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The dispersion of the axisymmetric stress waves propagated in the infinite hollow cylinder
filled with water is studied. Modification of a semianalytical FE approach for “dry” cylinders
for this case and other independent FE approaches are described. The usage of the
approaches in question is demonstrated for thick and thin cylinders in cases of isotropic and
composite (monoclinic) materials. Influence of water upon the dispersion properties of waves
is demonstrated by dispersion curves and shapes of waves. Some dispersion curves were
influenced by fluid only weakly, but some dispersion curves were influenced very strongly
even for very thick cylinders. © 2001 Academic Press

1. INTRODUCTION

The problem of propagation of harmonic stress waves in hollow cylinders has been
intensively studied during the last few decades. The analytical and numerical approaches
are concerned mainly with hollow, linearly elastic and anisotropic cylinders. Detailed
reviews of the present state are given in references [ 1, 2]. Recently, a simple approach was
suggested for obtaining finite elements for modelling the dispersion of stress waves [3]
propagated in anisotropic, linearly elastic bodies of infinite length with cross-section of
arbitrary shape, but constant lengths along the body. The approach allows one to model
a given problem without using the so-called (semi)infinite elements.

The aim of this paper is modelling the above-mentioned problem for the case when the
hollow cylinder is filled with water: i.e., investigating the influence of this fluid on the
dispersion curves. For this purpose, a simplified model of the fluid has been chosen, used
successfully in references [4, 5], where the influence of ideal fluid on the natural vibration of
a thin cylindrical shell (clamped at one end, and free at the other end) was investigated. The
suitability of using this model is evident from the excellent agreement of FEM calculations
with experiments for the case of a simple shell, filled gradually with fluid [4], as well as for
the case, when fluid was in the cylindrical annulus between the elastic wall and the perfectly
rigid wall, for various widths of the annulus [5]. For a verification of the semianalytical
results, another finite element approach is used in this paper.

2. MODEL USED OF FLUID AND FEM FORMULATION

For the simplified model of incompressible and inviscid fluid it is assumed that the
amplitude of the pressure satisfies the Laplace equation

Ap(x,r)=0 (1)

0022-460X/01/340611 + 21 $35.00/0 © 2001 Academic Press



612 T. MAZUCH

and a boundary condition

Dp *w(x, r, t)
Qi Pz on Ac, )

where A, is the common fluid structure interface, n is a co-ordinate taken along the normal,
py 1s the fluid density and w is the structural radial displacement. This model in connection
with FEM was used by Zienkiewicz et al. for the first time in 1965 [6]. Equation (1) and the
boundary condition (2) can be replaced by equivalent variational formulations, given in
reference [7] for example.

For the given problem it is supposed that the solution is of the form

p(r, x,t) = P(r)cos [&(x + ct], u(r, x,t) = U(r)sin[E(x * ct)],
v(r, x, t) = V(r)cos[&(x £ ct)], w(r, x,t) = W(r)cos[E(x £ ct)], 3)

where p is the fluid pressure, u, v and w are longitudinal, circumferential and radial
displacements of the elastic cylinder, ¢ is the phase velocity of the axisymmetric wave,
& =2n/A, A is the wavelength and ¢ is the time. Upon considering the strain vector for the
three-dimensional axisymmetric case (see reference [8] for example)

ou/0x
w/r
ow/or
£ = 4)
ov/or — v/r
Ow/0x + Ou/or

0v/dx

and the elasticity matrix in the form

e;1 ez e;3 en 0 0
€1 €y €3 ey 0 0
e e e e 0 0
E |t €2 €3 C ’ (5)
€41 €42 a3 €44 O 0
0 0 0 0 es5 €56
| 0 0 0 0 €ss €o6 |
this approach gives the generalized eigenvalue problem in the form
APK(A)w; = 271c;)* [M + Mp(A)]w;, (6)

where K and M are the in vacuo structural wave global stiffness and mass matrices derived
early in reference [3]. These are in the form

R

KE(A)=2nJ B'EBrdr, B=[B. B, ....B,], (7)

R,
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where Ry, R, are inner and outer radius, g is the number of the element nodal points,

_ oN, -
27N, 0, 0, 0, A ) 0
or
N, ON,
Bl =| 0, 0, 0, —A—=+41 , 0, — 2nN, (8)
r or
A ON,
0, —N,, A—2 0, — 2nN,, 0
i r or ]

and N,, N, and N,, are shape functions for approximations U (r), V(r) and W(r). The mass
matrix element is in the form

R

M, = 2an H'Hrdr, H=[H, H, ... H, )

R,

with the submatrices of the matrix H

N,, 0, O
H,={0, N, 0 (10)
0, 0, N,
The matrix
MD=pfSTK]18 (11)

is the so-called added mass matrix. Derivation of such a (reduced) mass matrix was first
suggested by Zienkiewicz et al. [6]. S and K, are the global interaction and fluid stiffness
matrices. The element of the wave stiffness matrix for the fluid can be expressed by

R

Kfe(A) = 27TJ\ B}Bfr dr, Bf = [bl’ bz, v b‘l] (12)

(0]

with

b — 2nN,
) = ; (13)
AON,/or

where N, are shape functions for the pressure approximation. The global interaction matrix
S for the axisymmetric case has only one non-zero element

s = 2nAR, (14)

in the position given by the kth row and the Ith column corresponding with the pressure and
the radial displacement at the interaction interface. The eigenvector w; represents shape of
the ith wave, with the phase velocity ¢;. The phase velocities and the corresponding shapes
of the waves are solved for the particular value of the wavelength A.

3. ALTERNATIVE FE APPROACH

This approach (used in reference [9] for the case of the cylinder in vacuo) is based on the
assumption that the propagated waves and the standing waves have the same dispersion
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properties. One can then use the analytical solution for the hollow cylinder simply
supported at both ends

mmnx . mmnx
uy = Uy(r)cos Tcos wt, vy = Va(r)sin Tcos wt,

wy = Wy(r) sin?cos wt, (15)

where Uy, V, and W, are the functions sought, m is the number of half-waves in the
longitudinal direction, e is circular frequency and L is the length of the cylinder. The simple
supporting of the hollow cylinder can be expressed by boundary conditions in the form

NxZMXZUAZWAZO (16)

at x = 0 and L, where N, is the normal force, M, is the flexural moment and v,, w, are the
circumferential and radial displacements. The natural modes of vibration of the cylinder are
sinusoidal with the wavelength 4 = 2L/m. It is supposed that in the case of these boundary
conditions, too dramatic differences between “dry” and “wet” eigenmodes cannot occur as
have occurred in case of the clamped-free cylinder in reference [4]. Discretization of the
hollow cylinder with respect to the boundary conditions (2) and (16) gives the generalized
eigenvalue problem in the form

2
TTMCiegp
K.x;, = <Lq> (M, + M,p)x;, (17)

where K is the symmetric, sparse and positive semi-definite (due to boundary conditions)
global stiffness matrix, M 4 is the symmetric, sparse and positive-definite global mass matrix
and M, is the added mass matrix given by

MAszfS;KZfl SA- (18)

Note that the interaction matrix S, has a more complicated form than the matrix S in the
previous case. C;,, 1S the ith equivalent standing wave phase velocity and x; is the
corresponding eigenvector representing the ith natural mode of vibration. This system has
one rigid-body mode in axial direction and its first eigenfrequency is zero. The lowest
eigenpairs of equation (17) cannot be effectively solved by a standard manner based on the
vector iterations. The problem with the singular stiffness matrix and the full (not sparse)
added mass matrix can be avoided by using an incomplete modal decomposition of the
in vacuo system,

XEKAXR = AR’ XEMAXR = IR (19)
for the transformation into the reduced form
ARYri = ,Ui2 (Ig + X;MADXR)YRI‘- (20

Then, for the approximation of the eigenpairs of the generalized eigenvalue problem (17)
one can write

TMCiequ
n; = Tq, X; = XRyi- (21)
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This approach gives the upper approximations of the equivalent standing wave phase
velocities. Note that the explicit construction of the full added mass matrix used in equation
(20) can be avoided by using the Cholesky decomposition of the global fluid stiffness matrix.

4. NUMERICAL EXAMPLES

The approach described can be applied to the case of investigation of the influence of
ideal fluid (water with density p, = 1000 kg/m> was considered) on phase velocities and
shapes of the waves in the infinite hollow thick cylinders. The ratios of the outer to inner
radius of the cylinders were taken to be R,/R; = 1:50 and R,/R; = 1-05. It should be noted
that Ry = 1 m was used in the calculations. Two cases of the material were taken into
account.

(1) Isotropic—steel with the Poisson ratio p = 0-29. For the solution of the phase
velocities Young’s modulus E = 2:05x 10'! Pa and mass density p = 7800 kg/m*® were
considered.

(2) Composite—unidirectional boron epoxy [10] with the fiber direction 60° with respect
to the x-axis: i.e., material with monoclinic symmetry. The elements of the elasticity matrix

E = 6:89475 x 10°

18:86949079 5-83728780 0-97118634  — 8:68814264 0 0
583728780 523220320 0-87966097  — 312209485 0 0
0-97118634 0-87966097 3-23389825 — 0-07926329 0 0

— 8-68814264  —3-12209485 — 0-07926329 6-32033879 0 0
0 0 0 0 1-275 0-38971143
0 0 0 0 0-38971143 0-825

are given in Pa and the mass density p = 2000 kg/m*® was used.

For the semianalytical FE formulation the finite element models of the cylinders and
water consisted of 250 three-noded quadratic isoparametric finite wave elements and all
finite element models used had 1503 degrees of freedom (d.o.f.s) for the elastic cylinder and
501 degrees of freedom for water. The Lanczos algorithm with simple orthogonalization
[11] modified for the case of the added mass matrix was used for the generalized eigenvalue
problem (6). For the alternative FE formulation, the finite element models of the cylinders
and water consisted of 200 eight-noded quadratic isoparametric axisymmetric finite
elements with 1899 degrees of freedom for the elastic cylinder and 661 degrees of freedom for
water. For this approach, 40 in vacuo eigenpairs were used and the reduced eigenvalue
problem (20) was solved by the Jacobi iteration method.

Two types of axisymmetric waves were considered for the isotropic material. Rotationally
symmetric waves are characterized by u(x,r,t) # 0, v =0 and w(x, r, t) # 0 and torsional
waves by u = w =0 and v(x, r, t) # 0. Torsional waves cannot be influenced by ideal fluid
described by equations (1) and (2). Influence of water on the dispersion properties of
rotationally symmetric waves is apparent in a decrease of calculated phase velocities. This
influence is evident for dispersion curves of a thick cylinder, in Figure 1. Curves of “wet”
dispersion approximate curves of “dry” curves well, and the phase velocities are influenced
in most of cases only weakly. Somewhat greater differences appeared for longer waves for
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Figure 1. First 10 dispersion curves of rotationally symmetric waves propagated in a thick isotropic infinite
hollow cylinder with R,/R; = 1-50 where c, is shear wavespeed in 3-D continuum; R,, = (R; + R;)/2; A is
wavelength; solid lines hold for “dry” cylinder; dashed lines hold for a cylinder filled with water.

the first (the lowest) dispersion curve (for R,,/A < 0-5) and for the second curve (for
R,./A < 0-2) where the decrease of phase velocities is suddenly expressive. Calculated phase
velocities for R, /A = 03125 are shown in Table 1. For an exact solution of the phase
velocities of rotationally symmetric waves and analytical solution of the phase velocities of
torsional waves the known Pochhammer solutions for full “dry” cylinder [12, 13] has been
modified by considering zero stresses at two surfaces of a hollow cylinder (see Appendices
A and B). These solutions were executed by using the computer code Mathematica [14].
Comparison of these results with results achieved by the semianlytical FE approach shows
an excellent agreement with the largest relative error ¢ < 0-001%. Agreement between both
FE approaches is acceptable both for the “dry” and “wet” cylinders. Some of the calculated
shapes of waves are shown in Figure 2. As was mentioned above, the shapes of the waves
were solved as eigenvectors of problem (6). For better illustration, these shapes are shown as
obtained by using the 2-D elements and also (for x = const.) by using their components u(r)
and w(r). Norms used for the eigenvectors are evident from the figure. Although the first
phase velocity decreased by about more than 9%, the change of corresponding wave shape
appears only in a very small shift of the nodal circle (with respect to the inner surface).
In contradiction to “dry” wave shape, the nodal circle of the radial displacements appears in
the “wet” shape of the second wave. The fluid influence on the third wave shape appeared
in the small decrease of the radial displacements. Somewhat greater differences have
appeared in locations of nodal circles of axial and radial displacements for fourth wave
shape, as well as a larger decrease of axial displacements.

From Figure 2 one can see that the magnitude of a decrease of the phase velocities
depends on relative magnitudes (further RM) of the radial displacements at the inner surface
of the “dry” cylinder (i.e. at r = R;). In cases where RM of these displacements are dominant
(see the first and fourth “dry” wave shapes), a decrease is significant even for a very thick
cylinder. If RM of radial displacements at inner surface are small and RM of axial
displacements there are dominant, the decrease of phase velocities is small (see the
second and third wave shapes). This statement holds only for those cases where “wet”
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TABLE 1(a)

The computed phase velocities of the rotationally symmetric waves in the infinite thick isotropic
cylinder for R,,/A = 0-3125

“Dry” (empty) cylinder “Wet” cylinder (filled with water)
Finite element method Finite element method
Exact
(modified Semianalytical Alternative Semianalytical Alternative
Pochhammer) (Mazuch) C,;(m/s) (Mazuch) c4i(m/s)
i Cei(m/s) cyi(m/s) ¢3;(m/s)
1 2738:61 2738:62 2738:62 2484-94 2486-09
2 5422-87 5422-88 5422-88 535743 535867
3 14109-8 14109-83 1410993 13915-86 13949-27
4 227583 22758-30 22759-05 19132-96 19160-14
5 270824 27082-42 26188-56
6 38284-8 38284-85 38004-10
7 47479-0 47479-01 40617-80
8 511687 5116868 51167-64
9 639512 63951-18 6212664
10 706572 7065729 6396594
11 767519 76751-90 7668865
12 89367-3 89367-34 8474278
TasLE 1(b)
The computed phase velocities of the torsional waves in the infinite thick isotropic cylinder for
R, /A = 03125
Finite element method
Analytical
(modified Semianalytical Alternative
Pochhammer) (Mazich) Cei(M/s)
i Cai(m/s) ¢si(m/s)
1 3191-68 3191-68 3191-69
2 135366 1353659 1353668
3 259307 25930-68
4 385666 3856663
5 512672 51267-19
6 63994-0 63994-03
7 76734-1 7673412
8 89481-8 89481-79

dispersion curve approximates its “dry” curve well. In other cases, the situation is more
complicated.

Results for a thin isotropic cylinder are shown in Figures 3 and 4 and in Table 2. Some
dispersion curves (see third, sixth and eighth curve in Figure 3) and great part of second
curve (for R,,/A > 0-3) were influenced only weakly. Moreover, fourth and seventh curves
were influenced strongly even for shorter wavelengths. Similarly, as for the thick cylinder,
the first curve for R, /A <07 and second curve for R, /A <02 are influenced quite
dramatically. Computed phase velocities for R,,/A4 = 0-5125 are shown in Table 2. An
excellent agreement between Pochhammer solutions and finite element approaches and
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Figure 3. First 10 dispersion curves of rotationally symmetric waves propagated in a thin isotropic infinite
hollow cylinder with R,/R; = 1-05, where ¢, is shear wavespeed in 3-D continuum; R,, = (R; + R,)/2; A is
wavelength; lines hold for “dry” cylinder; ---- lines hold for a cylinder filled with water.

also between both FE approaches in the “dry” and “wet” cases has been obtained. From
Figure 4 it is evident that shapes of “dry” cylinder waves are appreciably changing with
change of the parameter R,,/A. There are dominant radial displacements in the first wave
shape (corresponding to the lowest dispersion curve), while in the second wave shape axial
displacements are dominant, when shorter waves with R,,/4 = 0-5125 are considered. For
longer waves characterized by R,,/4 = 0-1025 it is vice versa. Comparison of “dry” and
“wet” shapes for shorter waves shows that although the first wave phase velocity decreases
appreciably, the corresponding wave shape is influenced only minimally. In the second
wave shape one can see only a small decrease of RM of radial displacements. A more
interesting situation is the case of longer waves: i.e., for R, /4 = 0-1025. In this case,
the “wet” wave shape with dominant radial displacements corresponds to the first “dry”
wave shape with dominant axial displacements. On the other hand, the predominantly axial
“wet” wave shape corresponds to the second “dry” wave shape where radial displacements
are dominant. This phenomenon has appeared although the dispersion curves do not cross
each other. Similarity of the second “wet” wave shape and the first “dry” wave shape is
probably caused by the fact that the second “wet” curve (for R,/A < 0-2) has become
“disloyal” to the second “dry” curve and inclined towards the first “dry” curve.

In the case of composite monoclinic material, on the contrary to isotropic cylinders,
axisymmetric waves are not separated into purely torsional and purely rotationally
symmetric waves. These waves have all three components of displacements (axial,
circumferential and radial) non-zero, so that all dispersion curves were influenced by
contact with fluid. Results for thick monoclinic cylinder are shown in Figures 5 and 6 and in
Table 3. Note, that in general, the decrease of phase velocities caused by contact with fluid is
now greater than the decrease of phase velocities in the case of the isotropic thick cylinder
(see Figure 1). Considering the thickness, this decrease is unexpectedly expressive.
Calculated phase velocities for R,,/4 = 0-3125 are in Table 3. In the case of “dry” cylinder,
agreement between both FE approaches is excellent, and for the “wet” cylinder agreement is
acceptable. Somewhat greater differences appeared in this case and were probably caused
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TABLE 2(a)

The computed phase velocities of the rotationally symmetric waves in the infinite thin isotropic
cylinder for R,,/A = 0-5125

“Dry” (empty) cylinder “Wet” cylinder (filled with water)
Finite element method Finite element method
Exact
(modified Semianalytical Alternative Semianalytical Alternative
Pochhammer) (Mazuch) C,;(m/s) (Mazuch) c4i(m/s)
i Cei(m/s) cyi(m/s) ¢3;(m/s)
1 1600-67 1600-67 1600-67 1139-67 113976
2 537978 5379-79 5379-80 5358:05 535812
3 641107 64110:72 63924-63
4 117082-0 117082-07 75973-61
5 128096-0 128095-63 127733-50
6 191492-0 191492-07 183570-90
7 2348430 234843-32 191610-00
8 2553520 25535221 255351-90
9 3191900 319189-69 298149-80
10 3521590 352159-41 319191-10
11 3830300 383030-40 383014:70
12 4468330 446833-70 414211-90
TaBLE 2(b)
The computed phase velocities of the torsional waves in the infinite thin isotropic cylinder for
R, /A = 05125
Analytical Finite element method
(modified
Pochhammer) Semianalytical Alternative
i Cqi (M) (Mazuch) Cei(mM/s)
¢5;(m/s)
1 3191-68 3191-68 3191-69
2 63942-2 63942-24
3 1277220 1277217
4 1915370 1915373
5 2553620 2553619
6 319190-0 3191901
7 3830200 3830202
8 4468510 446851-3

by the fact that only the 40 lowest “dry” eigenpairs were substituted into equation (20).
Calculated shapes of waves corresponding to Table 3 are depicted in Figure 6. Similarly, as
in the case of a thin isotropic cylinder, interchange of shapes corresponding to the two
lowest phase velocities is evident. In this case (see again the Figure 5 for 0-2 < R,,/4 < 0-4),
deviation of the second “wet” curve relative to the first “dry” curve is evident while the first
“wet” curve imitates a course of the second “dry” curve. Changes in the third wave shape,
with dominant axial and expressive circumferential displacements, can be characterized by
considerable shift of radial displacements nodal circle towards the outer surface. Evident
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Figure 5. First 10 dispersion curves of axisymmetric waves propagated in a thick anisotropic infinite hollow
cylinder with R,/R; = 1-:50, where c¢3 = \/e33/p; e33 is the diagonal element of the elasticity matrix; p cylinder mass
density; R,, = (R; + R;)/2; A the wavelength; lines hold for “dry” cylinder; ---- lines hold for a cylinder filled
with water.

relationship exists between the fourth “dry” and fifth “wet” wave shapes. Similarly, as in the
case of a thick isotropic cylinder, one can consider a relationship between the RM of radial
displacements of “dry” wave shape at inner cylinder surface and between phase velocity of
a “wet” wave having similar shape. In the case of “dry” wave shapes, where these RM of
radial displacements are small, phase velocities corresponding to similar “wet” shapes are
only slightly changed (see, e.g., a pair of wave shapes corresponding to the velocities ¢, 3 and
c33). In these cases, one cannot speak about decrease of phase velocities only, because in
cases characterized by pairs of the velocities (c; 1, ¢3,) and (¢4, c35) increases have occurred.
Unlike the case mentioned above, if one considers a “dry” wave shape with dominant RM of
radial displacements at inner surface, a decrease of the phase velocity corresponding with
the similar “wet” wave shape is appreciable (see, e.g., a pair characterized by the velocities
¢y, and czq).

Dispersion curves for a thin monoclinic cylinder are shown in Figure 7. Similarly, as in
the case of a thin isotropic cylinder, some dispersion curves are influenced by fluid
appreciably, even the first, fifth and eighth ones for shorter wavelengths. The third curve for
R, /A < 0-2isinfluenced quite dramatically too. However, the second curve and a great part
of the third curve (for R,,/4 > 0-2) are influenced negligibly. Calculated phase velocities for
the parameter R,,/4 = 0-5125 are shown in Table 4. Note that agreement between both FE
approaches is very good. Some calculated shapes of waves for phase velocities from Table 4
are shown in Figure 8. Radial displacements are dominant in the first wave shapes.
Although a dramatic decrease of the first phase velocity is encountered, differences between
“dry” and “wet” wave shapes are negligible. The second wave shapes are characterized
by almost purely circumferential displacements and in the third wave shapes axial
displacements are dominant. There are also minimal differences between “dry” and “wet”
wave shapes. Dramatic differences between wave shapes corresponding to the fourth phase
velocities can be explained similarly as in the above case.
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filled with water; top—image by using 2-D elements, bottom—normed displacements (—— lines hold for axial #,
----- lines for circumferential & and - lines for radial displacements w, 7 = r/R;—dimensionless radius).
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TABLE 3

The computed phase velocities of the axisymmetric waves in the infinite thick monoclinic
cylinder for R,,/A = 0-3125

“Dry” (empty) cylinder “Wet” cylinder (filled with water)
Finite element method Finite element method
Semianalytical Alternative Semianalytical Alternative
i ¢1:(m/s) ¢2:(m/s) ¢3i(m/s) c4i(m/s)
1 1569-22 1569-22 1361-03 1365-64
2 1898:36 1898-36 1596-40 1596-87
3 4630-45 4630-46 457091 457666
4 975577 9755-87 832748 843778
5 13284-04 13284-24 993248 10119-99
6 1732637 16904-00
7 20698-52 20694-13
8 2496563 21065-46
9 2733346 25404-41
10 33659-04 33485-45

5. CONCLUSIONS

Two approximate FE approaches for modelling the influence of water upon the
dispersion properties of axisymmetric waves propagated in infinitely long hollow cylinder
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Figure 7. First 10 dispersion curves of axisymmetric waves propagated in a thin anisotropic infinite hollow
cylinder with R,/R; = 1:05 where c3 = \/e33/p; e33 is the diagonal element of the elasticity matrix; p the cylinder
mass density; R,, = (R; + R,)/2; A the wavelength; lines hold for “dry” cylinder; ---- lines for a cylinder filled
with water.

TaBLE 4

The computed phase velocities of the axisymmetric waves in the infinite thin monoclinic
cylinder for R,,/A = 0-5125

“Dry” (empty) cylinder “Wet” cylinder (filled with water)
Finite element method Finite element method
Semianalytical Alternative Semianalytical Alternative
i ¢1i(m/s) ¢2i(m/s) c3i(m/s) c4i(m/s)
1 1051-59 1051-59 479-88 480-01
2 1561-24 1561-24 1561-21 1561-21
3 4805-48 4805-48 4792:10 4792:28
4 42235-46 3628378
5 6670940 42352:45
6 83939-79 83829-04
7 93751-31 93720-10
8 125724-4 1013233
9 1336561 1258346
10 1677426 1673150

have been presented. The semianalytical FE approach requires 1-D discretization only. For
its independent verification an alternative FE approach with 2-D discretization has been
used. Calculations by this approach lasted approximately 10 times longer (than for the
semianalytical FE approach) and enable one to determine only a few dispersion curves.
Moreover, that approach requires an additional time for manual or automatic
identification of relevant eigenpairs (with m = 1). Comparison of the computed phase
velocities by both FE approaches show very good agreement.
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Figure 8. First four computed shapes of rotationally symmetric waves for Table 4 imaged by using normed
displacements. Left—“dry” cylinder, right—cylinder filled with water; —— lines hold for axial u; ---- lines for
circumferential & and - lines for radial displacements w, 7 = r/R;—dimensionless radius.
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Only the rotationally symmetric waves were influenced by fluid in the case of the
isotropic cylinder. In the case of the monoclinic material the purely torsional waves did not
occur and all dispersion curves were influenced by fluid. A decrease of some phase velocities
was negligible, but for some others it was unexpectedly appreciable even in the case of very
thick cylinders. Influence of fluid upon shapes of waves is complicated and for a small
vicinity of the considered parameter R,,/A, the following three possibilities occurred: (1) if
“wet” dispersion curve approximates a course of “dry” curve well, the corresponding shapes
of waves conform to each other; (2) if the ith “wet” curve inclines to the (i — 1)th “dry” curve,
the corresponding “wet” wave shape is similar to the (i — 1)-th “dry” wave shape; (3) if the
ith “wet” curve imitates the (i + 1)th “dry” curve, the corresponding “wet” wave shape looks
like the (i + 1)th “dry” wave shape.
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APPENDIX A: EXACT SOLUTION FOR ROTATIONALLY SYMMETRIC WAVES
IN INFINITE ISOTROPIC HOLLOW CYLINDER

As the dispersion equation acquires a very complicated form, its development, is given
only as an outline without the resulting relations. The solution can be assumed in the form

u=U@)sin[é(x +ct)] or u=U(r)els=+,
w=W(r)cos[E(x + ct)] or w= W(r)elE+d, (A1)

with

Uer) = — 51 {cum—z‘z[fz( )]}
C r

W) = — # [cf ‘C‘T‘r‘ + izcﬁiQ(r)]} (A4-2)

where iis the imaginary unit, ¢; = /(4 + 2G)/p and ¢, = ./ G/p are longitudinal and shear
wavespeeds in a 3-D continuum, E is Young’s modulus, G is shear modulus,
A=puE/(1 + (1 — 2yu) is Lamé’s constant and p is the Poisson ratio. Further,

A(r) = AYy(or) + Blo(ar),
Q(r) = CY4(Br) + DI(r),

(A3)

where A, B, C, D are integrating constants, Y and J are Bessel functions in the usual notation

and
Ic? lc?
a=¢ c_f_l’ p==¢ c—g—l. (A4)

The integrating constants are obtained from conditions of zero normal and shear stresses
on free surfaces:

0
G = [M( )it e 4 0@ W}le =0,

or r=R,

ou
e —o, AS
[éx " ar}:_ﬁ; (A3

The nullified determinant for the set of four equations (A.5) gives the dispersion equation.

APPENDIX B: ANALYTICAL SOLUTION FOR TORSIONAL WAVES
IN INFINITE ISOTROPIC HOLLOW CYLINDER

The dispersion equation for torsional waves in hollow cylinder can easily be expressed by

the nullified determinant
dyy, d
det[ H “] =0, (B.1)

21 22
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where

_ BRa[Yo(BR1) — Yo(BRy)]

iy 5 ~ Yi(BR.),
b1y = PRADMERD “JoBRO)
dyy = PRAYAPRS YR,
4y, — PRAUIOPRS) = PRy oo

2

631

(B.2)
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