*

2
) , i.e., the analytical expression which gives the optimal value of the

performance index g
1
when g

2
is at its best (or vice versa, which is conceptually the same,

g*
2
"g*

2
(g*

1
)).

(2) z*
1
"z*

1
(z*

2
) (or vice versa z*

2
"z*

2
(z*

1
)), i.e., the analytical expression which gives the

optimal values of the parameters z
1

and z
2

corresponding to g*
1

or g*
2
.

Being g
1
"g

1
(z

1
, z

2
) and g

2
"g

2
(z

1
, z

2
) the performance indices and z

1
and z

2
the

system model's parameters, the procedure to "nd the analytical expressions g*
1
"g*

1
(g*

2
)

and g*
2
"g*

2
( g*

1
) is the following:

(1) from the mathematical expression g
1
"g

1
(z

1
, z

2
) the expression z

2
"z

2
(g

1
, z

1
) is

derived by "xing the value of g
1
;

(2) by substituting the expression derived at point 1) in the expression g
2
"g

2
(z

1
, z

2
) the

expression g
2
"g

2
(g

1
, z

1
) is obtained;

(3) the minimum of g
2

is searched for by setting to zero the following derivative:

dg
2
(g

1
, z

1
)

dz
1

"0

and checking that

d2g
2
(g

1
, z

1
)

dz2
1

'0

this corresponds to the search for the minimum of the performance index g
2
, while the

performance index g
1

is kept constant; from the expression of the "rst derivative, the
expression z

1
"z

1
(g

1
) can be obtained;

(4) the expression z
1
"z

1
(g

1
) is substituted into g

2
"g

2
(g

1
, z

1
) and by this way it is

possible to get the expression g*
2
"g*

2
(g*

1
) which de"nes the relationship between the

two optimal performance indices;
(5) the equation g*

2
"g*

2
(g*

1
) is the image in the plane (g

1
}g

2
) of the equation z*

1
"z*

1
(z*

2
) in

the plane (z
1
}z

2
). z*

1
"z*

1
(z*

2
) may be obtained by substitution.

3.2.2. ¹hree performance indices

Before applying the Constraints Method (introduced in the previous section) to problems
with more than two performance indices, Monotonicity analysis has to be applied for
determining constraint activity.

The following theorems [37, 38] (Theorems of Monotonicity) apply to the problem of
"nding the optimal compromise between more than two performance indices.
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If the performance indices and all inequality constraints (37) are globally monotonic with
respect to all parameters z

i
3Z'0 then

Theorem 1. If the variable z
i

is explicitly represented in the performance index to be
minimized, then there exists at least one active constraint with opposite monotonicity with
respect to z

i
.

Theorem 2. A variable z
i
that is not explicitly represented in the performance index must

either only be contained in constraints that are inactive, or else there must exist at least two
active constraints having opposite monotonicities with respect to z

i
.

These theorems will be used in the next section.

3.3. OPTIMAL SUSPENSION PARAMETERS

The mathematical procedure described above has been used to optimize the parameters
of the suspension of a road vehicle described by the simple system model in Figure 1. The
parameters to be optimized are the sti!ness k

2
and the damping r

2
of the suspension and the

tyre radial sti!ness k
1
, and the performance indices are pxK

2
(discomfort), p

Fz
(road holding)

and p
x2~x1

(working space).
By analyzing the expressions given by equations (14) and (12) it can be seen that both

pxK
2

and p
Fz

increase monotonically with k
1

(if reasonable variations for the suspension
parameters are considered) and p

x2~x1
depends only on r

2
. For these reasons, the problem

can be simpli"ed by considering only two parameters, k
2

and r
2
. The "rst result is that in

any case the tyre radial sti!ness k
1

has to be kept at the lower bound of the admissible
range.

The following subsections describe in detail the derivation of the Pareto-optimal set for
di!erent combinations of performance indices.

3.3.1. Suspension parameters for optimal pxK
2
, p

Fz
(1S-PSD)

By applying the procedure based on the Constraints Method presented in section 3.2.1
the suspension setting for optimal pxK

2
!p

Fz
can be found.

Consider two parameters (k
1

is kept at the minimum) k
2

the suspension sti!ness and
r
2

the damping constant.
The performance indices are pxK

2
, discomfort (equation (13)) p

Fz
, road holding (equation

(15)).
Solving equation (13) with respect to k

2
, a function of r

2
and p6 2xK

2
is obtained

k
2
"S

p6 2xK
2
m2

2
r
2

(m
1
#m

2
)
!

k
1
r2
2

(m
1
#m

2
)
. (28)

By substituting k
2

in equation (15) p6 2
Fz

can be expressed as

p6 2
Fz
"(m

1
#m

2
)2Ap6 2xK 2#

k2
1
m

1
r
2
(m

1
#m

2
)2
!

2k
1
m

1
m

2
r
2
(m

1
#m

2
)
(S

S
)B , (29)

(S
S
)"S

pN 2xK
2
m2

2
r
2

(m
1
#m

2
)
!

k
1
r2
2

(m
1
#m

2
)
.



Figure 6. Pareto-optimal sets for the pxK
2
}p

Fz
problem. Plot in non-dimensional form, vehicle data in Table 1,

running condition data in Table 2. The points highlighted by using special symbols (e, h) refer to the points in
Figure 7. } } } }, 2S-PSD: v"1 m/s; ) } ) } ) } ), 2S-PSD: v"10 m/s; ) ) ) ) ) ) ) , 2S-PSD: 50 m/s; **, 1S-PSD: any
speed; s, ref. vehicle.
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The minimum of equation (29) is now computed by setting to zero the "rst derivative with
respect to r

2

dp6
Fz

dr
2

"0P r
2
"

k2
1
m2

2
pN 2xK

2

m2
2
(pN 2xK

2
)2 (m

1
#m

2
)#k3

1

. (30)

By substituting r
2

in equation (29) the relationship between optimal pxK
2

and optimal
p
Fz

can be obtained (see Figure 6)

pN *2
Fz

"m
2
(m

1
#m

2
)pN *2xK

2
#

m
1
k3
1

m2
2
pN *2xK

2

,

(31)

2S
m

1
k3
1
(m

1
#m

2
)

m
2

(pN *2
Fz

(R, S
m

1
k3
1

(m
1
#m

2
)m3

2

'pN *2xK
2
'0,

the corresponding expression in the optimal parameter domain (Figure 7) reads as

k*
2
"S

m
2
k
1

(m
1
#m

2
)A

m
2
k
1

(2m
1
#m

2
)
!

r*2
2
m

2

!

Jk2
1
m2

2
!4k

1
r*2
2

(m
1
#m

2
)

2(m
1
#m

2
) B . (32)

The last equation has been obtained by substituting equations (13) and (15) into equation
(31).

It is important to note that equation (31), if taken without the constraints referring to
p6 *2xK

2
and p6 *2

Fz
, de"nes both Pareto-optimal solutions and non-Pareto-optimal solutions. This



Figure 7. Pareto-optimal sets (parameters domain) for the pxK
2
}p

Fz
problem. Plot in non-dimensional form,

vehicle data in Table 1, running condition data in Table 2. The points highlighted by using special symbols (e, h)
refer to the points in Figure 6. } } }}, 2S-PSD: v"1 m/s; )} ) } ) } ), 2S-PSD: v"10 m/s; ) ) ) ) ) ) ) , 2S-PSD:
v"50 m/s; **, 1S-PSD: any speed; s, ref. vehicle.
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is due to the particular implementation of the Constraints Method employed (see section
3.2.1). Thus, in order to compute correctly the Pareto-optimal set, the inequalities have to be
considered. The lower and upper bounds in equations (31) de"ne the extrema (g

1(min)
,

g
2
(g

1(min)
) and g

1
(g

2(min)
), g

2(min)
) represented in Figure 8, corresponding to the two solutions

that minimize one by one the two performance indices g
1
"pN 2

Fz
and g

2
"p6 2xK

2
. The two

extrema of the Pareto-optimal set can be obtained as follows. The minimum of p6 2xK
2

is
obtained by setting Lp6 2xK

2
/Lr

2
"0, Lp6 2xK

2
/Lk

2
"0, so g

2(min)
"pN 2xK

2(min)
"0 (the corresponding

g
1
(g

2(min)
)"pN 2

Fz
"R (see equation (31)) as shown in Figure 8. The minimum of p6 2

Fz
is

derived by setting Lp6 2
Fz

/Lr
2
"0, Lp6 2

Fz
/Lk

2
"0, so

g
1(min)

"pN 2
Fz

(min)"2S
m

1
k3
1
(m

1
#m

2
)

m
2

and the corresponding

g
2
(g

1(min)
)"pN 2xK

2
"S

m
1
k3
1

(m
1
#m

2
)m3

2

.

3.3.2. Suspension parameters for optimal pxK
2
, p

x2~x1
(1S-PSD)

The equation that de"nes the Pareto-optimal set for the discomfort*working space
problem (Figure 9) is

p6 *2xK
2
"

k
1
(m

1
#m

2
)

m2
2
pN *2
x2~x1

. (33)



Figure 8. Limitations on the curve that contains the Pareto-optimal set. The points highlighted by circles (L)
identify the Pareto-optimal set on the curve derived by applying the Constraints Method.

Figure 9. Pareto-optimal sets for the pxK
2
}p

x2~x1
problem. Plot in non-dimensional form, vehicle data in Table 1,

running condition data in Table 2. } } } }, 2S-PSD: v"1 m/s; ) } ) } ) } ), 2S-PSD: v"10 m/s; ) ) ) ) ) ) ) , 2S-PSD:
v"50 m/s; **, 1S-PSD: any speed; s, ref. vehicle.
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Equation (33) has been obtained as shown in section 3.2.1. Equation (33) contains the
whole Pareto-optimal set being g

2(min)
"p6 2xK

2
(min)"0 (corresponding to g

1
(g

2(min)
)"

p6 2
x2~x1

"R) and g
1(min)

"pN 2
x2~x1(min)

"0 (corresponding to g
2
(g

1(min)
)"p6 2xK

2
"R).

The equation of the Pareto-optimal set into the parameter space is

k*
2
"0. (34)

So, the Pareto-optimal set is the r
2
-axis.

3.3.3. Suspension parameters for optimal p
x2~x1

, p
Fz

(1S-PSD)

By applying again the procedure presented in section 3.2.1. the Pareto-optimal set for the
road holding*working space problem (p

Fz
, p

x2~x1
) can be derived (Figure 10).



Figure 10. Pareto-optimal sets for the p
x2~x1
}p

Fz
problem. Plot in non-dimensional form, vehicle data in

Table 1, running condition data in Table 2. The points highlighted by using special symbols (e, h) refer to the
points in Figure 11. } } } }, 2S-PSD: v"1 m/s; ) } ) } ) } ), 2S-PSD: v"10 m/s; ) ) ) ) ) ) ) , 2S-PSD: v"50 m/s; **,
1S-PSD: any speed; s, ref. vehicle.
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p6 *2
Fz

"

m
1
k2
1
pN *2
x2~x1

m
1
#m

2

!

m2
1
k2
1
pN *2
x2~x1

(m
1
#m

2
)2
#

k
1
(m

1
#m

2
)3

m2
2
pN *2
x2~x1

,

(35)

2S
m

1
k3
1
(m

1
#m

2
)

m
2

(pN *2
Fz

(R, S
(m

1
#m

2
)5

m
1
m3

2
k
1

'p6 2
x2~x1

'0 .

The bounds of the inequalities can be obtained by computing the minimum of working
space g

2(min)
"p6 2

x2~x1(min)
"0 (corresponding to g

1
(g

2(min)
)"p6 2

Fz
"R, see Figure 8) and the

minimum of the road holding g
1(min)

"pN 2
Fz(min)

"2S
m

1
k3
1
(m

1
#m

2
)

m
2

, g
2
(g

1(min)
)"pN 2

x2~x1
"S

(m
1
#m

2
)5

m
1
m3

2
k
1

.

The Pareto-optimal set in the parameter domain is

k*
2
"

m
1
m

2
k
1

(m
1
#m

2
)2

. (36)

The Pareto-optimal set is the line parallel to the r
2
-axis (Figure 11).

3.3.4. Suspension parameters for optimal pxK
2
, p

Fz
, p

x2~x1
(1S-PSD)

The MOP problem can be reformulated by using the Constraints Method [20, 17, 32] as

minp2
x2~x1

"g
1
(r
2
) equations (16, 17),

p2
Fz1

"g
2
(r
2
, k

2
))gN

2
equations (14, 15), (37)

p2xK
2
"g

3
(r
2
, k

2
))gN

3
equations (12, 13),

(k
1

is not considered because it should be kept always at its minimum value).



Figure 11. Pareto-optimal sets (parameters domain) for the p
x2~x1
}p

Fz
problem. Plot in non-dimensional form,

vehicle data in Table 1, running condition data in Table 2. The points highlighted by using special symbols (e, h)
refer to the points in Figure 10. } }} }, 2S-PSD: v"1 m/s; ) } )} ) } ), 2S-PSD: v"10 m/s; ) ) ) ) ) ) ) , 2S-PSD: 50 m/s;
**, 1S-PSD: any speed; s, ref. vehicle.
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The variable k
2

is not explicitly represented in the performance index g
1
. According to

the Theorem 2 (section 3.2.2) at least two active constraints having opposite monotonicities
with respect to k

2
must exist. So the two inequalities constraints in equation (37) are active

(i.e., the equality holds) and problem (37) is reduced to the solution of

p2
x2~x1

"g
1
(r
2
),

p2
Fz1

"g
2
(r
2
, k

2
), (38)

p2xK
2
"g

3
(r
2
, k

2
).

The analytical expression of the surface which contains the Pareto-optimal set in the pxK
2
,

p
Fz1

, p
x2~x1

domain is derived from equation (38) by eliminating k
2
, r

2
.

p6 *2
Fz

"p6 *2xK
2

(m
2
#m

1
)2#

m
1
k2
1

(m
2
#m

1
)
pN *2
x2~x1

!

2m
1
k
1

m
2

(Q), (39)

Q"JpN *2xK
2

m2
2

pN *2
x2~x1

!k
1
(m

2
#m

1
) .

The corresponding Pareto-optimal parameters (k
2
, r

2
) can be readily calculated

r*
2
"

m
2
#m

1
pN *2
x2~x1

, (40)

k*
2
"

JpN *2xK
2

m2
2
pN *2
x2~x1

!k
1
(m

2
#m

1
)

p6 *2
x2~x1

. (41)



Figure 12. Pareto-optimal set in the discomfort (pxK
2
)}road-holding (p

Fz
)}working-space (p

x2~x1
) domain. Plot in

non-dimensional form, vehicle data in Table 1, running condition data in Table 2. The 1S-PSD is considered. The
reference vehicle is represented by the small circle.
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It may be noted that r*
2
, k*

2
do not depend on A

b
) v; i.e., the optimal parameter settings do

not depend on vehicle speed.
The Pareto-optimal set, de"ned by equation (39), is plotted in the pxK

2
, p

Fz1
, p

x2~x1
space

(performance indexes space) in Figure 12. Geometrically, in this case (three-dimensional
space), the Pareto-optimal set is a surface. Figure 13 shows the projection of the
Pareto-optimal set (surface) depicted in Figure 12 on to the three planes (p

Fz1
, p

x2~x1
), (pxK

2
,

p
Fz1

) and (pxK
2
, p

x2~x1
). The Pareto-optimal sets in the parameters domain (k

2
, r

2
) are shown

in Figure 14. k
1

is kept always at its minimum value.
The Pareto-optimal sets related to the problem formulated by considering only two

performance indices (sections 3.3.1, 3.3.2, 3.3.3) are obviously on the border of the projection
on to a bi-dimensional domain (plane) of the surface which represents the Pareto-optimal
set related to the problem with three performance indices. Moreover, they constitute the
boundaries of the Pareto-optimal surface.

3.3.5. Suspension parameters for optimal pxK
2
, p

Fz
(2S-PSD)

When the road irregularity is de"ned by the 2S-PSD, the analytical derivation of the
Pareto-optimal set is rather impractical. So the Pareto-optimal set has been computed
numerically, i.e., k

2
and r

2
have been varied and the response of the model in terms of

pxK
2
(equation (18)) and p

Fz
(equation (19)) has been computed. The Pareto-optimal solutions

have been selected by directly applying the Pareto-optimality de"nition (25). The
approximated Pareto-optimal set is plotted in Figure 6 into the performance indices
domain and in Figure 7 into the parameters domain. Three di!erent vehicle speeds (1, 10,
50 m/s) have been considered.

The relationship between k
2

and r
2

is di!erent with respect to the case 1S-PSD as the
vehicle speed increases (see Figure 11).



Figure 13. Projection of the Pareto-optimal set shown in Figure 12 in the discomfort (pxK
2
) road-holding (p

Fz
)

working-space (p
x2~x1

) domain. Bi-dimensional projections. Plot in non-dimensional form, vehicle data in Table 1,
running condition data in Table 2. ], 2S-PSD: 1 m/s; #, 2S-PSD: 10 m/s; n, 2S-PSD: 50 m/s; s, ref. vehicle.
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3.3.6. Suspension parameters for optimal pxK
2
, p

x2~x1
(2S-PSD)

The numerical procedure introduced in section 3.3.5 has been used to compute the
Pareto-optimal set referring to pxK

2
and p

x2~x1
. The Pareto-optimal set is shown in Figure 9.

Three di!erent vehicle speeds (1, 10, 50 m/s) have been considered.
The shape of the curve (Figure 9) that represents the Pareto-optimal set pxK

2
!p

x2~x1
is

di!erent from the curve obtained by considering the 1S-PSD, in this case the e!ect
of the modi"ed road irregularity spectrum is less important with respect to the pxK

2
, p

Fz
case.

3.3.7. Suspension parameters for the optimal p
x2~x1

!p
Fz

(2S-PSD)

The Pareto-optimal set considering p
x2~x1

and p
Fz

is shown in Figure 10 (parameters
domain) and Figure 11 (performance indices domain). Three di!erent vehicle speeds
(1, 10, 50 m/s) have been considered.

The relationship between k
2

and r
2

is di!erent with respect to the case 1S-PSD
(Figure 11). This is due to the fact that p

x2~x1
does not depend on k

2
when a road described

by the 1S-PSD irregularity is considered.

3.3.8. Suspension parameters for optimal pxK
2
!p

Fz
!p

x2~x1
(2S-PSD)

A numerical search algorithm has been designed [34] and used to approximate the
Pareto-optimal set considering three performance indices, namely pxK

2
, p

Fz
, and p

x2~x1
. The



Figure 14. Images of the Pareto-optimal set plotted in Figure 13 onto the k
2
}r

2
parameter domain. Plot in

non-dimensional form, vehicle data in Table 1, running condition data in Table 2. The optimal k
2
, r

2
must lay

within the indicated boundaries. The reference vehicle is not optimal within the speed range 1}50 m/s.
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projections of the Pareto-optimal surface on to the performance index domain are shown in
Figure 13. The corresponding parameters are limited by the lines plotted in Figure 14.
Again three di!erent vehicle speeds (1, 10, 50 m/s) have been considered.

4. CONCLUSION

Simple analytical formulae have been derived symbolically in order to describe the
response of vehicles to random excitation generated by the vertical road irregularity. Two
di!erent road irregularity spectra have been considered (1S-PSD and 2S-PSD). The
analytical formulae should estimate with reasonable accuracy the dynamic behaviour of an
actual road vehicle running on rough road. On the basis of the derived analytical formulae,
a parameter sensitivity analysis has been performed with reference to relevant performance
indices, namely the standard deviations of the body acceleration (discomfort), of the vertical
force on the wheel (road holding), of the suspension stroke (working space).

Depending on the power spectral density of the road irregularity (1S-PSD or 2S-PSD)
and on the vehicle speed, the sensitivity of performance indices to suspension parameters
variations may dramatically change. This happens for example, referring to the in#uence of
the suspension sti!ness on road holding, of the damping ratio on discomfort, of the body
mass on working space.

In the second part of the paper, by using the derived analytical formulae, a theoretically
rigorous method, based on Multi-Objective Programming (MOP) and Monotonicity
analysis, has been applied to "nd the best trade-o! for con#icting performance indices such
as discomfort, road holding and working space.

In case the excitation is given by a simpli"ed road spectrum irregularity (1S-PSD), simple
analytical formulae have been derived symbolically for the optimal compromise among
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discomfort, road holding and working space. Correspondingly, the optimal suspension
damping and the optimal tyre and suspension sti!nesses have also been derived symbolically.

If the excitation is de"ned by the simple road spectrum (1S-PSD) the optimal suspension
settings do not depend on vehicle speed. The opposite occurs when considering the
(2S-PSD) excitation spectrum. The best compromise between discomfort and road holding
is obtained by increasing (or decreasing) both the suspension sti!ness and damping. The
relationship between sti!ness and damping depends strongly on the vehicle speed if the best
compromise between road holding and working space has to be obtained.

When discomfort, road holding and working space have to be optimized contemporarily,
the optimal suspension parameters (sti!ness and damping) have to be set within
well-de"ned ranges which have been derived (numerically) in the paper. The tyre radial
sti!ness has always to be kept at its minimum value.

Some of the above conclusions are partially understood from road vehicle dynamics
research. The main contribution of the paper is the provision, in a rigorous way, and
(whenever possible) in analytical form, of the basic equations for describing and optimizing
the dynamic behaviour of vehicles running on randomly pro"led roads.

REFERENCES

1. P. MUELLER and W. SCHIEHLEN 1985 ¸inear <ibrations Dordrecht: Martinus Nijo!.
2. D. HROVAT 1993 ¹ransactions of the American Society of Mechanical Engineers, Journal of

Dynamic Systems, Measurement, and Control 115, 328}342. Applications of optimal control to
advanced automotive suspension design.

3. R. CHALASANI 1983 Internal Report General Motor Research ¸aboratories. Ride performance
potential of active suspension systems.

4. A. THOMPSON 1983 SAE Paper 830663. Suspension design for optimum road holding.
5. X. LU and AL. 1984 International Journal of <ehicle Design 5, 129}141. A design procedure for

optimization of vehicle suspensions.
6. G. MASTINU 1988 ¹echnical Report. Politecnico di Milano. Escursione della sospensione dell'

autoveicolo: derivazione analitica della risposta in presenza di eccitazione stocastica.
7. C. DODDS and J. ROBSON 1973 Journal of Sound and <ibration 31, 175}183. The description of

road surface roughness.
8. R. SHARP and D. CROLLA 1987 <ehicle System Dynamics, 16, 167}192. Road vehicle suspension

system design*a review.
9. M. MITSCHKE 1990 Dynamik der Kraftfahrzeuge. Berlin: Springer-Verlag.

10. G. MASTINU 1988 Proceedings of the IMechE Conference2Advanced Suspensions, Institution of
Mechanical Engineers, ¸ondon. Passive automobile suspension parameter adaptation.

11. T. GILLESPIE 1992 Fundamentals of <ehicle Dynamics. Warrendale, PA: Society of Automotive
Engineering.

12. G. GENTA 1989 Meccanica dell1 autoveicolo. Torino: Levrotto & Bella.
13. A. MORELLI 1999 Progetto dell autoveicolo, concetti di base. CELID.
14. J. DIXON 1991 ¹yres, Suspension and Handling. Cambridge: Cambridge University Press.
15. C. BOURCIER DE CARBON 1950 Proceedings of the S.I.A. Conference, Paris. TheH orie

MatheHmatique et Realisation Pratique de la Suspension AmortieH des Vehicules Terrestres.
16. G. MASTINU and M. GOBBI 1999 Advances in the optimal design of mechanical systems. ¹echnical

Report, Course coordinated by CISM, International Centre for Mechanical Sciences, web:
www.europeindia.org, Birla Science Centre, Hyderabad.

17. K. MIETTINEN 1999 Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers.
18. D. GRIERSON and P. HAJELA, editors, 1996 Emergent Computing Methods in Engineering Design2

Applications of Genetic Algorithms and Neural Networks Berlin: Springer.
19. D. SEN and J. YANG 1998 Multiple Criteria Support in Engineering Design. Berlin: Springer.
20. H. ESCHENAUER, J. KASKI and A. OSYCZKA, editors, 1990 Multicriteria Design Optimization.

Berlin: Springer-Verlag.
21. G. MASTINU 1994 Proceedings of the International Symposium on Advanced <ehicle Control

A<EC94, JSAE 9438051, 73}78. Automotive suspension design by multi-objective programming.



480 M. GOBBI AND G. MASTINU
22. G. MASTINU 1995 in Smart<ehicles (J. Pauwelussen and H. Pacejka, editor) 219}251. Delft: Swets
& Zeitlinger. Integrated controls and interactive multi-objective programming for the
improvement of ride and handling of road vehicles.

23. M. GOBBI and AL. 2000 <ehicle System Dynamics, Supplement 33, 3}22. Optimal & robust design
of a road vehicle suspension system.

24. M. GOBBI, G. MASTINU and C. DONISELLI 1997 Proceedings of the 6th EAEC International
Conference, EAEC Cernobbio, Italy. Advances in the optimal design of vehicle subsystems.

25. M. GOBBI and G. MASTINU 1999 Innovations in <ehicle Design and Development, ASME DE-<ol.
10, 15}24. Global approximation: performance comparison of di!erent methods, with application
to road vehicle system engineering.

26. M. GOBBI, G. MASTINU and C. DONISELLI 1999 <ehicle System Dynamics 32, 149}170.
Optimising a car chassis.

27. C. SMITH, D. M. GEHEE and A. HEALEY 1978 ¹ransactions of the American Society of Mechanical
Engineers, Journal of Dynamic Systems, Measurement, and Control 100, 34}41. The prediction of
passenger riding comfort from acceleration data.

28. K. KAMASH and J. D. ROBSON 1978 Journal of Sound and<ibration, 57, 89}100. The application of
isotropy in road surface modelling.

29. P. VENHOVENS 1994 Ph.D. ¹hesis, Delft;niversity of ¹echnology, Delft, ¹he Netherlands. Optimal
control of vehicle suspensions.

30. C. NEWTON and AL. 1957 Analytical Design of ¸inear Feedback Controls, Appendix E. New York:
Wiley.

31. J. MATUSOV 1995 Multicriteria Optimization and Engineering. New York: Chapman & Hall.
32. W. STADLER 1988 Multicriteria Optimization in Engineering and in the Sciences. New York:

Plenum Press.
33. R. STATNIKOV and J. MATUSOV 1996 Journal of Optimization ¹heory and Applications 91,

543}560. Use of pq-nets for the approximation of the edgeworth-pareto set in multicriteria
optimization.

34. M. GOBBI 2000 ¹echnical Report, Politecnico de Milano. Approximation of the Pareto-optimal set
in multi-objective optimisation.

35. P. KAMAT 1993, Editor: Structural Optimization: Status and Promise. Washington: AIAA.
36. W. STADLER 1995 Microcomputers in Civil Engineering 10, 291. Caveats and boons of multicriteria

optimization.
37. N. MICHELENA and A. AGOGINO 1988 Journal of Mechanisms, ¹ransmissions, and Automation in

Design2¹ransactions of the American Society of Mechanical Engineers 110, 81}87. Multiobjective
hydraulic cylinder design.

38. P. Y. PAPALAMBROS and D. J. WILDE 1991 Principles of Optimal Design. Cambridge: Cambridge
University Press.

APPENDIX A: TABULATED VALUES OF THE INTEGRAL FORM

The tabulated values of I
k
for k"4 and 5 reported in reference [30] are as follows
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where
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APPENDIX B: NOMENCLATURE

u circular frequency, rad/s
j j"J!1
s
c

reference circular frequency s
c
"av (2S-PSD), rad/s

a break wave number (2S-PSD), rad/m
m imposed displacement, m
A

b
road irregularity parameter (1S-PSD), m

A
v

road irregularity parameter (2S-PSD), m2
H

1
transfer function between m and xK

2
, 1/s2

H
2

transfer function between m and F
z1

, N/m
H

3
transfer function between m and x

2
!x

1
, dimensionless

S power spectral density (PSD)
v vehicle speed, m/s
k
1

tyre radial sti!ness, N/m
k
2

suspension sti!ness, N/m
r
2

suspension damping, Ns/m
m

1
unsprung mass, kg

m
2

sprung mass, kg
x
1

mass m
1

absolute vertical displacement, m
x
2

mass m
2

absolute vertical displacement, m
p
Fz

standard deviation of the road/wheel vertical force (road holding), N
pxK

2
standard deviation of the body acceleration (discomfort), m/s2

p
x2~x1

standard deviation of the suspension stroke (working space), m
1S-PSD one slope PSD (equation (7))
2S-PSD two slope PSD (equation (8))
* superscript indicating, Pareto-optimal performance index or parameter
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