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The free asymmetric and axisymmetric vibration of layered piezoelectric spherical shells
are analyzed using a two-dimensional first order shear deformable shell theory. Piecewise
Hermite interpolation polynomials are used to approximate the unknowns in the azimuthal
direction, to Fourier approximations in the circumferential direction. Natural frequencies
for layered elastic caps were computed and found to be in close agreement with other studies
and results from a discrete-layer model of the equations of linear elasticity. Several new
results are calculated for layered piezoelectric spherical caps with clamped and hinged
boundary conditions. © 2001 Academic Press

1. INTRODUCTION

Spherical shells and spherical caps have been studied intensively for purely elastic media.
Naghdi [1, 2] has investigated the small axisymmetric deformation of elastic shells of
revolution and the formulation of suitable stress-strain relations and the appropriate
boundary conditions. Johnson and Reissner [3] examined transverse vibrations of shallow
spherical shells. Hoppmann [4] provided direct solutions of the determinantal frequency
equation for clamped and simply boundary conditions. Kalnins and Naghdi [5] discovered
the axisymmetric and asymmetric vibrations of thin elastic spherical shells. Mukherjee [6]
computed the stresses due to vibration of spherical shells. By the use of suitable auxiliary
variables, the equations of motion of non-shallow spherical shells were reduced by Prasad
[7] to a system of two uncoupled and one partly coupled equations. Frequency equations
were also derived by Kalnins [8] in terms of Legendre functions with complex indices. The
Holzer method has been generalized by Zarghamee and Robinson [9] to the analysis of free
vibration of spherical shells. Rath and Das [10, 11] derived the general equations of motion
including the effect of shear deformations and obtained the natural frequencies for the
axisymmetric motion of closed symmetrically layered orthotropic spherical shells. A finite
ring shell element was developed by Venkataramana and Venkateswara [12]. The free
vibrations of isotropic spherical shells were investigated by De Souza and Croll [13] using
a variational development of the equations of motion based upon classical shell theory.
Kunieda [14] studied flexural axisymmetric free vibrations of a spherical dome. Free
asymmetric vibration of spherical shells with clamped and hinged boundary conditions
were analyzed using the finite element method by Mirza and Singh [15]. Tessler and
Spiridigliozzi [16] studied resolving membrane and shear locking phenomena in curved
shear-deformable axisymmetric shell elements. Axisymmetric free vibration of moderately
thick polar orthotropic hemispherical shells were studied by Chao et al. [17] under various
boundary conditions with sliding, guided pin, clamped and hinged edges. Gautham and
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Ganesan [ 18] studied free vibration characteristics of isotropic and laminated orthotropic
spherical caps.

To the authors’ knowledge, no studies exist for the analysis of piezoelectric spherical caps.
This configuration can be used in a wide variety of applications including adaptive smart
membranes and active shells, frequency analysis of laminated transducers and sensors, and
the design of artificial heart pumps and robotic surgery instruments. In the present study,
the equations of motion and the charge equation of electrostatics are considered in
variational form using the piezoelectric constitutive equations and stress—strain relations in
spherical co-ordinates. Substituting these equations into Hamilton’s principle yields a weak
form which forms the fundamental basis for our numerical analyses. A two-dimensional first
order shear deformation model for piezoelectric shells is generated. Displacements and
potential are expressed in terms of the mid-surface displacements and independent
rotations. Piecewise Hermite interpolation polynomials are used in the azimuthal direction
with Fourier approximations in the circumferential direction. The results are compared
with those from a three-dimensional Ritz approximation [19], in which piecewise quadratic
Lagrange interpolation polynomials are used in the radial direction with Fourier
approximations in the circumferential and azimuthal directions.

Using the present model, the natural frequencies for purely elastic shells with a wide
geometric range have been computed and found to be in close agreement with results from
literature. Several new results for layered piezoelectric caps with clamped and hinged
boundary conditions have been calculated using the first order deformation method, and we
discuss the general implications of these results. Further, we demonstrate that the first order
shear deformation theory is less computationally intensive than continuum theories, and
also gives good solutions for thin shells.

2. THEORY

In this section, the governing equations for linear piezoelectricity are presented, and the
two-dimensional first order shear deformation approximations to these equations are
derived for piezoelectric caps in spherical co-ordinates.

2.1. GOVERNING EQUATIONS OF LINEAR PIEZOELECTRICITY

In spherical co-ordinates, the displacement components are defined in the radial (x; = r),
azimuthal (x, = {), and circumferential (x; = 0) directions as shown in Figure 1. These
displacement components are denoted by U =U,=u(r,{,0), V =U,=v(r{ 0 and
W = Uy = w(r, , 0), with the electrostatic potential given as ¢ = ¢(r, (, 0).

The piezoelectric constitutive equations for any layer in the spherical caps are given by
Tiersten [20] as

0; = Ciij — ek,-Ek, Dk = ekij + SklEl~ (1, 2)

Herei,j=1,...,6 and |, k = 1, 2, 3, g; are the components of the stress tensor, C;; are the
components of the elastic tensor, S; are the components of the strain tensor, e;; are the
piezoelectric coefficients, E; are the components of the electric field, D, are the components
of the electric displacement, and ¢, are the dielectric constants, and the single subscript for
the stress components represents the contracted double subscript notation in a standard
form, such as 11 =1, 22 =2, 33 =3, 23 =4, 13 =15, and 12 = 6. The rotated elastic
stiffnesses are given by C;q, C,,, C33, C44, Css, Cg6, C12, C13, and C,3. The non-zero
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Figure 1. Notation of spherical co-ordinates.

elastic coefficients are given as e;, €15, €13, €24, and e35. The non-zero dielectric constants
are €;1, &,5, and ¢33. The constitutive relations of an orthotropic material are assumed in
this study, and the piezoelectric layers are poled in the radial direction.

The weak form of the equations of motion for the shell can be written using Hamilton’s
principle for a linear piezoelectric medium in spherical co-ordinates. This forms the basis of
the approximate model presented in the sequel. Hamilton’s principle is given by Tiersten
[20] as

0 J‘tl dt\[ [% pl),u, — H(Skla Ek)] dv + Jtl dtJ (Tiéui - Q_5¢) ds =0. (3)
t0 v t s

0
Here to and t; are two arbitrary times, ¢ is the variational operator, } and S are the volume
and surface of the solid, T; and Q represent specified traction and surface charges, and H is

the electric enthalpy per unit volume, given in terms of the strain and electric-field
components as

H(S;, Ey) = %CijSiSj — eiEiS; — zeu EcEr. “
The strain—displacement relations can be written [21] in spherical co-ordinates as

ou _1@ u

Sp=2  gy=-t 56
rr ars 44 rag"rra (a)
1 ow cotl u 1 dv 10w cotl
o0 rsinC0“0+ r U+r’ B rsinC0“0+r0“C ;" (7. 8)
1 du ow w 10u dv v
- eI L 1
" rsing o0 oor " r6C+0r r ©, 10)

Here S,,, S¢p, S¢; are the components of the linear strain tensor, and S,;, Sy, S, are the
components of engineering shear strain. The electric field components E; are related to the
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electrostatic potential ¢(r, {, 0) using the relations

0 _ 1ag B 1 2
Ev=—=7%, PBu=- ro¢’ EOO__rsinc_“,&O' (11-13)

2.2. FIRST ORDER SHEAR DEFORMATION THEORY APPROXIMATIONS

The hypothesis of classical shell theory is that straight lines normal to the mid-surface
remain straight, normal and unchanged in length after deformation. The requirement of
normality is usually deleted in first order shear deformation theory (FSDT). The geometry
of the shell considered in this study is a surface of revolution with an arbitrarily curved
meridian. The notation for the co-ordinates is shown in Figure 2. The displacement
components at a distance z away from the shell mid-surface are expressed in terms of
mid-surface displacements and independent rotations of the normal as

U, ¢, 0)=14a(, 0), Vi(r, ¢ 0) =9, 0) + z4(C, 0), (14, 15)
W, (0 =W 0) + 280, ¢ 0) = 0). (16, 17)

We base our assumption of constant potential through the thickness on the small
differences between open and closed circuit boundary conditions for the top and bottom
faces for typical laminates [22]. This implies that the radial component of the electric field is
0. This significantly reduces the number of unknowns, while the influence of the surface
boundary condition has been shown to be small as long as the shell is relatively thin. We
denote U, V, W as the displacements of any point in the r, { and 0 directions, respectively,
and i, 0, w as the corresponding mid-surface displacements. We use 45 to denote the
corresponding mid-surface electrostatic potential, with & and ﬁ the rotations of the normal
in azimuthal and circumferential directions.

The displacements 4, 0, W, 4, B and the electrostatic potential (5 can be described by
Fourier series expansions in the circumferential direction [15] as

o0

4 0) = Z' cos(NO), (¢, 0) = Z £:(0)cos(NO), (18, 19)
A 2 u
0, w
[
r
é’"’
{
é,m-v»l

Figure 2. Notation of co-ordinates and displacements for FSDT.
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w((, 0) = i Jw()sin(NO), al, 0) = i Ja(§)cos(NO), (20, 21)
FEO= T fOSRNG,  HE 0= T fH(0)cos(NO). (22.23)

Here the functions f;, f;, fw, fa. 3, f3 that represent the variation in the azimuthal direction at
any point between the nodes of the element are represented as in reference [15] in Hermite
polynomial form as

L0 = LA™ + f(X)aF + (X041 + fa(X)aG ™ 1], (24)

where m is the element number. Similarly, f;, fi. f3, 5. f; can be expressed in terms of the
functions f; () through f,({) by inserting the appropriate parameters o, W, d, ﬁ qb in place of
. The functions f;(X),i = 1... 4 are given by Singh and Mirza [15] as

X)) =0 -XP?1+2X), f(X)=(X1-X)?, (25, 26)
LX) =1-(1-X?1+2X), faX)=-{X(1-X). (27, 28)

Here X = — §)/(Cms1 — Cn)s Lo = et — o, and {,, is the azimuthal element.

Substituting these displacement components into the strain-displacement and
field-potential relations of equations (5)-(13) yields these relations in terms of mid-surface
displacements and rotations. Substituting these relations into Hamilton’s principle yields
the corresponding weak form. These resulting terms have been integrated through the
thickness to eliminate the dependence on r using a shear correction factor of 5/6 [18].
Substituting the approximate displacements and their variations into the weak forms and
collecting terms allows for writing the final equation for periodic harmonic motions in
terms of the periodic frequency @ in matrix form as

(M1 [0] (0] [0] (01 o1 || {a}
[0] [M**1 [01 [M**] [0]1 [0] || {3}

.| [0] [0] [M*1 [01 [M*] [0] |]{w}
[0] [mM*1 [0 [M*™] [0] [0] [|{a}
[0] [0] [M>] [0]1 [M*] [0] ||{B}
[0] [0] (0] [0] [01 [0 |l{¢}

[K'] [K'] [K"™] [K'™] [K"] [K'] [[ {4} {0}
[K*'] [K*?] [K*] [K**] [K*] [K*] || {3} {0}
N [K*'] [K*?] [K*] [K*] [K*°] [K*°] |] {W) _ 10 ‘ (29)
[K*] [K*] [K®] [K*™] [K*] [K*] || {3} {0}
[K51:| [K52:| [K53] [K54] [KSS] [K56] {ﬁ} {O}
[[K®'] [K®] [K*] [K*] [K*] [K*] |L{d} {0}

Matrix condensation is employed to transform the matrix to the general eigenvalue
problem which we solve using the QR algorithm. The explicit forms of the coefficient
matrices are given in Appendix A.
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2.3. DISCRETE-LAYER MODEL

A three-dimensional Ritz discrete-layer approximation method is used in this study for
purposes of comparison for the case of purely elastic shells. Piecewise quadratic Lagrange
interpolation polynomials are used in the radial direction with Fourier approximations in
the circumferential and azimuthal directions. The governing equations and computational
procedures are derived in reference [19], but are not included here.

2.4. BOUNDARY CONDITIONS

24.1. FSDT

Using the first order shear deformation theory (FSDT), it is a simple method to set
boundary conditions corresponding to a clamped edge and a hinged edge. These are given
as(Yil=0=w=d,=4d= ﬁ ¢ 0 for the clamped edge,and 2) il =6 =W = ¢ 0 for
the hinged edge.

In this study, only axisymmetric and asymmetric frequencies are considered.
Axisymmetric response implies symmetry about { = 0 with V' = 0 everywhere in the shell.
Asymmetric response implies antisymmetry about { = 0.

2.4.2. Discrete-layer model

The boundary conditions for clamped shells in our analytic model using the Ritz method
[19] are U=V =W = ¢ =0. The harmonic solutions of the axisymmetric case for
a clamped shell of opening angle f deg defined in Figure 3 can be expressed in terms of the
displacements and potential as

r,(,0) = Z Jr(r)sin M(C — ), (30)
V=00 0) = 2 F)sin M({ — p), (31)
= w(r, ¢, 0) = 00, (32)
b= 0)= Z f3r)sinM(C — p). (33)

B =90°

f=45°
(a) (b
Figure 3. Configuration of (a) a deep shell ( = 90°) and (b) a shallow shell (f = 45°).
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The harmonic solutions of the asymmetric case for a clamped shell of opening angle ff can
be expressed as

U=ur.&0)= % f0)sinM( — feosNo. (34)
V=080 = Y f)sinM(C — feos NO, (35)
W=w(nL0)= £ 3 fl)sin M~ fysin N0, (36)
b= 00,00 = Nioﬁlm 7y sin M( — f)cos NO. (37)

We substitute these displacements into Hamilton’s principle and proceed as in reference
[19]. We omit these details, as the resulting equations and solutions closely follow this
previous work.

3. RESULTS AND DISCUSSION

In this section, we study the free vibration response of layered elastic caps using the first
order shear deformation theory and compare these results with those of a Ritz discrete layer
method [19] and those reported by others [16, 18]. Axisymmetric and asymmetric
frequencies for an isotropic shell are computed first and are compared with results from
other studies to check the accuracy of these two methods. We then use the first order shear
deformation theory to analyze natural frequencies of layered piezoelectric shells with
clamped and hinged boundary conditions.

3.1. VALIDATION OF RESULTS: ISOTROPIC SHELLS

The axisymmetric frequencies of a clamped isotropic hemispherical shell with h/a = 0-1
are calculated using first order shear deformation theory and the Ritz discrete layer method
[19], and compared with the results of references [16, 18]. Mild steel is considered for the
example of an isotropic shell. Its properties are given by E = 2:1 x 10'* N/m?, v = 0-3. The
first issue is that the accuracy of natural frequencies computed using the FSDT depends on
the number of azimuthal elements used to represent the shell. In other words, convergence
of the solutions is a function of the element number. Figure 4 shows that natural frequencies
are highly precise when the number of azimuthal elements is 10, so the number of elements
used in azimuthal direction for the following cases is 10. That means the degrees of
freedom in the whole system are 110. Then, the non-dimensional frequency parameter €2 is

given by wR./p(1 — v?)/E. Here w is the frequency, R is the radius of the cap, and p is the
density. These values are given in Table 1. We also show the asymmetric frequencies of
a clamped 60° mild steel shell and compare them with the results of references [15, 18].
These values are shown in Table 2, and are in good agreement (within 3%) with these earlier
studies.
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TaBLE 1

Comparison of non-dimensional axisymmetric frequencies of an isotropic clamped
hemispherical cap

Mode 1 2 3 4
FSDT 0-809 1-177 1-518 1-855
Ritz 0-814 1-185 1-527 1-884
Reference [16] 0-809 1-176 1-517 1-854
Reference [18] 0-805 1-175 1-508 1-838

3.2. ELASTIC LAYERED SHELLS

Natural frequencies for two-layer clamped elastic caps are calculated using the first order
shear deformation theory and the Ritz discrete layer method. In the present study, an
aluminum alloy and steel are used. The properties of the aluminum alloy are given by
E =70x101°N/m?2, v = 033, p = 271 x 103 kg/m>. The properties of steel are given by
E =20x 10" N/m?, v = 029, p = 7-85 x 10® kg/m?>. The non-dimensional frequency € is
givenby wR\/p/A,,,where A5, = (Y 7_, (3 Q5,r* dr)/(Y 7= {1+ r? dr). Non-dimensional
frequencies are computed for the opening angles 45, 60 and 90°. The thickness-to-radius
ratio (h/a) considered in this example is 0-05. The thicknesses of the two layers are identical.
The results are given in Table 3. The horizontal mode number indicates the N value of
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TABLE 2

Comparison of non-dimensional asymmetric frequencies of an isotropic clamped 60° cap

Mode 1,1 1,2 2,1 2,2 4,1 42
FSDT 0-857 1-153 1-029 1-407 1-328 2-:004
Ritz 0-860 1-164 1-032 1-425 1-341 2:044
Reference [15] 0-858 1-154 1-025 1397 1-329 2:006
Reference [18] 0-853 1-145 1-029 1-408 1-325 1-994
TABLE 3

Comparison of solutions of FSDT and Ritz method for two-layer clamped mild steel spherical
shells (h/a = 0-05, v = 0-3)

Mode N 1 2 3 4 5 6
p
(a) 45°
1 Ritz 10267 1-2156 1-4588 17773 22354 26085
FSDT 10104 1-2075 1-4476 17626 21462 25892
2 Ritz 1-5878 1-9875 24725 30049 3-8844 41913
FSDT 1-5298 1-9600 24349 29630 3-5380 41542
3 Ritz 25294 31568 3-8160 45015 52543 59416
FSDT 24353 31378 37891 44701 51814 59212
4 Ritz 28905 40317 51831 61835 72115 7-8419
FSDT 27777 40108 51533 61431 69977 7-8389
5 Ritz 40025 4-6885 54586 63088 73954 82526
FSDT 3-9197 46675 54458 63012 72586 82213
(b) 60°
1 Ritz 08650 1-0285 1-1430 1:3012 1-5075 17642
FSDT 0-8549 1-0210 1-1386 12934 1-4962 1-7466
2 Ritz 1-1505 1-4167 1-6534 19591 23012 26870
FSDT 1-1305 1-3641 1-6179 1-9145 22532 26303
3 Ritz 1-6773 21051 24147 2-8400 32857 37734
FSDT 1-6155 19867 23683 27810 3-2248 3-6977
4 Ritz 21306 3-0436 3-4005 39182 44396 50142
FSDT 21129 28223 33268 38335 43607 49099
5 Ritz 26646 33099 39716 47796 55535 63143
FSDT 24782 31265 39616 47631 55283 62217
(c) 90°
1 Ritz 0-5732 0-8784 09531 1-0189 1-1021 12138
FSDT 0-5619 08773 09555 10226 1-1065 12172
2 Ritz 09054 1-0290 1-1307 12517 1:3969 1:5786
FSDT 0-8993 1-0140 11174 12343 1:3792 1-5553
3 Ritz 10874 12511 1-3988 1-5896 17973 20477
FSDT 10776 12235 1-3843 1-5664 1-7756 20125
4 Ritz 1-3684 1-6233 1-8019 20526 23076 26186
FSDT 1:3436 1-5554 17788 20211 22866 25756
5 Ritz 1-6374 20892 23125 26188 29084 32775

FSDT 1-6285 1-9928 2:2869 2:5827 2-8963 32295

Fourier approximations in the circumferential direction, with the vertical mode number
corresponding to azimuthal modes P. In general, the frequencies predicted from the Ritz
method are approximately 8-9% larger than the results of first order shear deformation
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theory (FSDT), which can be attributed in part to the assumed shear correction factors in
the FSDT model. As the angle ¢ increases, the results are in better agreement, possibly
indicating that the shear terms tend to dominate the deformation as the opening angle

increases.

3.3. PIEZOELECTRIC SHELLS

The first order shear deformation theory is used to calculate natural frequencies of
single-layer orthotropic and piezoelectric pinned caps with an opening angle of 45°. The

non-dimensional frequency 2 is given by wR./p/Q,,, where Q,, is the standard plane stress
reduced stiffness. The thickness-to-radius ratio (h/a) considered in this example is 0-05. The
material PZT-5 is used for the piezoelectric cap with the properties given in Table 4.

TaBLE 4

Material properties for piezoelectric materials

Property PZT-5 (Pb) (CoW)TiO;
p(kg/m3) 7570 5900
C,1(GPa) 1110 128-0
C,, 120-0 150-0
Css 21-1 552
Cys 752 323
01> 69-2 141-8
Q23 24-4 2889
Qa4 22:6 565
0Oss 176 460
ell(C/mz) 1578 85
€12 — 535 1-61
€56 12:29 3-89
£11(C?/Nm?) 1-53e-8 2:-11e-9
TABLE 5

Natural frequencies for single-layer pinned 45° orthotropic and piezoelectric shells (h/a = 0-05)

Mode N 1 2 3 4 5 6

P Caps

1 Elastic 0954 1-133 1-343 1-635 2005 2441
Piezoelectric 1-761 3-549 4941 6020 6999 7941

2 Elastic 1-386 1:796 2:265 2793 3-371 3-990
Piezoelectric 2732 4-:367 6077 7-554 8-854 10-041

3 Elastic 2:322 2962 3-613 4298 5012 5752
Piezoelectric 2983 5-089 6741 8793 10-392 11-583

4 Elastic 2738 3-960 5-037 5974 6-817 7-650
Piezoelectric 3-816 5-488 7-947 9-:367 11-104 13-213

5 Elastic 3741 4-489 5273 6127 7-047 7969
Piezoelectric 3-984 6-629 8316 10-508 12:422 14-948
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To compute the influence of the piezoelectric coefficients, we first set the piezoelectric
coeflicients of PZT-5 zero to mimic a purely orthotropic elastic shell. We then include them
in the analysis. The results are shown in Table 5. Generally, the frequencies of the
piezoelectric cap are roughly 6-50% larger than the results of the orthotropic shell with the
larger differences occurring for the layer circumferential and azimuthal modes. As the mode
numbers increase, the influence of the piezoelectric effect is significantly reduced. Therefore,
piezoelectricity has a significant effect of the free vibration of spherical shells for the material
used in this study.

Natural frequencies of single-layer clamped PZT-5 caps are computed for opening angles
45, 60 and 90° to cover a wide geometric range from shallow to deep spherical shells. The
thickness-to-radius ratio (h/a) considered in these examples is 0-005. The solutions are
shown in Table 6. The frequencies of the 90° shells are approximately as much as 75% of

TABLE 6

Natural frequencies for single-layer, clamped piezoelectric shells (h/a = 0-005)

Mode N 1 2 3 4 5 6
p
(a) 45°
1 1-2635 22513 3-5196 47644 58181 69429
2 1-4137 25262 41501 5-8407 69976 79435
3 1-6048 29709 47662 60548 74097 8-8681
4 1-8446 34749 4-8962 63549 85967 10-0456
5 20546 3-8475 51939 70368 8-8376 10-8363
6 23605 40954 5-8851 7-6450 9-1224 11-3901
7 25752 43917 63523 83277 10-3863 11-6483
8 29189 49985 69575 9-1566 10-6667 12:8282
9 32551 52642 7-1606 93077 11-8585 13-5458
10 35526 5-5535 79884 97197 12:2013 14-5549
(b) 60°
1 1-0429 1-6918 25887 3-4363 41956 50417
2 1-1635 1-8766 3-0982 42967 53404 6:0988
3 1-2354 22045 3-3847 4-5723 54089 64729
4 1-3869 25907 36561 47236 64724 77134
5 1-4874 27879 3-9049 51965 6-6000 79722
6 1-6606 29498 43399 58122 69094 86283
7 1-8912 33107 47779 62261 77730 89104
8 20960 36433 51312 67056 80335 9-5109
9 23645 38074 52156 69862 8-8539 10-2370
10 25399 41077 5-8749 72525 90194 10-8141
(c) 90°
1 0-6952 12751 1-8302 23153 28083 3-3785
2 09995 1-3985 21641 29058 3-5881 42992
3 10187 1-5883 23176 31858 3-8022 43844
4 1-0759 1-8071 25055 3-3240 44092 52794
5 11128 1-8569 2-6881 3-5190 4-5849 55003
6 1-2057 20286 29433 40137 4-8942 60745
7 12737 22512 32594 42846 52218 62154
8 1-4083 23685 3-3641 4-5275 55994 65142
9 1-6770 25350 3-5912 46912 59705 69803
10 1-7090 26737 3-9078 4-8625 6:0880 72660
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TABLE 7

Natural frequencies for single-layer 60° clamped and pinned piezoelectric shells (h/a = 0-01)

Mode N 1 2 3 4 5 6

P edge

1 Clamped 1111 2:013 3-086 4138 5025 5903
Pinned 1-044 1-809 2791 3784 4-288 4747

2 Clamped 1-318 2:270 2-464 4:579 5-357 6-101
Pinned 1-281 2:215 3413 4-133 5-152 6-071

3 Clamped 1-438 2:577 3778 4-884 6-130 7-298
Pinned 1-402 2-490 3-598 4-602 5-395 6227

4 Clamped 1-704 2-884 4133 5-405 6792 7731
Pinned 1-644 2-838 3-843 4-885 6-168 7-433

5 Clamped 1-867 3-088 4413 5:659 7-054 8679
Pinned 1-823 3-058 4134 5-608 6-835 7-783

those of the 60° caps, and as much as 50% of those of the 45° shells, indicating that
frequency is inversely proportional to the opening angle.

Natural frequencies for single-layer 60° clamped and pinned PZT-5 shells with
a thickness-to-radius ratio 0-01 are calculated and shown in Table 7. In general, the
frequencies of the pinned piezoelectric caps are around 8-12% less than the solutions of the
clamped shells. As expected, the clamped piezoelectric shells are more rigid than the pinned
caps, yet for many modes this influence is very small. This is especially true for the primary
circumferential mode, for which the frequencies are very close. As the mode number
increases, the differences also increase.

Free vibrations for single-layer 90° clamped piezoelectric shells with thickness-to-radius
ratio 0-005, 0-01, 0-05 were also analyzed. The results are given in Table 8. The frequencies of
the shells with thickness-to-radius ratio 0-005 are roughly 5-10% less than the ones of the
caps with thickness-to-radius ratio 001, and the solutions of the caps with
thickness-to-radius ratio 0-01 are about 5-10% less than the values of the shells with
thickness-to-radius ratio 0-05. Hence, large increases in thickness do not yield
commensurate increases in frequency.

Natural frequencies of two-layer clamped piezoelectric caps are computed for opening
angle 45° to compare with the single-layer shells. The thickness-to-radius ratio (h/a)
considered in this case is 0-005. The thicknesses of two layers are identical. The materials
PZT-5 and (Pb) (CoW) TiO; are used for the two-layer piezoelectric shells. Their properties
are listed in Table 4. The results can be seen from Table 9. Most values of the single-layer
shells are about 10-12% larger than the two-layer caps.

Although most of our results focus on natural frequency, we also demonstrate the
behavior of piezoelectric spherical shell mode shapes in free vibrations. The relative
amplitude of 90° single-layer pinned caps are calculated from the eigenvectors and shown in
Figure 5. The thickness-to-radius ratio (h/a) considered in the example is 0-005. The
materials PZT-5 are used. These results are fairly typical, and show fairly regular behavior
for v and w, but less uniform behavior for u.

Overall, the results of our study indicate that the first order shear deformation theory is
more efficient than continuum theories and give good results for thin shells, because, in
FSDT, it is assumed that the radius does not influence the results and can be ignored during
integration. For example, the cases using FSDT have 110 degrees of freedom in our study,
far less than the Ritz model in which 640 degrees of freedom are required. In general,
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TABLE 8

Natural frequencies for single-layer 90° clamped piezoelectric shells with thickness-to-radius

ratio
Mode N 1 2 3 4 5 6
P

(a) h/a = 0-005
1 06952 1-2751 1-8302 23153 2-8083 3-3785
2 09995 1-3985 2-1641 29058 3-5881 42992
3 10187 1-5883 23176 3-1858 3-8022 4-3844
4 10759 1-8071 2:5055 3-3240 44092 52794
5 11128 1-8569 26881 3-:5190 4-5849 5-5003
6 12057 2:0286 29433 40137 4-8942 6-:0745
7 12737 2:2512 3-2594 42846 52218 6:2154
8 14083 2:3685 3-3641 4-5275 5-5994 65142
9 16770 2:5350 3-5912 46912 59705 6-9803
10 1-7090 2:6737 39078 4-8625 6-0880 7-2660

(b) h/a = 0-01
1 07068 1-4076 2:0211 2:5827 3-0978 3-6719
2 10453 1-5341 2:3039 3-1102 3-7970 4-3837
3 10840 1-6838 2:5727 3-2280 3-8666 4-5893
4 11901 1-8838 2:5950 3-5135 4-6308 5-4865
5 12638 2:0742 2:8017 3-6989 47270 5:5646
6 14040 2:2185 3-0803 41120 49491 6-:2042
7 1-5080 2:3249 3-3645 4-4087 5-3781 6-3478
8 16971 2:5597 3-7319 47228 5-7002 6-6531
9 17547 2:8173 37511 4-8635 6-1643 7-0447
10 19269 30232 40334 5-1489 6-3699 7-5293

(c) h/a = 0-05
1 07784 1-7886 2:5878 3-2185 3-8068 4-3855
2 1-3431 2:2532 3-1395 40926 4-8685 5-5097
3 15138 2:3565 3-4586 45412 5-4821 6-3561
4 17401 2:6138 3-6772 47151 5-8031 6-8435
5 19782 3-1303 40636 49858 6-:0737 7-:0293
6 21377 3-1873 4-3939 5-5158 6-3786 7-3391
7 24730 3-6051 45428 56795 6-7995 7-7861
8 28691 3-7868 50228 6-0001 69931 8-:0517
9 30131 41958 5-3166 6-3180 7-4698 8:3932
10 34859 4-6369 5-5302 6-7593 7-7194 8-7871

piezoelectricity increases the frequency around 30% due to the increased stiffness. Because the
shape of caps influences the vibration style, the frequencies are roughly inversely proportional
to the opening angle of the shells. Also, the clamped piezoelectric shells are approximately
10% more rigid than the pinned caps caused by the change of boundary conditions.

4. CONCLUSIONS

We studied the dynamic behavior of homogeneous and layered elastic and piezoelectric
caps in an attempt to develop both a general computational procedure of analysis and
present, for what we believe is the first time, numerical results for layered piezoelectric
spherical caps and indications of their behavior. Elastic shells were examined first to test the
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TABLE 9

Comparison of natural frequencies between 45° single-layer and two-layer clamped
piezoelectric shells (h/a = 0-005)

Mode N 1 2 3 4 5 6

P

1 Single layer 1-264 2:251 3520 4764 5-818 6-943
Two layer 1-270 2-158 3327 4-551 5550 6-560

2 Single layer 1-414 2:526 4-150 5-841 6-998 7-944
Two layer 1-397 2-396 3-835 5439 6-873 8196

3 Single layer 1-605 2-971 4-766 6-055 7-410 8-868
Two layer 1-565 2771 4-527 6263 7-869 9778

4 Single layer 1-845 3475 4-896 6-355 8597 10-046
Two layer 1766 3172 4715 6263 7-869 9-778

5 Single layer 1-845 3-848 5194 7-037 8-838 10-836
Two layer 1-957 3-664 5139 6513 8146 10-169
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Figure 5. Relative amplitude for 90° single-layer pinned piezoelectric caps: h/a = 0-005, Mode = 1. O, U; [, V;

*, W.

accuracy of the formulation. In the elastic cases, frequencies of various angles of caps were
calculated with first order deformation theory and were in close agreement with results from
other studies. The solutions for piezoelectric shells, which have not been studied previously,
will provide a means of comparison for other techniques and methods. The numerical
model developed in this study can be used in a wide variety of applications including
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deformation calculation of smart membranes and active shells, frequency analysis of
laminated transducers and sensors, and the design of artificial heart pumps and robotic
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rgery instruments.
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APPENDIX A: ELEMENTS OF THE COEFFICIENT MATRICES

The elements of the coefficient matrices for the first order shear deformation method are
pressed as

MY = f f (A Wiy 2 sinldods, M2 = f j [Asadiyi ] sin L dOdL,
£Jo £Jo
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A specific problem for the use of spherical co-ordinate relates to the value of 1/siné,
which goes to infinity when ( is zero. In the past study [15], a small circular hole was
introduced to alleviate this problem, with the integration taken up to this point in the area
integral. In the present study, we used Gaussian integration. Because Gaussian quadrature
points avoid the apex, the difficulty of the singularity was avoided.
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