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Thermoacoustic combustion instabilities are a frequently encountered problem in the
operation of combustion equipment. The &&brute-force'' application of computational #uid
dynamics to the analysis of thermoacoustic instabilities is estimated to be forbiddingly
expensive for many systems of technical interest due to the high computational demands of
a time- and space-accurate simulation of a (low Mach number) compressible reacting #ow in
a complex geometry. Thermoacoustic systems can be modelled e$ciently as networks of
acoustic multi-ports, where each multi-port corresponds to a certain component of the
system, e.g., air or fuel supply, burner, #ame, combustor and suitable terminations, and is
represented mathematically by its transfer matrix. For some multi-ports, the transfer matrix
can be derived analytically from "rst principles: i.e., the equations of #uid motions and
suitable approximations. However, the acoustic behavior of more complicated components,
e.g., a burner or a #ame, has to be determined by empirical methods, by using a &&black box''
approach common in communications engineering. In this work, a method is introduced
which allows one to reconstruct the transfer matrix of an acoustic two-port from an
instationary computation of the response of the two-port to an imposed perturbation of the
steady state. Firstly, from the time series data of #uctuating velocity and pressure on both sides
of the two-port, the auto- and cross-correlations of the #uctuations are estimated. Then, the
unit impulse responses of the multi-port are computed by inverting the Wiener}Hopf
equation. Finally, the unit impulse responses are z-transformed to yield the coe$cients of the
transfer matrix. The method is applied to the one-dimensional model of a heat source with
time delay placed in a low-Mach-number compressible #ow, for which an analytical
description can be derived from "rst principles. Computational predictions of the transfer
matrix have been validated successfully against these analytical results. Furthermore,
a comparison of the novel approach presented in this paper with a method for computing the
frequency response of a #ame by Laplace-transforming its step response is carried out.

( 2001 Academic Press
1. INTRODUCTION

Thermoacoustic instabilities are a cause for concern in combustion applications as diverse
as domestic heating, gas turbines or rocket engines. Combustion instabilities can not only
2-460X/01/330483#28 $35.00/0 ( 2001 Academic Press
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increase emissions of noise or pollutants such as unburnt hydrocarbons or oxides of
nitrogen, but also lead to very high levels of pressure pulsations, resulting in structural
damage of the con"nement of the #ame. For example, in solid propellant rocket motors,
pulsation levels as large as 10% of the mean operating pressure have been observed [1]. For
stationary gas turbines, the drive for lower emissions of oxides of nitrogen has led to the
widespread introduction of premix burners and convectively cooled combustion chambers
during the last decade, resulting in reduced #ame stability or #ame &&anchoring'' and lower
acoustic damping respectively. Consequently, the awareness of thermoacoustic combustion
phenomena in gas turbine combustors has increased sharply.

Thermoacoustic instabilities involve a feedback cycle comprising #uctuations in velocity,
pressure and heat release rate and possibly also equivalence ratio, entropy or vorticity. Lord
Rayleigh [2] deduced a fundamental stability criterion for thermoacoustic oscillations:
instationary heat release can enhance acoustic oscillations if the heat release rate peaks at
the moment of greatest compression. Note that this criterion provides merely a necessary,
but not a su$cient condition for instability, as it does not take into account the stabilizing
in#uence of dissipation of acoustic energy or losses at system boundaries. Nevertheless,
Rayleigh's criterion expresses essential physical insight into the problem of thermoacoustic
stability, and it emphasizes that stability analysis of a combustion system requires detailed
knowledge of the phase relationships between pressure oscillations and the various
processes controlling the rate of heat release. This is also the case for more advanced
methods of stability analysis (see, e.g., references [3, 4]).

The quantitative modelling of thermoacoustic phenomena with computational #uid
dynamics (CFD) is a formidable challenge, as one deals usually with non-stationary
turbulent reacting #ows, where despite the low Mach numbers prevalent in many
applications, the changes of local density with local pressure play an essential role. The
propagation of acoustic waves in the combustor and the supply ducts of air and fuel as well
as the re#ection of acoustic waves at the boundaries of the computational domain must be
captured with low dissipation and dispersion errors. Dispersion errors are particularly
problematic in the present context, as they in#uence the phase relationship between
#uctuations of velocity or pressure and heat release. To complicate matters, thermoacoustic
problems often involve disparate length and time scales: e.g., acoustic wavelengths
are often much larger than #uid dynamic length scales. Similarly, the ratio between
the frequency and the growth rate of an acoustic disturbance can be very large and indeed
tends to in"nity as neutral stability (with zero growth rate) is approached. This implies that
in an unsteady CFD calculation of a marginally stable situation, a very large number of
cycles has to be simulated with high temporal accuracy, resulting in excessive computing
time.

Upon considering these obstacles against the direct, &&brute force'' application of CFD
tools to the study of thermoacoustic combustion instabilities, the successes in this area
reported by several authors, see, e.g., references [5}11] are remarkable. Although usually
restricted to two-dimensional domains with plane acoustic waves, or to very simple
three-dimensional cases, these studies have often reproduced experimentally observed
behavior and contributed to the understanding of the interaction between #uctuations of
velocity, pressure and the location and rate of heat release. Nevertheless, for geometries of
applied interest, e.g., an annular gas turbine combustor with several burners, an unsteady
simulation of combustion instabilities is still a vision of the future. Instead, acoustic
multi-port or network models (see reference [12]) are widely used. In this framework,
a combustion system is modelled as an ensemble (a &&network'') of acoustic multi-ports, with
each multi-port representing some component of the system, e.g., fuel or air supply, burner,
combustion chamber, cooling channels, etc. (see Figure 1).



Figure 1. Conceptual model of a combustor as a network of acoustic elements.
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Although originally developed for one-dimensional acoustics, i.e., plane wave
propagation, the extension to higher order modes in cylindrical or annular geometries is
straightforward [13}16].

Under the assumption of linear acoustics and harmonic time dependence &exp(iut),
with network models the system dynamics is represented in frequency space. The unknowns
of the system are the complex-valued amplitudes of acoustic variables at the terminations of
the elements. The equations of linear acoustics or empirical input are then used to provide
coupling relations for the acoustic variables*i.e., the Fourier transforms of #uctuations of
pressure p@ and velocity v@*across every element. With two variables on the &&upstream'' and
&&downstream'' sides of a two-port (with indices u and d, respectively), the general form of the
coupling is expressed via a so-called transfer matrix T:
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Here, the characteristic impedance Z*the product of density o and speed of sound c*has
been introduced to assure dimensional consistency. Alternatively, a thermoacoustic
network can be formulated in terms of the Riemann invariants p` and p~, and instead of the
transfer matrix, the scattering matrix, which is a 2]2 matrix related to the transfer matrix
T by a linear transformation, can be used [17}19]. Also, if #uctuations of, say, equivalence
ratio or entropy are involved, such that a total of n input and m output variables are linked
via the multi-port, the transfer matrix will be of dimension m]n [16, 20, 21].

The description of the thermoacoustic characteristics of a complete combustion system as
a linear system of equations S ) u"d is obtained by combining the coe$cients of the
transfer matrices of all elements into one system matrix S and all unknowns in one vector u.
Once the system matrix is generated, both the stability with respect to self-excited
oscillations [3] as well as the response to an external or #uid-mechanic internal excitation
can be analyzed. In the latter case, the vector dO0 represents the driving forces in the
system.

Obviously, the application of these tools requires knowledge of the transfer matrices of
the system's constituent multi-ports. The transfer matrix of simple multi-ports can be
derived from the (linearized) equations of conservation of mass and momentum and suitable
additional assumptions. This approach is widely used, the works by Deuker [22], Keller
[13], Dowling [20] or Polifke et al. [16] may serve as recent examples.

However, in general the determination of all relevant transfer matrices from "rst
principles is intractable, and one has to resort to empirical input. For the purpose of
measuring transfer matrices in experiments, Paschereit and Polifke [17] have developed an
extension of the &&black box'' approach used in communications engineering. This method
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had been employed previously to describe #uid machines in enclosures, e.g., fans or pumps,
as acoustical multi-ports (see, e.g., references [23}25]). For further details, the reader is
referred to references [17}19].

With a &&black box'' approach, it is not necessary to formulate an analytical model for the
multi-port, i.e., closed-form expressions describing the dependence of the transfer matrix'
coe$cients on frequency, mean #ow properties, geometrical parameters, etc. Instead,
coe$cient values determined empirically for certain operation conditions and over a range
of frequencies may be used via look-up tables or suitable interpolations in network models
to investigate the stability against self-excited oscillations or to compute the response to
a driving mechanism.

Experience with the experimental determination of transfer matrix coe$cients has shown
that this approach requires very high experimental precision, sophisticated post-processing
of large amounts of raw experimental data and long test runs, if the transfer matrix is to be
recorded over a range of frequencies. Application of the method to combustors at elevated
pressures is expected to be very di$cult and expensive. Therefore, it seems attractive to
explore the possibility of obtaining information on the dynamical behavior of a multi-port
*a burner or a #ame, say*from numerical simulation. Generally speaking, one possible
realization of this idea is to carry out a time-dependent simulation of the dynamical
behavior of the multi-port and somehow reconstruct the desired information*ideally the
complete transfer matrix*from the time series data. The overall system behavior is then
investigated again with the network method, by making use of a combination of transfer
matrices obtained from "rst principles as well as experiment or simulation.

The advantages of such an approach over the &&brute force'' modelling of combustion
instabilities should be the following: instead of simulating and recording the evolution of
a complete thermoacoustic system over many cycles until a steady state or limit cycle is
reached, only the dynamics of a single network element has to be tracked until a su$cient
amount of information has been collected to reconstruct the transfer matrix. Also, it should
be possible to curtail the computational domain to include only the multi-port of interest
and its immediate surrounding. This should reduce signi"cantly both the memory and CPU
time requirements. Furthermore, with the reduced size of the computational domain, errors
in acoustic signal propagation due to numerical dissipation and dispersion do not
accumulate over long distances.

The idea of extracting dynamical characteristics of a #ame from time-dependent
simulation and then using this information in linear acoustic analysis has "rst been explored
by Sklyarov and Furletov [26] for a one-dimensional laminar #ame, then by Bohn and
Deuker [27] and Deuker [22] for a V-shaped laminar #ame and more recently by KruK ger
et al. [28, 29] for a turbulent #ame and a gas turbine burner respectively. In these studies,
the response of the #ame to a sudden increase in mass #ow rate*the unit step response, or
simply the step response*is determined in a time-dependent CFD simulation. The step
response is then Laplace-transformed into frequency space, yielding the frequency response
function. This frequency response function equals*upto normalization factors*one of the
coe$cients of the transfer matrix, i.e., the coe$cient ¹(vv), which couples velocity
#uctuations across the #ame. In order to obtain a complete description of the #ame's
thermoacoustic characteristics, analytical expressions for the remaining three coe$cients of
the transfer matrix are introduced, based on suitable approximations.

In this paper, an alternative method is proposed, whereby the impulse response functions
of a multi-port are determined from instationary CFD simulation with randomly perturbed
boundary conditions. Subsequently, the impulse responses are z-transformed to obtain the
complete transfer matrix. For the purpose of con"rming the validity and exploring the
accuracy of this novel approach, it is applied in this work to a simple, one-dimensional
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thermoacoustic system which has been designed to exhibit su$ciently interesting
thermoacoustic characteristics, be simple enough to also make possible &&brute force''
modelling of thermoacoustic instabilities at low computational cost, and allow for
analytical modelling in order to compare numerical results against known solutions.

The paper is organized as follows: in the next section, the one-dimensional
thermoacoustic system is introduced, which serves as a test bed for the novel method.
Linearizing the functional dependence of heat release rate and pressure drop on #ow
velocity at the heat source yields the transfer matrix of the heat source. By using a network
model, the stability characteristics of the test system are then determined to be used later for
validation purposes. In section 3, growth rates obtained from a &&brute force''
time-dependent simulation are compared against analytically determined growth rates.
Then, the approach developed by Sklyarov and Furletov [26] and Deuker [22] for
determining the #ame transfer function by Laplace-transforming the step response is
applied to the test system, the results and experiences are discussed critically. In the
subsequent section, the novel approach, based on the z-transform of the impulse responses,
is presented. The modi"cations required to apply the method also to multi-ports with more
than one input and output are described in detail. In section 6, the impulse responses and
the transfer matrix extracted from a time-dependent computation of perturbed #ow across
the heat source in the one-dimensional model are presented and compared against
analytical "ndings.

2. THE q}f MODEL

Consider compressible #ow in a straight duct of length ¸ with a heat source placed in its
middle. By analogy with the Rijke tube [30] or the n}q model [31], thermoacoustic
instabilities may occur if the momentary heat-release rate per unit area QQ (t) depends on the
velocity v of the #ow across the region of heat release at an earlier time,

QQ (t)"QQ (v
c
(t!q),2), (2)

where q is the time lag of the system (a list of nomenclature is given in Appendix C). To take
the analogy with heat transfer at the gauze of a Rijke tube a bit further, it is assumed in the
following that the momentary heat release rate follows King's Law [30], which describes
conduction and laminar convection of heat from a hot wire in a cross-#ow,
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where ¸
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is the total length of wire per unit cross-sectional area of the duct, ¹ the
temperature of the wire, r its radius, and i, o, c

v
the thermal conductivity, the density and

speci"c heat at constant volume of the gas respectively. For laminar #ow across the wire, the
time lag q is determined by the inertia with which the boundary layer of the wire can adjust
to changes in the free stream velocity. However, for the present purpose, q is simply
regarded as a freely adjustable parameter, which controls*among other factors*stability
of the system. If the #ow velocity is su$ciently large, pure conduction of heat is negligible,

and with A"2¸
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r, equation (3) can simply be written as
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To make the heat release model a bit more interesting, a second freely adjustable
parameter is introduced, i.e., a pressure loss coe$cient f, which controls the pressure drop



Figure 2. Sketch of the model system investigated in the study (top) and its network representation (bottom).
Mean #ow is from left to right.
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Dp across the heat source,
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The subscripts c and h stand for the cold (upstream) and hot (downstream) side of the heat
source. One may expect that with increasing pressure loss coe$cient f, the stability with
respect to self-excited thermoacoustic oscillations will increase, as well. To facilitate the
implementation of this con"guration in a standard CFD code, the boundary conditions are
prescribed as follows: constant velocity v(x"0)"v

0
at the inlet and constant static

pressure p (x"¸)"const. at the outlet of the duct. The "rst acoustic eigenmode of the
system with these boundary conditions is the well-known quarter-wave mode. With
the region of heat release positioned in the middle of the duct, the phase relationship
between the #uctuations of velocity and pressure at the heat source is identical to the one
found in a standard Rijke tube with two open ends and the heat source placed at x"¸/4.

In analogy with the Rijke-tube and the n}q model [3, 30, 31], alternating bands of
stability and instability for the fundamental mode and higher order acoustic modes should
be expected when the time lag q is increased. This can be con"rmed by setting up the
network representation of the system and determining its eigenfrequencies for varying
values of q. A sketch of the model system and its network representation is shown in
Figure 2. The boundary condition v(x"0)"v

0
at the cold side of the duct implies that

v@
0
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and similarly

p@
x
"0,

due to the pressure boundary condition prescribed at the outlet. The transfer matrix
describing the propagation of an acoustic signal in a duct is well known,
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with a"k¸/(1!M2) and wave number k"u/c. For the cold side of the test system, the
indices Mi, jN"M0, cN, while for the hot side Mi, jN"Mh, xN.

The transfer matrix of the heat source, coupling nodes &&c'' and &&h'', is obtained by
linearization of the Rankine}Hugoniot relations, which express conservation of mass,
momentum and energy across a thin heat source [32]. This derivation is also given in
reference [16] and shall not be repeated here. The resulting relation between the
#uctuations of velocity on both sides of a heat source is
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Linearizing equation (3) for small #uctuations v@
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or equivalently in the frequency domain
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The "rst term on the r.h.s. is the familiar transfer function of the n}q model [31], with an
interaction index n and time lag q. Note that in the present context, n is not a freely
adjustable parameter, but depends on the values of the mean temperatures on both sides of
the heat source. The factor 1

2
appears in the de"nition of the interaction index n because it is

assumed that the #uctuations in heat release rate are proportional to the square root of the
velocity, see equation (3).

For the pressure, the linearized Rankine}Hugoniot relations are
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Up to the additional pressure loss term, this is equation (13) in reference [16]. With the
de"nitions introduced above and the linearized form of relation (3) between heat release rate
and velocity, one obtains
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Combining the two linearized Rankine}Hugoniot relations for velocity and pressure
#uctuations, one obtains the transfer matrix of the heat source:
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The time lag q and the pressure loss coe$cient f are two freely adjustable parameters which
control the dynamic characteristics of the heat source and the stability of the system. In
analogy with the well-known n}q model, the model just introduced shall be referred to as
the q}f model in the following.

Comparing the transfer matrix of the q}f model with the one given by Heckl [30] for the
gauze in a Rijke tube, one notices that Heckl has omitted the o!-diagonal terms. This
certainly is a permissible approximation, as the #ow in a Rijke tube is induced by free
convection and the Mach number is very small indeed. The o!-diagonal terms are also often
neglected in models for the thermoacoustic behavior of #ames [22, 28, 29] again with the
justi"cation that in technical applications, Mach numbers larger than M

c
"0)1 are rarely

encountered. However, it has been shown [16, 18] that for a compact premixed #ame, the
o!-diagonal coe$cients of the transfer matrix are of order (¹

h
/¹

c
!1)M

c
: i.e., the

Mach-number scaling is the same as in equation (13). With temperature ratios larger than
5 in stoichiometric #ames, T(vp) and T(pv) are not much smaller than unity even at moderate
Mach numbers M

c
of order 10~1. This is especially so if instead of a #ame sheet, the transfer

matrix of a complete burners is considered. For modern premix burners, which spend
a signi"cant portion of the available dynamic head for mixing of fuel and air, the &&acoustic''
pressure loss coe$cient f is of order 10, say, and the upper right coe$cient T(vp) of the
transfer matrix may be quite large [17]. Indeed, a recent study [33] indicates that under
certain circumstances, this coe$cient may be the primary cause of unstable combustion.

To summarize, the q}f model as it has been formulated in equations (3), (5) and (13),
describes in the limit of low Mach numbers (and with zero pressure loss coe$cient f) the
heat transfer at the gauze of a Rijke tube in laminar #ow. On the other hand, with larger
values of Mach number M

c
and non-zero loss coe$cient f, this simple heat release model

shares many characteristics with realistic premix burners, as far as the thermoacoustic
properties are concerned.

Once all required transfer matrices have been determined, it is straightforward to set up
the system matrix S for the test system (see Figure 2). Details have been presented by Gijrath
[34] and LoK fgren [35]. All transfer matrices are known analytically, i.e., in closed form in
terms of mean #ow and model parameters, geometry and frequency u. The simplest way to
carry out a stability analysis is, in this case, to search numerically for the eigenfrequencies u,
which satisfy the characteristic equation Det(S)"0. Real and imaginary parts of the
fundamental quarter-wave mode's eigenfrequencies u

1
obtained from such calculations for

varying values of time lag q are shown in Figure 3. With the sign conventions used in this
paper, negative values of the imaginary part indicate instability, so as expected, alternatively
stable and unstable system behavior is found, depending on the value of q. This pattern is
repeated with yet higher values of the time lag q and also for the higher modes (not shown).
In the next section, the q}f model system will be simulated with a CFD code and predictions
of frequencies and growth rates obtained with the #uid dynamic simulation are compared
against analytical results.
sFuel injector nozzle, premixing section and #ame are designated as burner in this paper.



Figure 3. Stability analysis of the q}f model: Real part (left) and imaginary part (right) of the eigenfrequency u of
the fundamental mode for varying values of the time lag q and interaction index n"0)25. For this computation,
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3. CFD SIMULATION OF THE q}f MODEL

Many of the studies of thermoacoustic combustion instabilities with computational #uid
dynamics (CFD) tools found in the literature use standard algorithms, usually of the
pressure correction type [6, 7, 9, 10]. This should come as a surprise*after all,
low-Mach-number compressible #ows are notoriously di$cult to compute e$ciently and
accurately and the use of appropriate numerical methods is recommended [36].
Nevertheless, when confronted with the task of developing a special purpose code for
thermoacoustic calculations in geometries of applied interest, including necessarily not only
an appropriate formulation of the #uid dynamics and advanced numerics, but also models
for turbulence and combustion plus the ability to handle large, complex geometries, it
appears that many researchers have decided to use standard, validated numerical tools,
based on a SIMPLE type algorithm, second order spatial discretization and "rst or second
order temporal accuracy. Indeed, the authors' experience with simple, one-dimensional
acoustic test cases for which analytical solutions are known, con"rms that such codes can
produce acceptable results, provided that the time steps are small enough*at least 100 time
steps per cycle were required for the test cases investigated by Gijrath [34] and LoK fgren
[35]. For this reason, for the numerical studies reported here, a standard, "nite volume
based CFD code with a SIMPLE pressure correction scheme was used.

It is fairly straightforward to implement the q}f model for heat release and pressure loss
in a CFD code via appropriate source terms for enthalpy and momentum, according to
equations (3) and (5) respectively. Note that the relations (7), (11) and (13), which were
derived by linearizing the conservation equations for mass, momentum and energy in terms
of small #uctuations p@, v@ and QQ @, do not appear explicitly in the numerical formulation. In
this sense, the CFD model is not an acoustic, but a #uid dynamic model. In order to obtain
the required time lag between #uctuations of velocity v@

c
and heat release QQ , the velocity

history just upstream of the heat source is stored in computer memory and retrieved after
the appropriate time to set the momentary heat release rate according to King's Law (3)
during a time-dependent simulation.

The geometry of the test system is one-dimensional with 200 cells in the x direction. Note
that the heat source is distributed over "ve computational cells, with the rate of heat release
highest in the center of this group of cells. This slight &&smearing out'' of the heat release was
required to avoid divergence problems with higher order spatial discretization. Although
the heat release is distributed over "ve cells, the heat source can certainly be considered to
be compact, as the length of the region of heat release is less than one-thousandth of the
wavelength of the fundamental mode, i.e., the quarter wave mode of the tube.



Figure 4. Velocity v
c
just upstream of the heat source in the q}f tube during build-up of a limit cycle. Time lag

q"7 ms corresponding to the most unstable case according to linear stability analysis.
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To initialize the #ow and temperature distributions in the tube for the unsteady
simulation, "rst a stationary solution was computed. To obtain such a &&base #ow'' will be
di$cult, if the base #ow corresponds to a thermoacoustically unstable con"guration. Then,
the self-excited combustion instability will manifest itself as divergence di$culties for the
stationary solver. To avoid such divergence problems, an incompressible #uid model was
used for the base #ow; i.e., the density o would not depend on local changes of the static
pressure. In this way, the thermoacoustic feedback loop was broken, and the base #ow
could be computed without di$culties. The base #ow velocity distribution was then
perturbed randomly by 5% of its respective mean value, compressibility was &&switched on'',
and the time-dependent simulation started.

A typical result is shown in Figure 4. Here, the operating conditions are those analyzed in
the previous section with linear acoustics, i.e., the network model. The time lag chosen is
q"7 ms, corresponding to maximum growth rate. Indeed, it was observed that after
a gestation period of approximately 0)1 s duration, during which the random initial
perturbations evolve into a coherent, 1

4
-mode standing wave, the amplitudes grow rapidly,

Saturation of the growth occurs not before the velocity at the heat source is negative (!)
during part of the cycle. The reverse #ow transports hot #uid back over the heat source,
thereby reducing the temperature di!erence¹

W
!¹, which drives the transfer of heat to the

#uid. This reduction in heat #ux and non-linear transfer of acoustic energy to higher modes
[7] eventually leads to saturation of the instability, and a limit cycle is established. Note
that all amplitudes of pressure #uctuations in the limit cycle are less than 1% of the
operating pressure, so, it is only the heat source which behaves essentially non-linearly,
while the acoustics may still be treated in the linear approximation.

If a time lag q"3 ms is chosen, the initial disturbances decay very rapidly, i.e., within less
than 10 cycles. A quantitative comparison of growth rates, or rather cycle increments

d"expG!2n
Im(u)

Re(u)H!1, (14)



TABLE 1

Comparison of frequencies and cycle increments predicted with linear stability analysis and
unsteady CFD computation; for the stable case , the time lag q"3 ms, while for the unstable

case, q"7 ms

Stability analysis Unsteady CFD

Stable case
Frequency Re(u) (s~1) 641 465
Cycle increment !0)46 !0)50

Unstable case
Frequency Re(u) (s~1) 635 591
Cycle increment 0)35 0)16
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and frequencies Re(u) obtained with CFD and network stability analysis is given in
Table 1. The cycle increment is de"ned in this work as the fraction by which a pulsation
amplitude increases during one cycle. Neutral stability corresponds to d"0. The predicted
cycle increment d"0)35 for the unstable case q"7 ms is very large. Such an unrealistically
large cycle increment is possible only because all mechanisms which result in loss of acoustic
energy like radiation of sound at the open end or viscous dissipation in the wall boundary
layer have been neglected in the idealized q}f model. From the CFD runs, frequency and
growth rate were obtained by non-linear, least-squares "tting of an exponential function to
the time series data in the time interval 0)1 ms(t(0)45 ms: i.e., up to the moment where
reverse #ow and reduced growth sets in. The cycle increment d obtained by CFD is lower
than it should be, indicating that dissipative losses and dispersive errors are not negligible.
Note that because q"7 ms corresponds to maximum growth rate, i.e., most favorable
phase between #uctuations of heat release and pressure, phase errors will always decrease
the growth rate for this case.

The same "tting procedure was applied to data from the stable case, where the initial
perturbations decay quickly. However, only very few cycles can be observed before the
perturbations die out, therefore the agreement between the predictions of CFD and linear
stability analysis is not very convincing, especially for the frequency.

The CFD model reproduces qualitatively the behavior predicted by linear stability
analysis based on the network approach. Furthermore, for the unstable case, a plausible
mechanism of saturation by non-linear e!ects at the heat source can be observed. However,
the computed growth rates are not in satisfactory agreement with the results of linear
stability analysis. Given the accuracy which can be achieved with the present CFD
modelling approach, it seems unlikely that the stability borders, i.e., those values of the time
lag q for which the cycle increment d"0, could be predicted correctly. Similar results for
cases with higher Mach number and non-zero pressure loss coe$cient f have been obtained
by LoK fgren [35].

The reasons for the discrepancies observed are expected to be dissipative losses and phase
errors accumulated during the propagation of acoustic waves along the duct. Nevertheless,
the simple one-dimensional CFD model of the thermoacoustic system captures correctly
the important aspects of system behavior. In particular, the time-delayed, dissipative heat
source*see equations (3) and (5)*which has been implemented via appropriate source
terms for enthalpy and momentum in a few computational cells, behaves as expected. It
therefore makes sense to apply the methods for reconstructing frequency response functions



Figure 5. Ideal (**) and computed () ) ) ) )) unit step response u(t), i.e. the normalized downstream velocity v@
d
(t)

of the n}q model for n"0)28 and q"2 ms.

494 W. POLIFKE E¹ A¸.
or transfer matrices from a time-dependent calculation to this CFD model and validate
those methods against the analytical result (13).

4. UNIT STEP RESPONSE AND LAPLACE TRANSFORM

Sklyarov and Furletov [26] have determined the velocity}velocity frequency response
function ¹(vv) of a one-dimensional laminar premix #ame by computing the Laplace
transform of its unit step response. Later, the approach has been extended to turbulent
#ames and gas turbine burners [22, 27}29]. The mathematical background of the method is
brie#y summarized in Appendix A.

It is in general not possible to determine a complete transfer matrix (see equation (13))
with this approach. Fortunately, for su$ciently small Mach number M

c
and pressure loss

coe$cient f, the o!-diagonal terms of the transfer matrix of the q!f model are negligible.
The pressure}pressure term ¹(pp)"m is equal to the ratio of speci"c impedances, so the only
non-trivial term of the transfer matrix is in this limit the velocity}velocity term ¹(vv), which
is equal to the frequency response function of the n}q model:

¹(vv)"1#n e~*uq. (15)

When adopting the Laplace transform formalism to time series data from numerical
simulation, one must be aware that a mathematically well-de"ned discrete version of the
forward Laplace transform is not known. Unbehauen [38] has proposed a numerical
procedure to determine an approximate Laplace transform, which has been used by Deuker
[22] and KruK ger et al. [28, 29]. Comments on the shortcomings of this procedure are given
below.

The unit step response of the q}f model has been computed by Gijrath [34], using the
CFD model discussed in the previous section. Results are shown in Figures 5 and 6. The



Figure 6. Frequency response function of the n}q model determined with the Laplace transform of the step
response. Absolute value (e, *, left axis) and argument (#, - - -, right axis).
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parameters for this particular run are the following: upstream velocity v
c
(t(0)"20 m/s,

upstream temperature ¹
c
"288 K, downstream temperature ¹

h
"440 K, interaction index

n"0)28 and time delay q"2 ms. The simulation was continued up to a time t
max

"2q.
Figure 5 shows that the CFD model of the heat source indeed reproduces the expected

behavior. Deviations from the analytical solution are small and do not last longer than
approximately 0)1 ms, so any errors due to these numerical errors should show up only at
very high frequencies of several kHzt. Applying the approximate Laplace transform to the
time series data then gives excellent agreement for the frequency response function F (u); see
Figure 6. Up to frequencies u"2500 s~1, the computed absolute value of the response
function matches the analytical value almost exactly. Phase errors are also small, with the
exception of the "rst data point near 400 s~1. The errors grow larger for angular frequencies
u'2500 s~1 [34]; however, this frequency range is irrelevant for stability analysis of the
fundamental mode.

To achieve such good agreement, it was necessary to move the location of the heat source
to the left end of the computational domain; i.e., the inlet boundary &&0''. If the heat source is
located further downstream from the inlet, then the perturbation signal smears out very
strongly due to numerical dissipation, and the heat source no longer encounters a Heaviside
signal (not shown).

Besides the suppression of numerical di!usion, another reason for moving the heat source
for the response computation towards the inlet are spurious distortions of the response
signal due to re#ections. The original perturbation, after passing the heat source, is re#ected
at the outlet boundary condition*unless a non-re#ection boundary condition is
implemented, which is usually not the case in pressure-correction codes*and eventually
t Indeed, the Rankine}Hugoniot relations are valid only if quasi-steady conditions prevail at the heat source, i.e.,
the rate of change of the upstream conditions should be larger than the time t+0)5 ms which is required for the
mean #ow to #ow past the heat source. This is not the case for a Heaviside signal, so deviations from the
Rankine}Hugoniot relations are expected to occur for very high frequencies even if numerical di!usion could be
suppressed completely by an appropriate numerical scheme.
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perturbs the heat source a second time. If this happens, an incorrect step response will be
recorded, leading to erroneous prediction of the frequency response. When moving the heat
source to the left of the domain, it is possible to record the response up to a time t

max
"2q

for the chosen value of the time lag q"2 ms.
Unbehauen [22, 38] has shown that the following relation must be satis"ed for the

frequencies u at which the numerical Laplace transform can be evaluated:

u"

n(m#1
2
)

t
max

, (16)

where m"0, 1, 2,
2

. Therefore, the sampling time t
max

limits the minimum frequency and
the frequency spacing Du which can be achieved with the numerical forward Laplace
transform. In the present case, Du"n/2t

max
+400 s~1. Such a large frequency spacing is

not su$cient to carry out a stability analysis [3, 4].
In summary, the Laplace transform of time series data taken from an unsteady CFD

computation of the step response has reproduced the analytically derived frequency
response function with excellent accuracy. However, the following di$culties with this
method have become apparent: the method can only be used to determine a scalar
frequency response function, and consequently, the method is inadequate if more than one
coe$cient of the transfer matrix are neither negligibly small nor known from "rst principles;
the steep gradients of the unit step perturbation are di$cult to resolve accurately due to
numerical dispersion or*if higher order discretization schemes are employed*due to
overshoots and convergence di$culties; short sampling times t

max
lead to unacceptably

large minimum frequencies and frequency spacings, but on the other hand, with increasing
t
max

, one very soon faces the problem that re#ections from the downstream boundary
distort the response to the unit step signal.

In the next section, a novel method based on the unit impulse response and the
z-transform is presented, which does not su!er from any of these de"ciencies.

5. SYSTEM IDENTIFICATION WITH THE UNIT IMPULSE RESPONSE

The method for determining the frequency response function by computing the Laplace
transform of the unit step response is a basic example of system identi,cation. Advanced
techniques for system identi"cation have been developed in communications engineering.
In this section, the transfer matrix of an acoustic element is determined from
a time-dependent numerical simulation via the impulse responses of the element.
Background material on system identi"cation and in particular the mathematical
techniques presented below can be found in references [39}41].

Consider the values of acoustic variables upstream of the element as a signal s and the
downstream values as the corresponding response r. Data taken with a certain sampling
rate from experiment or from a time-dependent numerical simulation will provide time
series

s
i
"s(iDt), i"0,2, N,

and similarly for the response r
i
. Here Dt is the sampling rate, which may be equal to or

a multiple of the time step of the numerical simulation. The action of the element on the
incoming signal, i.e., the coupling between response r and signal s can be approximated as

r
i
+rJ

i
"

L
+
k/0

h
k
s
i~k

for i"¸,2, N. (17)
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In the terminology of digital signal processing [40], equation (17) describes a ,nite impulse
response (FIR) "lter. If the signal is just a single peak of unit amplitude at time t"0, s

i
"d

i0
,

where the Kronecker d
ij

equals unity if i"j and otherwise zero, then with equation (17)

rJ
i
"

L
+
k/0

h
k
d
ik
"h

i
.

Obviously, the vector h"Mh
k
; k"0,

2
,¸N is the "lter's response to the unit impulse d

i0
and is accordingly named the unit impulse response or simply impulse response of the "lterA.
If the response of the "lter is determined only by the momentary value of the excitation
signal, then r

i
"as

i
and h

k
"a d

k0
, with a being a constant factor; i.e., the "lter is

memoryless. For general signal series and a linear "lter, the response r
i
at time t

i
"iDt is

approximated as a weighted sum over the recent history of the input signal s
i~k

;
k"0,2,¸. The coe$cients h

k
are weighting factors in this summation, and obviously

¸ should be su$ciently large, such that h
k

is of negligible magnitude for k'¸. In other
words, the time interval ¸Dt must be longer than the "lter's &&memory'' of previous signal
states.

To summarize: given a "lter with known impulse response h and a time series s"Ms
i
;

i"0,2, NN of signals, it is straightforward to calculate the response r"Mr
i
; i"0,2,NN of

the "lter. However, in system identi"cation one faces usually the inverse problem: given
time series s and r, how can one estimate the impulse response h of the "lter? The solution to
this question provides the Wiener}Hopf equation (also known as the =iener equation or
normal equation),

Ch"c, (18)

where

c
i
"

1

M

N
+
l/L

s
l~i

r
l

for i"0,2,¸, (19)

C
ij
"

1

M

N
+
l/L

s
l~i

s
l~j

for i, j"0,2,¸. (20)

Here, M"N!¸#1, C approximates the autocorrelation matrix of the signal s, and c the
cross-correlation vector between s and r. By inserting the de"nitions of C and c and
substituting for r with equation (17) one can readily verify equation (18):

(Ch)
i
"

1

M

L
+
j/0

N
+
l/L

s
l~i

s
l~j

h
j
"

1

M

N
+
l/L

s
l~i

L
+
j/0

h
j
s
l~j

"

1

M

N
+
l/L

s
l~i

r
i
"c

i
.

With equations (19) and (20), it is easy to compute estimates for the autocorrelation C and
the cross-correlation c from time series data and then obtain the impulse response h by
inverting the Wiener}Hopf equation

h"C~1c
ARecalling that the Green function of a di!erential operator represents the solution or the response to a (Dirac-)
d-source, one may think of the unit impulse response as a discrete, one-sided (causality!) equivalent to the Green
function.
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with standard methods of (numerical) linear algebra. However, the impulse response &&lives''
in the time domain. To make use of it in the network analysis of thermoacoustic systems,
which is usually fomulated in the frequency domain, it is necessary to transform the impulse
response into a transfer function F (u). This is accomplished with the z-transform (the
equivalent of the Laplace transform for discrete-time systems):

hPh[ (z),
L
+
k/0

h
k
z~k, (21)

with the argument set to z"expMiuDtN, i.e.,

F (u)"h[ (e*uDt)"
L
+
k/0

h
k
e~*uDtk.

In Appendix B, it is shown in a general form that this transformation indeed produces
the desired transfer function between the signal's and the response's Fourier transforms,
respectively. Here, the method is applied to the n}q model of the velocity}velocity coupling.
Assume that q"mDt, with m some integer less than ¸. Then for the n}q model

h
k
"d

k0
#nd

k,m
.

This result should be obvious from the de"nition of h as the response to a unit impulse
signal. The z-transform of the impulse response with argument expMiuDtN evaluates to

h[ (e*uDt)"e~*uDt0#n e~*uDtm"1#n e~*uq,

which is indeed the velocity}velocity transfer function ¹(vv)(u) of the n}q model.
Although it has not been stated explicitly, the discussion has been limited so far to

a one-port with a single input and a single output. However, for (thermo-)acoustic elements,
pressure or velocity #uctuations on one side will in general respond to #uctuations of both
pressure and velocity on the other side. Fortunately, it is possible to expand the formalism
of the "nite impulse response "lter to this situation. Consider in a "rst step, a 2-to-1 "lter
with two input signals s(1) and s(2) and one output signal r. With suitably de"ned unit
impulse response functions h(1) and h(2), one may again approximate the "lter's response as

r
i
+

L
+
k/0

h(1)
k

s(1)
i~k

#

L
+
k/0

h(2)
k

s(2)
i~k

. (22)

Here, h(1) is the response observed if a unit impulse is applied at time t"0 to input &&1'' of
the "lter, and similarly for h(2). The two impulse response functions can again be determined
by solving the Wiener}Hopf equation (18). If there is more than one input, the
approximations to the impulse response vector and the cross-correlation vector appearing
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in this equation must be

h"A
h(1)
0

h(1)
1
F

h(1)
L

h(2)
0

h(2)
1
F

h(2)
L

B and c"
1

N!¸#1

N
+
l/L A

s(1)
l

r
l

s(1)
l~1

r
l

F

s(1)
l~L

r
l

s(2)
l

r
l

s(2)
l~1

r
l

F

s(2)
l~L

r
l

B . (23)

Similarly, the approximation of the autocorrelation matrix is now of dimension 4(¸#1)2
with the entries

C"

1

N!¸#1

N
+
l/L A

s(1)
l

s(1)
l

2 s(1)
l

s(1)
l~L

s(1)
l

s(2)
l

2 s(1)
l

s(2)
l~L

F F F F

s(1)
l~L

s(1)
l

2 s(1)
l~L

s(1)
l~L

s(1)
l~L

s(2)
l

2 s(1)
l~L

s(2)
l~L

s(2)
l

s(1)
l

2 s(2)
l

s(1)
l~L

s(2)
l

s(2)
l

2 s(2)
l

s(2)
l~L

F F F F

s(2)
l~L

s(1)
l

2 s(2)
l~L

s(1)
l~L

s(2)
l~L

s(2)
l

2 s(2)
l~L

s(2)
l~L

B . (24)

Estimating this autocorrelation matrix from time series data s(1)
i

and s(2)
i

obviously requires
a bit more care in bookkeeping the indices, but is not fundamentally more complicated than
for a one-port. Once the two impulse response functions are determined, the z-transform,
applied to each of them in turn produces two transfer functions, such that in frequency
space

rL (u)"F (1)(u)sL (1)(u)#F(2)(u)sL (2)(u). (25)

If there is a "lter with a second output, i.e., responses r(1) and r(2), the analysis for the
2-to-1 "lter just described simply has to be carried out also for the second output (upon
assuming as usual that both outputs are determined completely and solely by the two input
signals). For an acoustic system with two inputs p@

u
, v@

u
and two outputs p@

d
, v@

d
, the transfer

matrix T can be determined as

T(u)"A
h[ (pp)(e*uDt) h[ (pv)(e*uDt)

h[ (vp)(e*uDt) h[ (vv)(e*uDt)B . (26)

The four impulse response functions h(pp), h(pu), h(up) and h(uu) are determined by solving the
Wiener}Hopf equation*with the generalized cross-correlation vector, equation (23), and
autocorrelation matrix (24)*once for the "rst output p

d
and then for the second output v

d
.

The signal shape is quite arbitrary. Step functions, which are not easily represented
accurately in a time-dependent #uid dynamics computation, can be avoided. It is merely
required that the signal be persistently exciting [41]: i.e., that it has appropriate frequency
content. Otherwise, C is ill-conditioned and the estimates for auto- and cross-correlations
are not su$ciently accurate.
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In principle, an m]n transfer matrix describing a multi-port or m#n-pole can be
obtained if the signal vector s is de"ned as a suitable combination of n signals and m impulse
response functions h(m)*one for each output variable of the multi-pole*are introduced.

The results presented in this section are summarized as follows. A novel method has been
described, which allows one to determine the transfer matrix of an acoustic element (a
&&multi-port'' with one or more inputs and one or more outputs) by time-dependent
numerical simulation. The procedure comprises the following steps.

(1) Obtain a steady state solution for incompressible #ow through the element.
(2) Generate time series of pressure and velocity (and other possible variables) up- and

downstream of the element by carrying out a time-dependent computation of compressible
#ow with unsteady boundary conditions. The time scale of changes to the boundary
conditions must be adjusted to provide adequate frequency content for the time series s

i
and

r
i
. Also, the #uctuations of the di!erent input quantities must be linearly independent from

each other.
(3) From the time series data, compute the estimates of the auto-correlation C and

cross-correlations c with equations (23) and (24). For each output, a di!erent
cross-correlation between signals and response must be computed.

(4) Solve the Wiener}Hopf equations (18) for the impulse responses h. There is one
impulse response for each combination of input and output!

(5) z-transform (see equation (21)) the impulse responses to frequency space to obtain the
coe$cients of the transfer matrix.

Since it is not assumed that the incoming perturbation is of a certain functional form, it is
acceptable that re#ections from the boundaries reach the two-port during the simulation.
Indeed, the superposition of re#ections with perturbations from the boundaries should help
to ensure that the two-port's input signals are independent from each other.

6. q}f TRANSFER MATRIX FROM INSTATIONARY CFD

As stated in the Introduction, one advantage of the proposed approach of determining
the transfer matrix of an acoustic multi-port from instationary CFD is that it allows one to
simulate only the element of interest and its immediate vicinity rather than the full
thermoacoustic system complete with physically correct boundary conditions. In keeping
with this philosophy, the domain used for the computations below is only 0)3 m long and is
resolved with 100 computational cells. The heat source is located 0)02 m downstream of the
inlet. Recall that the &&original'' q}f tube is 1 m long, with the heat source in the middle; for
the computational model discussed in section 3, 200 cells were used.

Mean #ow conditions and model parameters were chosen to yield a transfer matrix with
non-zero o!-diagonal terms, i.e., in#ow velocity v

0
"34 m/s at a temperature ¹

c
"288 K,

corresponding to a Mach number M
c
"0)1 on the cold side of the heat source. The pressure

loss coe$cient was set to f"5, the power of the heat source was adjusted to have
a temperature ¹

h
"430 K downstream of the heat source, resulting in an interaction index

n"0)25. For the time lag, the value q"3 ms was chosen. As for the unit step response
computations, "rst an incompressible steady state solution was computed, where the
density o was computed from the gas law by using the operating pressure p

0
"1 bar, rather

than the local static pressure. Then an unsteady run was started, with the value of the
upstream in#ow velocity following the pro"le shown in Figure 7. It is expected that the
amplitude, shape and frequency content of the perturbation signal does have an impact on
the quality of the estimates for the auto- and cross-correlations. Similarly, it may play a role



Figure 7. Unsteady in#ow velocity boundary condition.

Figure 8. Pressure and velocities up- and downstream of the heat source for unsteady simulation with perturbed
upstream velocity boundary condition. (a) **, p@

c
; - - -, p@

h
, (b) **, v@

c
; - - -, v@

h
.
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whether velocity, static pressure or total pressure are perturbed. A systematic investigation
of these questions will be the subject of future studies. The time step chosen was dt"10~5 s;
however, only every 25th time step was used in the following analysis, so the e!ective
sampling interval Dt"0)25 ms. The unsteady run was continued up to time t

max
"50 ms.

The time series of signals and responses, i.e., the #uctuations of pressure and velocity
up- and downstream of the heat source are shown in Figure 8. Surprisingly, the pressure
traces show strong oscillations with a period of approximately 3 ms, which obviously do not
correlate with the velocity perturbation imposed. However, elementary analysis shows
quickly that the period of 3 ms corresponds nicely to the quarter-wave eigenmode of the
present computation model with a tube length ¸"0)3 m. The obvious conclusion is that
although the chosen time lag q"3 ms results in very strong decay of perturbations for the



Figure 9. Unit impulse responses of the q}f model obtained from unsteady simulation with perturbed in#ow
velocity boundary condition. Upper left: h(pp), upper right: h(vp), lower left: h(pv), lower right: h(vv). Computational
(#) and theoretical results (s) for the h

k
's, k"0,2, 15 are shown. Note the di!erent vertical axis scalings.
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&&original'' q}f tube with length 1 m, it produces a (weak) thermoacoustic instability for
the system with length 0)3 m. The velocity signals in Figure 8 show the in#uence of the
oscillations with a period of 3 ms superposed on the #uctuations due to the unsteady
upstream boundary condition. Comparing the velocity pro"les at the inlet (Figure 7) and at
the cold side of the heat source (v@

h
in Figure 8), shows that very little smearing out due to

numerical dissipation is found. The signal gradients appear steep enough to provide
su$cient high-frequency content. Di!erences between the velocity pro"les v@

0
and v@

c
are

mainly due to the in#uence of the pressure oscillations. In any case, these di!erences are not
a source of error for the present method, because no particular shape of the perturbation
signal is required. Whatever pressure and velocity #uctuations are observed at the inputs of
the multi-port are accepted as the signal for the estimation of the auto- and
cross-correlation. This is an essential di!erence between the present method and the unit
step approach [22, 26], where it is required that a step perturbation is given as the signal to
the multi-port.

The impulse responses derived from the pressure and velocity time series are shown in
Figure 9. Here the length of the impulse response vector was set to ¸"16. With the chosen
time lag q"3 ms"12Dt, the delayed part of the response should appear in h

12
. Except for

the "rst coe$cient h
0
, which describes the immediate response to a signal, the computed

unit impulse response vectors show quite strong deviations from the expected values,
especially for h(pv). However, the unit impulse responses are not of interest per se, as it is the
transfer matrix, derived from the unit responses by the z-transformation, which is used in
network analysis. Fortunately, here the agreement between the theoretical and numerical
results is much better; see Figure 10. With the exception of the absolute value of the
velocity}velocity coupling ¹(vv) (lower right coe$cient) and the phase of the
pressure}velocity coupling ¹(pv) (lower left coe$cient), the agreement is not only
qualitatively but also quantitatively very satisfactory. This is in particular so in the



Figure 10. Coe$cients of the transfer matrix T(u) of the q}f model obtained from unsteady simulation with
a perturbed velocity boundary condition. Upper left: ¹(pp), Upper right: ¹(vp), lower left: ¹(pv), lower right: ¹(vv).
Computational (e) and theoretical results (*) for the absolute value (left axis) as well as Computational (#) and
theoretical results (} } }) for the phase (right axis) are shown.
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frequency range u+600}700 s~1, where the "rst eigenmode of the q}f tube is found (cf.
Figure 3).

This analysis was repeated with data from a second unsteady simulation with di!erent
boundary conditions, i.e. prescribed total pressure upstream and static pressure
downstream. During the unsteady run both pressure boundary conditions were varied in
a way similar to the velocity boundary condition used in the "rst case; see Figure 7. The
rationale for this modi"cation was that the in#uence of the periodic pressure oscillations on
the accuracy of the results achieved was not known. By changing the boundary type and
varying both boundary conditions in time, it was hoped that the unstable acoustic mode
would not develop during the run. This expectation was ful"lled; the pressure and velocity
signals produced by the second unsteady simulation appear to be mainly the response to the
perturbations imposed at the boundaries; see Figure 11. However, it is observed that these
modi"cations did not improve the prediction of the unit impulse response or the transfer
matrix; see Figures 12 and 13. As a matter of fact, for the pressure}velocity coupling, the
agreement between theory and simulation is worse than it was for the previous run.

Nevertheless, the results achieved with the novel method are satisfactory. Indeed, when
comparing with the level of quality and consistency that can be achieved with experimental
methods [17}19] to determine transfer matrices*and considering the e!ort that is required
to obtain such results*the performance of the CFD-based approach presented in this
paper is rather impressive. All four coe$cients of the transfer matrix are obtained with
acceptable accuracy in magnitude and phase for frequencies below 1000 s~1, where the "rst
eigenmode of the system is found. At higher frequencies, the deviations increase in
magnitude, but this frequency range is of minor importance for the present model. The



Figure 11. Fluctuations of pressure (top) and velocity (bottom) observed for the case with time-varying total
pressure (in#ow) and static pressure (out#ow) boundary conditions. (a) **, p@

c
; - - -, p@

h
, (b) **, v@

c
; - - -, v@

h
.

Figure 12. Unit impulse responses of the q}f model obtained from unsteady simulation with perturbed pressure
boundary conditions. Upper left: h(pp), upper right: h(vp), lower left: h(vp), lower right: h(vv). Computational (#) and
theoretical results (s) for the h

k
's, k"0,2, 15 are shown. Note the di!erent vertical axis scalings.
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Figure 13. Coe$cients of the transfer matrix T(u) of the q}f model obtained from unsteady simulation with
perturbed pressure boundary conditions. Upper left: ¹(pp), Upper right: ¹(vp), lower left: ¹(vp), lower right: ¹(vv).
Computational (e) and theoretical results (*) for the absolute value (left axis) as well as Computational (#) and
theoretical results (} } }) for the phase (right axis) are shown.
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algorithm is obviously able to disentangle the interactions of pressure and velocity
perturbations propagating in the upstream and downstream direction across the heat
source. The total amount of data used*length N"200 of the time series, equivalent to
50 ms*for the analysis is quite small. Indeed, the 50 ms compare very favorably with the
direct CFD analysis presented in section 3, were even for a very strongly unstable or stable
case, the unsteady simulation has to evolve for several hundred ms before the long-time
state (limit cycle or steady #ow) is approached. For a system near the stability limit,
computation times would be much longer.

7. SUMMARY AND CONCLUSIONS

An e$cient and often adequate description of the (thermo-) acoustic properties of
a combustion system is o!ered by acoustic "lter or multi-port networks. The representation
of a combustion system with these tools requires knowledge of the transfer matrices of the
system's constitutive multi-ports. For simple multi-ports, the transfer matrix can be derived
from the (linearized) equations of conservation of mass and momentum and suitable
additional assumptions. However, in general, the determination of the transfer matrix from
"rst principles is intractable and one has to resort to experimental or numerical simulation.

It has been suggested previously to determine the acoustic properties of an acoustic
element from time-dependent numerical simulation of the response of the element to
a sudden disturbance. Speci"cally, the response*in terms of the mass #ux across the
#ame*to a unit-step perturbation is Laplace-transformed to obtain the (scalar) frequency
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response function. The present work extends these ideas by employing more advanced tools
from communications engineering: i.e., system identi"cation. Speci"cally, the multi-port is
regarded as a "nite impulse response "lter, and its unit impulse responses are determined by
solving the Wiener}Hopf equation. The required auto- and cross-correlations of signal and
"lter response are estimated from time series data obtained from a time-dependent
simulation of the multi-port's response to a perturbation of upstream or downstream
boundary conditions. Finally, the transfer matrix required for network analysis is obtained
by a z-transform of the impulse responses.

It is noteworthy that this novel approach is not limited to a scalar frequency response
function. The 2]2 transfer matrix describing a two-port "lter can be obtained from one
single time-dependent computation. Extensions of the method to matrices of higher
dimension seem feasible for multi-ports with more than two ports and/or additional
variables representing, e.g., #uctuating fuel concentration or entropy. Furthermore, the use
of step functions, which are required for the unit step approach with subsequent
Laplace-transform, but which are not easily represented accurately in a time-dependent
#uid dynamics computation, can be avoided. Indeed, the shape of the perturbation signal is
quite arbitrary, it is merely necessary that the signal possesses su$cient frequency content
and is persistently exciting. For the same reason, it is also permissible that re#ections of the
original perturbation from the boundaries of the computational domain impinge upon the
two-port. The instationary simulation may therefore be continued beyond the time which
an acoustic perturbation requires to travel back and forth across the computational
domain. Longer simulation times are expected to lead to more accurate estimates of
cross- and auto-correlations of signal and response. Finally, there is no minimum frequency
spacing for the transfer matrix, as exists for the inverse Laplace transformation method.

The method has been successfully applied to a one-dimensional model of a heat source
with time delay placed in a low-Mach-number compressible #ow, for which an analytical
description can be derived from "rst principles. Computational predictions of the transfer
matrix have been validated successfully against these analytical results.

Applications of the method to two-dimensional purely acoustic (i.e., without heat release)
two-ports shall be reported elsewhere; applications to turbulent reacting #ows in premix
burners are planned.
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APPENDIX A

In this section it is illustrated*by using the n}q model as an example*how the frequency
response of a linear system may be recovered as the Laplace transform of its unit step
response. A general proof of these statements is given, e.g., by Kailath [37].

Consider a linear system with a real-valued input signal s and a real-valued output signal
or response r. Then the frequency response function F(u), which satis"es

rL (u)"F (u)sL (u)

for the Fourier transforms rL and sL of signal and response, is equal to

F (u)"
L

r
(z)

L
s
(z) K

z/*u
. (A1)

On the r.h.s., L
f
(z),:=

0
f (t) e~zt dt denotes the one-sided Laplace transform of some

function f. Now consider the special case of the response u (t) of the system to a unit step or
Heaviside signal

s(t)"H (t),G
0 for t(0,

1 for t*0.

It follows with L
H
(z)"1/z from equation (A1) that

F(u)"zL
u
D
z/*u"iu P

=

0

u (t) e~*ut dt. (A2)
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For the n}q model, the response u (t) to a unit step perturbation is shown in Figure 5.
Obviously,

L
u
"P

=

0

e~zt dt#(1#n) P
=

q
e~zt dt"

1

z
(1#n e~zq ),

and one reproduces the frequency transfer function F (u)"1#n exp(!iuq) of the n}q
model.

APPENDIX B

In this section, it is demonstrated that the z-transform h[ (z) of the unit impulse response
h with argument z"expMiuDtN indeed yields the frequency response function of a linear
"lter.

First, recall that the discrete forward Fourier transform of N#1 sample points s
k
,s (t

k
)

with sampling interval Dt and t
k
"kDt, k"0, 1, 2,2, N, is de"ned as

sL (u
k
),sL

k
,

N
+
n/0

expG!i
2nn k

N#1H s
n
, (B1)

where sL is the discrete Fourier transform, and the sample points in frequency space are
u

k
"2nk/(N#1)Dt.
Now consider the discrete Fourier transform of the response r of a linear "lter,

rL
k
"

N
+
n/0

expG!i
2nn k

N#1H r
n

(B2)

"

N
+
n/0

expG!i
2nn k

N#1H
L
+
j/0

h
j
s
n~j

. (B3)

Substituting for s
n~j

with the de"nition of the inverse discrete Fourier transform

s
k
"

1

N#1

N
+
n/0

expG!i
2nn k

N#1H sL
n
, (B4)

and then using the series representation of the Kronecker d,

d
k,m

"

1

N#1

N
+
n/0

expG!i
2n(k!m)n

N#1 H , (B5)

to eliminate double summations, one can simplify equation (B3) to obtain

rL
k
"

L
+
j/0

h
j
expG!i

2nk j

N#1H sL
k
. (B6)

With 2nk/(N#1)"u
k
Dt and the de"nition of the z-transform h[ (z)"+L

j/0
h
j
z~j this yields

rL
k
"h[ (e*uk

Dt)sL
k
. (B7)
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APPENDIX C: NOMENCLATURE

;pper case letters
A cross-sectional area
F scalar frequency response function
Im(z) imaginary part of complex variable z
Re(z) real part of complex variable z
H Heaviside step function (unit step)
,̧ M, N integers

L
f

Laplace transform of function f
QQ rate of heat release per unit area
M Mach number
S system matrix
¹ temperature
T transfer matrix
¹(vv) coe$cient of transfer matrix
Z speci"c impedance

¸ower case letters
c speed of sound
c approximation of the cross-correlation of signal and response
h impulse response vector
h
k

element of impulse response
p pressure
r, r

i
response

s signal
u step response
u vector of unknowns
v velocity
x spatial co-ordinate
z complex variable

Greek letters
a area ratio, A

u
/A

dc ratio of speci"c heats
C approximation of the autocorrelation matrix of a signal
d cycle increment
d
ik

Kronecker delta
j reduced length
u angular frequency
o density
q time lag
m ratio of speci"c impedances up- and downstream
f pressure loss coe$cient

Subscripts and accents
0 inlet
c cold
h hot
x exit
d downstream
u upstream
f K Fourier transform of function f
h3 (z) z-transform of unit impulse response vector h
h[ (z) expectation value
r8 expectation value of r
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