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FREE VIBRATION OF LAYERED PIEZOELECTRIC
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The free asymmetric and axisymmetric vibration of layered piezoelectric spherical shells
are analyzed using a two-dimensional "rst order shear deformable shell theory. Piecewise
Hermite interpolation polynomials are used to approximate the unknowns in the azimuthal
direction, to Fourier approximations in the circumferential direction. Natural frequencies
for layered elastic caps were computed and found to be in close agreement with other studies
and results from a discrete-layer model of the equations of linear elasticity. Several new
results are calculated for layered piezoelectric spherical caps with clamped and hinged
boundary conditions. ( 2001 Academic Press
1. INTRODUCTION

Spherical shells and spherical caps have been studied intensively for purely elastic media.
Naghdi [1, 2] has investigated the small axisymmetric deformation of elastic shells of
revolution and the formulation of suitable stress}strain relations and the appropriate
boundary conditions. Johnson and Reissner [3] examined transverse vibrations of shallow
spherical shells. Hoppmann [4] provided direct solutions of the determinantal frequency
equation for clamped and simply boundary conditions. Kalnins and Naghdi [5] discovered
the axisymmetric and asymmetric vibrations of thin elastic spherical shells. Mukherjee [6]
computed the stresses due to vibration of spherical shells. By the use of suitable auxiliary
variables, the equations of motion of non-shallow spherical shells were reduced by Prasad
[7] to a system of two uncoupled and one partly coupled equations. Frequency equations
were also derived by Kalnins [8] in terms of Legendre functions with complex indices. The
Holzer method has been generalized by Zarghamee and Robinson [9] to the analysis of free
vibration of spherical shells. Rath and Das [10, 11] derived the general equations of motion
including the e!ect of shear deformations and obtained the natural frequencies for the
axisymmetric motion of closed symmetrically layered orthotropic spherical shells. A "nite
ring shell element was developed by Venkataramana and Venkateswara [12]. The free
vibrations of isotropic spherical shells were investigated by De Souza and Croll [13] using
a variational development of the equations of motion based upon classical shell theory.
Kunieda [14] studied #exural axisymmetric free vibrations of a spherical dome. Free
asymmetric vibration of spherical shells with clamped and hinged boundary conditions
were analyzed using the "nite element method by Mirza and Singh [15]. Tessler and
Spiridigliozzi [16] studied resolving membrane and shear locking phenomena in curved
shear-deformable axisymmetric shell elements. Axisymmetric free vibration of moderately
thick polar orthotropic hemispherical shells were studied by Chao et al. [17] under various
boundary conditions with sliding, guided pin, clamped and hinged edges. Gautham and
0022-460X/01/330527#18 $35.00/0 ( 2001 Academic Press



528 Y.-C. WU AND P. HEYLIGER
Ganesan [18] studied free vibration characteristics of isotropic and laminated orthotropic
spherical caps.

To the authors' knowledge, no studies exist for the analysis of piezoelectric spherical caps.
This con"guration can be used in a wide variety of applications including adaptive smart
membranes and active shells, frequency analysis of laminated transducers and sensors, and
the design of arti"cial heart pumps and robotic surgery instruments. In the present study,
the equations of motion and the charge equation of electrostatics are considered in
variational form using the piezoelectric constitutive equations and stress}strain relations in
spherical co-ordinates. Substituting these equations into Hamilton's principle yields a weak
form which forms the fundamental basis for our numerical analyses. A two-dimensional "rst
order shear deformation model for piezoelectric shells is generated. Displacements and
potential are expressed in terms of the mid-surface displacements and independent
rotations. Piecewise Hermite interpolation polynomials are used in the azimuthal direction
with Fourier approximations in the circumferential direction. The results are compared
with those from a three-dimensional Ritz approximation [19], in which piecewise quadratic
Lagrange interpolation polynomials are used in the radial direction with Fourier
approximations in the circumferential and azimuthal directions.

Using the present model, the natural frequencies for purely elastic shells with a wide
geometric range have been computed and found to be in close agreement with results from
literature. Several new results for layered piezoelectric caps with clamped and hinged
boundary conditions have been calculated using the "rst order deformation method, and we
discuss the general implications of these results. Further, we demonstrate that the "rst order
shear deformation theory is less computationally intensive than continuum theories, and
also gives good solutions for thin shells.

2. THEORY

In this section, the governing equations for linear piezoelectricity are presented, and the
two-dimensional "rst order shear deformation approximations to these equations are
derived for piezoelectric caps in spherical co-ordinates.

2.1. GOVERNING EQUATIONS OF LINEAR PIEZOELECTRICITY

In spherical co-ordinates, the displacement components are de"ned in the radial (x
1
"r),

azimuthal (x
2
"f), and circumferential (x

3
"h) directions as shown in Figure 1. These

displacement components are denoted by ;";
r
"u (r, f, h), <";f"v (r, f, h) and

=";h"w (r, f, h), with the electrostatic potential given as /"/ (r, f, h).
The piezoelectric constitutive equations for any layer in the spherical caps are given by

Tiersten [20] as
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Figure 1. Notation of spherical co-ordinates.
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elastic coe$cients are given as e
11

, e
12

, e
13

, e
26

, and e
35

. The non-zero dielectric constants
are e

11
, e

22
, and e

33
. The constitutive relations of an orthotropic material are assumed in

this study, and the piezoelectric layers are poled in the radial direction.
The weak form of the equations of motion for the shell can be written using Hamilton's

principle for a linear piezoelectric medium in spherical co-ordinates. This forms the basis of
the approximate model presented in the sequel. Hamilton's principle is given by Tiersten
[20] as
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Here t
0
and t

1
are two arbitrary times, d is the variational operator,< and S are the volume

and surface of the solid, ¹M
i
and QM represent speci"ed traction and surface charges, and H is

the electric enthalpy per unit volume, given in terms of the strain and electric-"eld
components as

H (S
i
, E

k
)"1

2
C

ij
S
i
S
j
!e

ki
E
k
S
i
!1

2
e
kl
E
k
E
l
. (4)

The strain}displacement relations can be written [21] in spherical co-ordinates as
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Here S
rr
, Shh , Sff are the components of the linear strain tensor, and S

rf , Sfh , S
rh are the

components of engineering shear strain. The electric "eld components E
i
are related to the
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electrostatic potential / (r, f, h) using the relations
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2.2. FIRST ORDER SHEAR DEFORMATION THEORY APPROXIMATIONS

The hypothesis of classical shell theory is that straight lines normal to the mid-surface
remain straight, normal and unchanged in length after deformation. The requirement of
normality is usually deleted in "rst order shear deformation theory (FSDT). The geometry
of the shell considered in this study is a surface of revolution with an arbitrarily curved
meridian. The notation for the co-ordinates is shown in Figure 2. The displacement
components at a distance z away from the shell mid-surface are expressed in terms of
mid-surface displacements and independent rotations of the normal as

; (r, f, h)"uL (f, h), < (r, f, h)"vL (f, h)#zaL (f, h), (14, 15)

= (r, f, h)"wL (f, h)#zbK (f, h), / (r, f, h)"/K (f, h). (16, 17)

We base our assumption of constant potential through the thickness on the small
di!erences between open and closed circuit boundary conditions for the top and bottom
faces for typical laminates [22]. This implies that the radial component of the electric "eld is
0. This signi"cantly reduces the number of unknowns, while the in#uence of the surface
boundary condition has been shown to be small as long as the shell is relatively thin. We
denote ;, <,= as the displacements of any point in the r, f and h directions, respectively,
and uL , vL , wL as the corresponding mid-surface displacements. We use /K to denote the
corresponding mid-surface electrostatic potential, with aL and bK the rotations of the normal
in azimuthal and circumferential directions.

The displacements uL , vL , wL , aL , bK and the electrostatic potential /K can be described by
Fourier series expansions in the circumferential direction [15] as
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=
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=
+

N/0

f
vL
(f) cos(Nh) , (18, 19)
Figure 2. Notation of co-ordinates and displacements for FSDT.
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Here the functions f
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, faL , fbK , f(K that represent the variation in the azimuthal direction at

any point between the nodes of the element are represented as in reference [15] in Hermite
polynomial form as
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where m is the element number. Similarly, f
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is the azimuthal element.

Substituting these displacement components into the strain}displacement and
"eld-potential relations of equations (5)}(13) yields these relations in terms of mid-surface
displacements and rotations. Substituting these relations into Hamilton's principle yields
the corresponding weak form. These resulting terms have been integrated through the
thickness to eliminate the dependence on r using a shear correction factor of 5/6 [18].
Substituting the approximate displacements and their variations into the weak forms and
collecting terms allows for writing the "nal equation for periodic harmonic motions in
terms of the periodic frequency u in matrix form as
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Matrix condensation is employed to transform the matrix to the general eigenvalue
problem which we solve using the QR algorithm. The explicit forms of the coe$cient
matrices are given in Appendix A.
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2.3. DISCRETE-LAYER MODEL

A three-dimensional Ritz discrete-layer approximation method is used in this study for
purposes of comparison for the case of purely elastic shells. Piecewise quadratic Lagrange
interpolation polynomials are used in the radial direction with Fourier approximations in
the circumferential and azimuthal directions. The governing equations and computational
procedures are derived in reference [19], but are not included here.

2.4. BOUNDARY CONDITIONS

2.4.1. FSD¹

Using the "rst order shear deformation theory (FSDT), it is a simple method to set
boundary conditions corresponding to a clamped edge and a hinged edge. These are given
as (1) uL "vL"wL "uL

,f"aL "bK "/K "0 for the clamped edge, and (2) uL "vL"wL "/K "0 for
the hinged edge.

In this study, only axisymmetric and asymmetric frequencies are considered.
Axisymmetric response implies symmetry about f"0 with <"0 everywhere in the shell.
Asymmetric response implies antisymmetry about f"0.

2.4.2. Discrete-layer model

The boundary conditions for clamped shells in our analytic model using the Ritz method
[19] are ;"<"="/"0. The harmonic solutions of the axisymmetric case for
a clamped shell of opening angle b deg de"ned in Figure 3 can be expressed in terms of the
displacements and potential as
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=
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f
r
(r) sinM(f!b), (30)

<"v(r, f, h)"
=
+
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="w (r, f, h)"0)0, (32)
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f
(
(r) sinM(f!b). (33)
Figure 3. Con"guration of (a) a deep shell (b"903) and (b) a shallow shell (b"453).
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The harmonic solutions of the asymmetric case for a clamped shell of opening angle b can
be expressed as
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We substitute these displacements into Hamilton's principle and proceed as in reference
[19]. We omit these details, as the resulting equations and solutions closely follow this
previous work.

3. RESULTS AND DISCUSSION

In this section, we study the free vibration response of layered elastic caps using the "rst
order shear deformation theory and compare these results with those of a Ritz discrete layer
method [19] and those reported by others [16, 18]. Axisymmetric and asymmetric
frequencies for an isotropic shell are computed "rst and are compared with results from
other studies to check the accuracy of these two methods. We then use the "rst order shear
deformation theory to analyze natural frequencies of layered piezoelectric shells with
clamped and hinged boundary conditions.

3.1. VALIDATION OF RESULTS: ISOTROPIC SHELLS

The axisymmetric frequencies of a clamped isotropic hemispherical shell with h/a"0)1
are calculated using "rst order shear deformation theory and the Ritz discrete layer method
[19], and compared with the results of references [16, 18]. Mild steel is considered for the
example of an isotropic shell. Its properties are given by E"2)1]1011 N/m2, l"0)3. The
"rst issue is that the accuracy of natural frequencies computed using the FSDT depends on
the number of azimuthal elements used to represent the shell. In other words, convergence
of the solutions is a function of the element number. Figure 4 shows that natural frequencies
are highly precise when the number of azimuthal elements is 10, so the number of elements
used in azimuthal direction for the following cases is 10. That means the degrees of
freedom in the whole system are 110. Then, the non-dimensional frequency parameter X is

given by uRJo(1!l2)/E. Here u is the frequency, R is the radius of the cap, and o is the
density. These values are given in Table 1. We also show the asymmetric frequencies of
a clamped 603 mild steel shell and compare them with the results of references [15, 18].
These values are shown in Table 2, and are in good agreement (within 3%) with these earlier
studies.



Figure 4. Convergence of the solutions: s, mode 1; h, mode 2; *, mode 3; ¢, mode 4.

TABLE 1

Comparison of non-dimensional axisymmetric frequencies of an isotropic clamped
hemispherical cap

Mode 1 2 3 4

FSDT 0)809 1)177 1)518 1)855
Ritz 0)814 1)185 1)527 1)884

Reference [16] 0)809 1)176 1)517 1)854
Reference [18] 0)805 1)175 1)508 1)838
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3.2. ELASTIC LAYERED SHELLS

Natural frequencies for two-layer clamped elastic caps are calculated using the "rst order
shear deformation theory and the Ritz discrete layer method. In the present study, an
aluminum alloy and steel are used. The properties of the aluminum alloy are given by
E"7)0]1010N/m2, l"0)33, o"2)71]103kg/m3. The properties of steel are given by
E"2)0]1011N/m2, l"0)29, o"7)85]103 kg/m3. The non-dimensional frequency X is

given by uRJo/AM
22

, where AM
22
"(+2

k/1
:hk`1

hk
Qk

22
r2 dr)/(+2

k/1
:hk`1

hk
r2dr). Non-dimensional

frequencies are computed for the opening angles 45, 60 and 903. The thickness-to-radius
ratio (h/a) considered in this example is 0)05. The thicknesses of the two layers are identical.
The results are given in Table 3. The horizontal mode number indicates the N value of



TABLE 2

Comparison of non-dimensional asymmetric frequencies of an isotropic clamped 603 cap

Mode 1,1 1,2 2,1 2,2 4,1 4,2

FSDT 0)857 1)153 1)029 1)407 1)328 2)004
Ritz 0)860 1)164 1)032 1)425 1)341 2)044

Reference [15] 0)858 1)154 1)025 1)397 1)329 2)006
Reference [18] 0)853 1)145 1)029 1)408 1)325 1)994

TABLE 3

Comparison of solutions of FSD¹ and Ritz method for two-layer clamped mild steel spherical
shells (h/a"0)05, l"0)3)

Mode N 1 2 3 4 5 6
P

(a) 453
1 Ritz 1)0267 1)2156 1)4588 1)7773 2)2354 2)6085

FSDT 1)0104 1)2075 1)4476 1)7626 2)1462 2)5892
2 Ritz 1)5878 1)9875 2)4725 3)0049 3)8844 4)1913

FSDT 1)5298 1)9600 2)4349 2)9630 3)5380 4)1542
3 Ritz 2)5294 3)1568 3)8160 4)5015 5)2543 5)9416

FSDT 2)4353 3)1378 3)7891 4)4701 5)1814 5)9212
4 Ritz 2)8905 4)0317 5)1831 6)1835 7)2115 7)8419

FSDT 2)7777 4)0108 5)1533 6)1431 6)9977 7)8389
5 Ritz 4)0025 4)6885 5)4586 6)3088 7)3954 8)2526

FSDT 3)9197 4)6675 5)4458 6)3012 7)2586 8)2213

(b) 603
1 Ritz 0)8650 1)0285 1)1430 1)3012 1)5075 1)7642

FSDT 0)8549 1)0210 1)1386 1)2934 1)4962 1)7466
2 Ritz 1)1505 1)4167 1)6534 1)9591 2)3012 2)6870

FSDT 1)1305 1)3641 1)6179 1)9145 2)2532 2)6303
3 Ritz 1)6773 2)1051 2)4147 2)8400 3)2857 3)7734

FSDT 1)6155 1)9867 2)3683 2)7810 3)2248 3)6977
4 Ritz 2)1306 3)0436 3)4005 3)9182 4)4396 5)0142

FSDT 2)1129 2)8223 3)3268 3)8335 4)3607 4)9099
5 Ritz 2)6646 3)3099 3)9716 4)7796 5)5535 6)3143

FSDT 2)4782 3)1265 3)9616 4)7631 5)5283 6)2217

(c) 903
1 Ritz 0)5732 0)8784 0)9531 1)0189 1)1021 1)2138

FSDT 0)5619 0)8773 0)9555 1)0226 1)1065 1)2172
2 Ritz 0)9054 1)0290 1)1307 1)2517 1)3969 1)5786

FSDT 0)8993 1)0140 1)1174 1)2343 1)3792 1)5553
3 Ritz 1)0874 1)2511 1)3988 1)5896 1)7973 2)0477

FSDT 1)0776 1)2235 1)3843 1)5664 1)7756 2)0125
4 Ritz 1)3684 1)6233 1)8019 2)0526 2)3076 2)6186

FSDT 1)3436 1)5554 1)7788 2)0211 2)2866 2)5756
5 Ritz 1)6374 2)0892 2)3125 2)6188 2)9084 3)2775

FSDT 1)6285 1)9928 2)2869 2)5827 2)8963 3)2295
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Fourier approximations in the circumferential direction, with the vertical mode number
corresponding to azimuthal modes P. In general, the frequencies predicted from the Ritz
method are approximately 8}9% larger than the results of "rst order shear deformation
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theory (FSDT), which can be attributed in part to the assumed shear correction factors in
the FSDT model. As the angle / increases, the results are in better agreement, possibly
indicating that the shear terms tend to dominate the deformation as the opening angle
increases.

3.3. PIEZOELECTRIC SHELLS

The "rst order shear deformation theory is used to calculate natural frequencies of
single-layer orthotropic and piezoelectric pinned caps with an opening angle of 453. The

non-dimensional frequency X is given by uRJo/Q
22

, where Q
22

is the standard plane stress
reduced sti!ness. The thickness-to-radius ratio (h/a) considered in this example is 0)05. The
material PZT-5 is used for the piezoelectric cap with the properties given in Table 4.
TABLE 5

Natural frequencies for single-layer pinned 453 orthotropic and piezoelectric shells (h/a"0)05)

Mode N 1 2 3 4 5 6

P Caps

1 Elastic 0)954 1)133 1)343 1)635 2)005 2)441
Piezoelectric 1)761 3)549 4)941 6)020 6)999 7)941

2 Elastic 1)386 1)796 2)265 2)793 3)371 3)990
Piezoelectric 2)732 4)367 6)077 7)554 8)854 10)041

3 Elastic 2)322 2)962 3)613 4)298 5)012 5)752
Piezoelectric 2)983 5)089 6)741 8)793 10)392 11)583

4 Elastic 2)738 3)960 5)037 5)974 6)817 7)650
Piezoelectric 3)816 5)488 7)947 9)367 11)104 13)213

5 Elastic 3)741 4)489 5)273 6)127 7)047 7)969
Piezoelectric 3)984 6)629 8)316 10)508 12)422 14)948

TABLE 4

Material properties for piezoelectric materials

Property PZT-5 (Pb) (CoW)TiO
3

o(kg/m3) 7570 5900
C

11
(GPa) 111)0 128)0

C
22

120)0 150)0
C

44
22)6 56)5

C
55

21)1 55)2
C

12
75)1 32)3

C
23

75)2 32)3
Q

22
69)2 141)8

Q
23

24)4 288)9
Q

44
22)6 56)5

Q
55

17)6 46)0
e
11

(C/m2) 15)78 8)5
e
12

!5)35 1)61
e
26

12)29 3)89
e
11

(C2/Nm2) 1)53e-8 2)11e-9
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To compute the in#uence of the piezoelectric coe$cients, we "rst set the piezoelectric
coe$cients of PZT-5 zero to mimic a purely orthotropic elastic shell. We then include them
in the analysis. The results are shown in Table 5. Generally, the frequencies of the
piezoelectric cap are roughly 6}50% larger than the results of the orthotropic shell with the
larger di!erences occurring for the layer circumferential and azimuthal modes. As the mode
numbers increase, the in#uence of the piezoelectric e!ect is signi"cantly reduced. Therefore,
piezoelectricity has a signi"cant e!ect of the free vibration of spherical shells for the material
used in this study.

Natural frequencies of single-layer clamped PZT-5 caps are computed for opening angles
45, 60 and 903 to cover a wide geometric range from shallow to deep spherical shells. The
thickness-to-radius ratio (h/a) considered in these examples is 0)005. The solutions are
shown in Table 6. The frequencies of the 903 shells are approximately as much as 75% of
TABLE 6

Natural frequencies for single-layer, clamped piezoelectric shells (h/a"0)005)

Mode N 1 2 3 4 5 6

P

(a) 453
1 1)2635 2)2513 3)5196 4)7644 5)8181 6)9429
2 1)4137 2)5262 4)1501 5)8407 6)9976 7)9435
3 1)6048 2)9709 4)7662 6)0548 7)4097 8)8681
4 1)8446 3)4749 4)8962 6)3549 8)5967 10)0456
5 2)0546 3)8475 5)1939 7)0368 8)8376 10)8363
6 2)3605 4)0954 5)8851 7)6450 9)1224 11)3901
7 2)5752 4)3917 6)3523 8)3277 10)3863 11)6483
8 2)9189 4)9985 6)9575 9)1566 10)6667 12)8282
9 3)2551 5)2642 7)1606 9)3077 11)8585 13)5458

10 3)5526 5)5535 7)9884 9)7197 12)2013 14)5549

(b) 603
1 1)0429 1)6918 2)5887 3)4363 4)1956 5)0417
2 1)1635 1)8766 3)0982 4)2967 5)3404 6)0988
3 1)2354 2)2045 3)3847 4)5723 5)4089 6)4729
4 1)3869 2)5907 3)6561 4)7236 6)4724 7)7134
5 1)4874 2)7879 3)9049 5)1965 6)6000 7)9722
6 1)6606 2)9498 4)3399 5)8122 6)9094 8)6283
7 1)8912 3)3107 4)7779 6)2261 7)7730 8)9104
8 2)0960 3)6433 5)1312 6)7056 8)0335 9)5109
9 2)3645 3)8074 5)2156 6)9862 8)8539 10)2370

10 2)5399 4)1077 5)8749 7)2525 9)0194 10)8141

(c) 903
1 0)6952 1)2751 1)8302 2)3153 2)8083 3)3785
2 0)9995 1)3985 2)1641 2)9058 3)5881 4)2992
3 1)0187 1)5883 2)3176 3)1858 3)8022 4)3844
4 1)0759 1)8071 2)5055 3)3240 4)4092 5)2794
5 1)1128 1)8569 2)6881 3)5190 4)5849 5)5003
6 1)2057 2)0286 2)9433 4)0137 4)8942 6)0745
7 1)2737 2)2512 3)2594 4)2846 5)2218 6)2154
8 1)4083 2)3685 3)3641 4)5275 5)5994 6)5142
9 1)6770 2)5350 3)5912 4)6912 5)9705 6)9803

10 1)7090 2)6737 3)9078 4)8625 6)0880 7)2660



TABLE 7

Natural frequencies for single-layer 603 clamped and pinned piezoelectric shells (h/a"0)01)

Mode N 1 2 3 4 5 6

P edge

1 Clamped 1)111 2)013 3)086 4)138 5)025 5)903
Pinned 1)044 1)809 2)791 3)784 4)288 4)747

2 Clamped 1)318 2)270 2)464 4)579 5)357 6)101
Pinned 1)281 2)215 3)413 4)133 5)152 6)071

3 Clamped 1)438 2)577 3)778 4)884 6)130 7)298
Pinned 1)402 2)490 3)598 4)602 5)395 6)227

4 Clamped 1)704 2)884 4)133 5)405 6)792 7)731
Pinned 1)644 2)838 3)843 4)885 6)168 7)433

5 Clamped 1)867 3)088 4)413 5)659 7)054 8)679
Pinned 1)823 3)058 4)134 5)608 6)835 7)783
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those of the 603 caps, and as much as 50% of those of the 453 shells, indicating that
frequency is inversely proportional to the opening angle.

Natural frequencies for single-layer 603 clamped and pinned PZT-5 shells with
a thickness-to-radius ratio 0)01 are calculated and shown in Table 7. In general, the
frequencies of the pinned piezoelectric caps are around 8}12% less than the solutions of the
clamped shells. As expected, the clamped piezoelectric shells are more rigid than the pinned
caps, yet for many modes this in#uence is very small. This is especially true for the primary
circumferential mode, for which the frequencies are very close. As the mode number
increases, the di!erences also increase.

Free vibrations for single-layer 903 clamped piezoelectric shells with thickness-to-radius
ratio 0)005, 0)01, 0)05 were also analyzed. The results are given in Table 8. The frequencies of
the shells with thickness-to-radius ratio 0)005 are roughly 5}10% less than the ones of the
caps with thickness-to-radius ratio 0)01, and the solutions of the caps with
thickness-to-radius ratio 0)01 are about 5}10% less than the values of the shells with
thickness-to-radius ratio 0)05. Hence, large increases in thickness do not yield
commensurate increases in frequency.

Natural frequencies of two-layer clamped piezoelectric caps are computed for opening
angle 453 to compare with the single-layer shells. The thickness-to-radius ratio (h/a)
considered in this case is 0)005. The thicknesses of two layers are identical. The materials
PZT-5 and (Pb) (CoW) TiO

3
are used for the two-layer piezoelectric shells. Their properties

are listed in Table 4. The results can be seen from Table 9. Most values of the single-layer
shells are about 10}12% larger than the two-layer caps.

Although most of our results focus on natural frequency, we also demonstrate the
behavior of piezoelectric spherical shell mode shapes in free vibrations. The relative
amplitude of 903 single-layer pinned caps are calculated from the eigenvectors and shown in
Figure 5. The thickness-to-radius ratio (h/a) considered in the example is 0)005. The
materials PZT-5 are used. These results are fairly typical, and show fairly regular behavior
for v and w, but less uniform behavior for u.

Overall, the results of our study indicate that the "rst order shear deformation theory is
more e$cient than continuum theories and give good results for thin shells, because, in
FSDT, it is assumed that the radius does not in#uence the results and can be ignored during
integration. For example, the cases using FSDT have 110 degrees of freedom in our study,
far less than the Ritz model in which 640 degrees of freedom are required. In general,



TABLE 8

Natural frequencies for single-layer 903 clamped piezoelectric shells with thickness-to-radius
ratio

Mode N 1 2 3 4 5 6

P

(a) h/a"0)005
1 0)6952 1)2751 1)8302 2)3153 2)8083 3)3785
2 0)9995 1)3985 2)1641 2)9058 3)5881 4)2992
3 1)0187 1)5883 2)3176 3)1858 3)8022 4)3844
4 1)0759 1)8071 2)5055 3)3240 4)4092 5)2794
5 1)1128 1)8569 2)6881 3)5190 4)5849 5)5003
6 1)2057 2)0286 2)9433 4)0137 4)8942 6)0745
7 1)2737 2)2512 3)2594 4)2846 5)2218 6)2154
8 1)4083 2)3685 3)3641 4)5275 5)5994 6)5142
9 1)6770 2)5350 3)5912 4)6912 5)9705 6)9803

10 1)7090 2)6737 3)9078 4)8625 6)0880 7)2660

(b) h/a"0)01
1 0)7068 1)4076 2)0211 2)5827 3)0978 3)6719
2 1)0453 1)5341 2)3039 3)1102 3)7970 4)3837
3 1)0840 1)6838 2)5727 3)2280 3)8666 4)5893
4 1)1901 1)8838 2)5950 3)5135 4)6308 5)4865
5 1)2638 2)0742 2)8017 3)6989 4)7270 5)5646
6 1)4040 2)2185 3)0803 4)1120 4)9491 6)2042
7 1)5080 2)3249 3)3645 4)4087 5)3781 6)3478
8 1)6971 2)5597 3)7319 4)7228 5)7002 6)6531
9 1)7547 2)8173 3)7511 4)8635 6)1643 7)0447

10 1)9269 3)0232 4)0334 5)1489 6)3699 7)5293

(c) h/a"0)05
1 0)7784 1)7886 2)5878 3)2185 3)8068 4)3855
2 1)3431 2)2532 3)1395 4)0926 4)8685 5)5097
3 1)5138 2)3565 3)4586 4)5412 5)4821 6)3561
4 1)7401 2)6138 3)6772 4)7151 5)8031 6)8435
5 1)9782 3)1303 4)0636 4)9858 6)0737 7)0293
6 2)1377 3)1873 4)3939 5)5158 6)3786 7)3391
7 2)4730 3)6051 4)5428 5)6795 6)7995 7)7861
8 2)8691 3)7868 5)0228 6)0001 6)9931 8)0517
9 3)0131 4)1958 5)3166 6)3180 7)4698 8)3932

10 3)4859 4)6369 5)5302 6)7593 7)7194 8)7871
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piezoelectricity increases the frequency around 30% due to the increased sti!ness. Because the
shape of caps in#uences the vibration style, the frequencies are roughly inversely proportional
to the opening angle of the shells. Also, the clamped piezoelectric shells are approximately
10% more rigid than the pinned caps caused by the change of boundary conditions.

4. CONCLUSIONS

We studied the dynamic behavior of homogeneous and layered elastic and piezoelectric
caps in an attempt to develop both a general computational procedure of analysis and
present, for what we believe is the "rst time, numerical results for layered piezoelectric
spherical caps and indications of their behavior. Elastic shells were examined "rst to test the



TABLE 9

Comparison of natural frequencies between 453 single-layer and two-layer clamped
piezoelectric shells (h/a"0)005)

Mode N 1 2 3 4 5 6

P

1 Single layer 1)264 2)251 3)520 4)764 5)818 6)943
Two layer 1)270 2)158 3)327 4)551 5)550 6)560

2 Single layer 1)414 2)526 4)150 5)841 6)998 7)944
Two layer 1)397 2)396 3)835 5)439 6)873 8)196

3 Single layer 1)605 2)971 4)766 6)055 7)410 8)868
Two layer 1)565 2)771 4)527 6)263 7)869 9)778

4 Single layer 1)845 3)475 4)896 6)355 8)597 10)046
Two layer 1)766 3)172 4)715 6)263 7)869 9)778

5 Single layer 1)845 3)848 5)194 7)037 8)838 10)836
Two layer 1)957 3)664 5)139 6)513 8)146 10)169

Figure 5. Relative amplitude for 903 single-layer pinned piezoelectric caps: h/a"0)005, Mode"1. s, U; h, V;
*, W.
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accuracy of the formulation. In the elastic cases, frequencies of various angles of caps were
calculated with "rst order deformation theory and were in close agreement with results from
other studies. The solutions for piezoelectric shells, which have not been studied previously,
will provide a means of comparison for other techniques and methods. The numerical
model developed in this study can be used in a wide variety of applications including
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deformation calculation of smart membranes and active shells, frequency analysis of
laminated transducers and sensors, and the design of arti"cial heart pumps and robotic
surgery instruments.
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APPENDIX A: ELEMENTS OF THE COEFFICIENT MATRICES

The elements of the coe$cient matrices for the "rst order shear deformation method are
expressed as
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A speci"c problem for the use of spherical co-ordinate relates to the value of 1/sin m,
which goes to in"nity when f is zero. In the past study [15], a small circular hole was
introduced to alleviate this problem, with the integration taken up to this point in the area
integral. In the present study, we used Gaussian integration. Because Gaussian quadrature
points avoid the apex, the di$culty of the singularity was avoided.
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