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Non-linear transient response of fluttering stiffened composite plates subject to thermal
loads has been analyzed. The first order shear deformable plate and Timoshenko beam
theories are used for the finite element modelling of a skin panel and stiffeners considering
von Karman non-linear strain—-displacement relationships. A supersonic piston theory is
used for modelling aerodynamic loads. In order to find a critical flutter speed, linear flutter
analysis of stiffened laminated panels considering large aero-thermal deflections has been
performed. The flat and stable motion, limit cycle oscillation, and buckled but dynamically
stable and chaotic motion of stiffened laminated panels have been investigated using the
implicit Newmark integration method. Results show that the increase of the height and
number of stiffeners to reduce an aero-thermal deflection can dramatically drop the
boundaries of a dynamic stability at a certain point. Also, the non-linear behaviors, such as
dynamically stable motions with static aero-thermal deflections, limit cycle oscillations,
periodic motions with large amplitude and chaotic oscillations, are observed in the time
domain analysis.

© 2001 Academic Press

1. INTRODUCTION

It is well known that the structural design using stiffeners to enhance a static and dynamic
stability is very efficient in structural engineering applications. Nowadays, stiffened
composite panels have been extensively used in high-performance aerospace, naval and civil
structures. Especially, aircraft and rockets in a supersonic regime are subject to severe
aerodynamic and high thermal loads. While using stiffened laminated panels in these
vehicles, static aero-thermal and aerothermoelastic analyses should precede, from the
viewpoint of confirming static and dynamic stability of structural components.

An excellent review of the linear and non-linear panel flutter, including mathematical
physics and experimental aspects, can be found in reference [1]. With respect to realistic
physics, a fatigue failure of structures due to fluttering motions is always possible without
a catastrophic failure. So the investigations of non-linear flutter characteristics as well as the
flutter boundaries are very important prior to fatigue analysis. Because a direct time
integration scheme for non-linear analysis requires a lot of time cost and additional labor
for understanding the numerical results, the perturbation and harmonic balance methods

0022-460X/01/340715 + 22 $35.00/0 © 2001 Academic Press



716 I. K. OH ET AL.

[2] and an incremental harmonic balance method [3] for non-linear panel flutter were
developed. Also, using LUM/NTF frequency domain approach, Xue and Mei [4] reported
the non-linear panel flutter of composite panels considering thermal effects. As a time
domain scheme, Zhou et al. [5] and Abbas et al. [6] investigated non-linear flutter of panel
under aerodynamic heating with mutual understanding of power spectra and time
responses. Recently, Udrescu [ 7] studied the snap-through behavior of thermally buckled
and fluttering panels with multiple equilibrium points. With respect to non-linear
aerothermoelastic investigations, the use of both frequency and time domain approaches to
make up for weak points is quite reasonable to fully understand non-linear characteristics of
the panel flutter.

Unlike unstiffened panels, only a few studies on the flutter characteristics of stiffened
laminated panels exist. Liao and Sun [8] investigated the linear flutter analysis of stiffened
panels using the finite element method along with three-dimensional degenerated shell and
curved elements. Lee and Lee [9] reported the linear supersonic flutter characteristics of
stiffened laminated panels using finite elements based on the first order shear deformable
plate and Timoshenko beam theories. They discussed the effects of lamination scheme,
stiffener size, and flow angle on the flutter characteristics. Lee et al. [10] extended their
previous works to non-linear flutter analyses of stiffened composite panels subject to
thermal loads using a frequency domain technique.

In this study, as in a subsequent study of previous works [9, 10], the non-linear transient
response of fluttering stiffened panels considering thermal effect is investigated. In order to
find a critical flutter speed, linear flutter analysis of a stiffened laminated panel considering
large aero-thermal deflections is performed. Non-linear fluttering motions, such as flat and
stable motions, limit cycle oscillations, and buckled but dynamically stable and chaotic
motions of stiffened laminated panels are investigated using the implicit Newmark
integration method. Results show that the increase of the height and number of stiffeners to
reduce an aero-thermal deflection can dramatically drop the boundaries of a dynamic
stability at a certain point. Also, the non-linear characteristics, such as dynamically stable
motions with static aero-thermal deflections, limit cycle oscillations, periodic motions with
a large amplitude and chaotic motions, are observed in the time domain analysis.

2. FINITE ELEMENT EQUATIONS OF FLUTTERING STIFFENED PANELS

2.1. SKIN PLATE MODEL

The von Karman non-linear relationships between strain and displacement in FSDT are
given as follows:

e} = {e} +z{x} = {en) + {eo) +2{x}s {7} = {0z Vac) s ()
where

{Sm} = {”,x Uyl t+ U,x}T’ {89} = %{W,Zx W.Zy 2w W,y}T’
Ky ={¢s. by s, 0 3" h={w,+ ¢ wit o}l

Here, u, v, and w are the displacements in the x, y, and z direction, respectively; ¢, and ¢, are
rotation in the xz- and yz-planes respectively. The comma and subscript denote the partial
derivative with respect to the subscript.

For an anisotropic plate subjected to any temperature change AT'(x, y, z), the well-known
constitutive relationships can be obtained by integrating the stress—strain equations
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Figure 1. Schematic diagram of stiffened composite plate subject to aerodynamic and thermal loads. (a) Top
view of panel; (b) section A-A.

through the thickness of plates as

N A Bl (e N, Q,. Ags A
— o AT , {Q} _ y _ 44 45 {'))}’ (2)
M B D||x M,r Q.- Ays  Ass
where {N}, {M} and {Q} are in-plane load, moment and transverse load vectors,
respectively; the thermal in-plane load and moment vectors are given as

n

(Nyrh (M) = 3 j " 013 (1, 94T d-. )

k=1

2.2. STIFFENER MODEL

The Timoshenko beam theory is used for the modelling of anisotropic stiffeners along the
x-axis as shown in Figure 1 satisfying the compatibility conditions between skin plate and
stiffeners. The displacement fields of stiffeners are assumed as

w=u—ep,+z¢,, V"=v+z¢,, wW=w-—yo, (4)
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where the superscript b denotes the stiffener and e is the eccentricity of the stiffener defined
as e = 3(c + hy). The strain—displacement relationships can be given as follows:

(e ={en) + {ea) +{e), My =vi+2d,. ®)
where

{em} = {u,x - eqsx,x d)x + W,x]T’ {en} = 1/2{W2x OlTa {er} = {Z(l)x,x - y¢y,x}T-

Assuming that ¢, and ¢, are negligible due to the ratio between the width (or height) and
the length along x-axis, we can obtain the constitutive equations for a stiffener as follows:

o Ci € e ob
{T" } B [C: C;Z] <{v” } - {u” }AT>’ Ty = Css7, (6)

where the stiffness coefficients, C;;, are called modified reduced stiffness and the relation
between the stiffness coefficients can be referred to reference [11].

2.3. DERIVATION OF FINITE ELEMENT GOVERNING EQUATIONS

The equation of motion can be derived using Hamilton’s principle as follows:

SIT=68(U + V) — 6K

T
= J {J‘ (O'iégi —ﬁéui — pd,éli,) dVv — J T,-5u,- dS}dt
14 S

—0. (7)

The non-linear finite element equation for each element can be obtained by the introduction
of Lagrangian shape functions as follows:

Meﬁe + (Koe - Kgr + %KNle + %KNZe)ue = FﬁT + Ffpr (8)

where M, , KO,, K27, KN1,, KN2,, F27 and F2* are mass matrix, linear stiffness, thermal
geometric stiffness, first order non-linear stiffness, second order non-linear stiffness, thermal
load vector and dynamic pressure force vectors respectively. The detailed expressions can be
referred to in reference [10].

2.4. AERODYNAMIC LOAD MODEL

Based on the supersonic piston theory, the aerodynamic stiffness and damping matrices
can be derived using the virtual work done by the acrodynamic load AP as follows:

2 1 [M?=2
AP:_iq 6_w+_ —— a_w
/M2 —10x U, ,\M>—1) ot
ow ow

__pow _ ow 9
S )
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where  and g are the aerodynamic pressure parameter and damping parameter,
respectively; w is the transverse deflection of skin panel. Here, one can obtain the
aerodynamic force vector with respect to finite element nodal displacements as follows:

F2¥ = — BA,u, — gA,i,. (10)

Through the assembly procedure, the global finite element equation can be obtained as
follows:

Mii + gA,u + (KO + fA; — K*7 + JKN1 + $KN2)u = F*7. (11)

3. SOLUTION SCHEME FOR STIFFENED LAMINATED PANELS

3.1. LINEAR FLUTTER ANALYSIS CONSIDERING LARGE AERO-THERMAL DEFLECTION

In order to analyze the aerothermoelastic deformation and vibration of stiffened plates
considering large deflections, the solution of equation (11) is assumed to be the sum of
a time-dependent and a time-independent solution, u = ug + u,, where uy is the static large
deflection and wu, is the time-dependent solution with small amplitude. Substituting this
assumed displacement into equation (11), we can obtain static and dynamic coupled
equations.

(KO + ﬂAﬁ — KT + %KNl(us) + %KNZ(us))us = F47, (12)
Mii, + gA,u, + (KO + fA; — K*" + KN1(u,) + KN2(u,)u, = 0. (13)

Firstly, thermal Euler buckling analysis is performed to find the reference buckling
temperature rise using the following equation:

where Ki” is the geometric stiffness in the state of unit uniform temperature distribution;
AT, and {@} are the critical buckling temperature increase and the buckling mode shape
respectively. The buckling mode shape is properly scaled as an initial estimated deflection in
the construction of non-linear stiffness matrix in the postbuckled range.

The Newton-Raphson iteration method is used to solve the aerothermoelastic
postbuckling problem. For the ith iteration, an incremental equation can be written from
equation (12) as

(KO + BA; — K*" + KN1(uf) + KN2(u)) 4u} "' = AF' (15)

where
AF = F'T — (K0 + pA; — K" + 3KN1(u}) + JKN2(u)ui. (16)
By solving equation (15), the updated displacement vector is determined as follows:
utt =ul + Auit!? (17)
where u.* ! and Aul*! are the static and incremental displacement in the (i + 1)th iteration.
Full system equations with skew symmetric aerodynamic matrix need very large d.o.f.

and computational cost. In this study, the modal reduction is applied to find flutter speed.
The reduced flutter equation using modal approach can be obtained by

M*U + K(B,u)*U = 0, (18)
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where
M* = ¢TM o (19)

K(B, u)* = "(KO + A, — KT + KN1(u,) + KN2(u,) ®. (20)

For a simple presentation of analysis results, the following non-dimensional parameters
are introduced as
a
N @1
D D
where f* and @; are the non-dimensional dynamic pressure and frequencies, respectively;
a and ¢ are side length and thickness of skin panel, respectively; D is rigidity of panel
(D = Ec3/12(1 — v?) for isotropic material and D = E,c? for anisotropic material).

3.2. IMPLICIT NEWMARK INTEGRATION SCHEME

The spatially discrete system of equation (11) to be solved at each time ¢t may be written in
terms of the displacement vector u(t) as

q(u) = Mii + gA, it + (KO + A, — K7 + JKNI + 1KN2)u — F*7 = 0, (22)

where q(u) is the n-dimensional residual vector. In Newmark’s method, the approximate
displacement and velocity are given as

U,y =, + (1 — o)hii, + ohiiy, 4,
U, 41 :un+hi]n +(%_5)h2un +5h2ﬁn+1, (23)

where o and ¢ are the free parameters of Newmark’s method.
For the displacement u,, , ; to satisfy the equation (22) at time ¢, ; (= t,, + h), we can have
the incremental equation by applying the Newton method as follows:

0
quith = k) + 5] adii=o, 4

k

U+ 1

where, AufT1 is an incremental iterative displacement vector and the tangent iteration

matrix, dq/0u, is expressed in this non-linear system as

0q 1
A M, +eA
dul, PR

n+1

o3r+ (KO + pA, — K+ KN1(W}, 1) + KN2@) ). (29)

The updated quantities can be obtained by the corrector equation resulting from equation
(23):

K+ 1 K+l
uil=uh. g+ Ausid,

1
k1 k+1
il =ik, +— Sh2 > du, g,
S+ 1 k+1
U,+1 = n+1 + = Aun+1' (26)

oh
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For the convergence test, the norms of out-of-balance vector and displacement vector are
checked as follows:

g1l < eqlFawr —Ful, (AW < e lluiiill. (27)

4. RESULTS AND DISCUSSION

4.1. VALIDATION OF FE CODES

Firstly, the linear and non-linear transient responses of unstiffened isotropic and
laminated plates are compared with the results of Chen and Sun [12]. The isotropic and
laminated square plates with all simply supported boundary conditions are subject to
a uniform step loading, ¢,; the simply supported boundary conditions are written as

SSonx-axisu=v=w=¢,=0 and ¢,#0,
SS.on y-axisu=v=w=¢,=0 and ¢, #0. (28)

By using the symmetric characteristics, a quarter of the panel with 9-node 4 x 4 mesh is
modelled. In the Newmark’s scheme, o =1/2, 6 = 1/4 and h =0-002s are used. The
geometry and material properties of an isotropic plate are given as follows:

E =689 GPa, v = 025, p = 2:496 x 10* kg/m*,
a=238cm, ¢c =0635cm, §, =4784 Pa(0 <t < ). (29)

For the verification of composite plates, a [0/90]s laminated plate is analyzed with the
following structural parameters:

E1/E2 =25,G1, = Gy3 = 05E,, G,3 = 0-2E,,
Vi = 025, E2 = 10, p = 10,
a=10,a/c=10,a/b =1, h= At =0-1. (30)

The results in Figure 2 show the non-linear transient responses of isotropic and laminated
square plates subject to uniform transverse load. Because of geometric non-linearity, both
the maximum central deflection and the time period decrease. The present results are in
fairly good agreement with the results of Chen and Sun [12] in the linear and non-linear
analyses.

Secondly, the limit cycle oscillation of an isotropic square plate with all simply supported
boundary conditions, considering a supersonic piston aerodynamic theory, is compared
with previous results. A 6 x 6 mesh with 9-node elements is modelled and « = 1/2, § = 1/4,
and h = 0-0001 s in the Newmark’s scheme are used. The isotropic plate with v =0-3 is
subject to uniform temperature in all directions. Figure 3 shows that the present results for
AT* =00, 1-0 and 20 show a very good agreement with previous time integration results
by Dowell [1] and Zhou et al. [5] using six normal modes.

4.2. DEFINITION OF ANALYSIS MODELS

In this study, linear and non-linear characteristics of the supersonic panel flutter are
investigated using both frequency domain and time domain analyses. Figure 1 shows
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Figure 2. Transient response of square plate subject to uniform transverse load. (a) Isotropic panel: O, Chen
& Sun (linear); A, Chen & Sun (Nonlinear); , present (linear); -« ---- , present (nonlinear); (b) Composite panel:
O, Chen & Sun ([0°/90°]); ——, present ([0°/90°]).

a stiffened plate subject to thermal and aerodynamic loads. Material properties and
geometry are given as follows:

E{ =2068 GPa, E, = 182 GPa, G, = 54 GPa, G,; = 37 GPa,
Vi = 021, 0, (x 107 ¢ m/m/°C) = 6:16, ot (x 10~ ¢ m/m/°C) = 22-7,

p = 2000 kg/m?, a/b = 1-0, a/c = 75. (31)
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TasBLE 1
Effect of stiffener height on the vibration and flutter of [(0/90),]s stiffened panels with all
clamped boundary conditions

Stiffened Without stiffener With A /c =05 With h/c=1-5 With hfc =25
[(0/90),]1 s
composite | © OR[H o i ] # | & T H
plate
AT, =74:53°C AT, =77-80°C AT, =99-32°C AT, =103-89°C

First mode

Second mode

Third mode
Fourth mode
Fifth mode i
w5 =73-57
Sixth mode
s = 89-53 g = 9379 D= 10142
Flutter
modes
@,, 4496 46:35 57-81 57-87
B fuser 247 4546 4631 4645

It is well known that the stiffener must be located in the airflow direction to increase
a critical dynamic pressure. Hence, it is modelled so that every stiffener is parallel to the
airflow and attached to the skin panel with equivalent spacing. In order to enhance the
structural performance, the flutter characteristics for structural parameters, such as
height(h,) and number of stiffeners, are primarily investigated. Actually, the dynamic
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Figure 5. Limit cycle oscillation of stiffened [(0/90),]s panel. (a) One stiffener with h/c = 0-5, f* = 480; (b) one
stiffener with h/c = 1-5, p* = 490; (c) two stiffeners with h/c = 1-5, f* = 580. Selection points: ——, & = 075,
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behavior of stiffened laminated plates can be affected by the lamination type and boundary
conditions. In this study, cross-ply and quasi-isotropic laminates were analyzed with both
simply supported and clamped boundary conditions.

Free vibration and linear flutter analyses considering large deflections are performed in
the frequency domain, and non-linear fluttering behaviors beyond the linear flutter
boundaries are analyzed in the time domain. In the frequency domain analyses using modal
approach, finite elements of stiffened plates are modelled using 9-node 10 x 12 meshes. In
time domain analyses, 9-node 6 x 6 mesh is fully modelled without using the modal
approach. It is assumed that initial deflections are scaled with ¢;,,../c = 0-1 and initial
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Figure 6. Flutter boundary of [(0/90),]s stiffened composite panel subject to thermal load: —O—, panel with
3 stiffeners: (2, 1) flutter mode; —A—, panel with 2 stiffeners: (2, 3) flutter mode; ---[J---, panel with 1 stiffener: (2, 2)
flutter mode.

velocities of plates are all zero. Here, a vector, ¢4, is a buckling mode. As an incremental
time, h = 1 x 10" *and 5 x 10~ > s are used for the stiffened plates with one stiffener and two
stiffeners respectively. In the supersonic piston theory, an acrodynamic damping factor,
w/M,,, is set as 0-01. In the FFT analysis of a steady state time signal, a MATLAB FFT
function is used.

4.3. LINEAR FLUTTER CHARACTERISTICS OF STIFFENED PANELS

Linear flutter characteristics of stiffened panels with a [(0/90),]s lamination type are
investigated with the variation of the height and number of stiffeners. First, the effects of the
height of a stiffener are investigated with hy/c = 0-5, 1-5 and 2-5. A stiffener is attached to the
center of skin plates. Table 1 shows the results for the thermal buckling, free vibration and
linear flutter analyses of stiffened plates with one stiffener. As the height of a stiffener
increases, the thermal buckling temperature and natural frequencies increase. In case the
nodal line of mode shape is located in the position of a stiffener, the variation of natural
frequencies for those modes is negligible. As the height of a stiffener increases, the change of
natural frequencies for (1, 1) and (2, 1) modes is much larger than that for (1, 2) and (2, 2)
modes. In the linear flutter analysis, as the height of a stiffener increases, flutter modes shift
from (1, 1) and (2, 1) modes to (1, 2) and (2, 2) modes. In the case of hy/c = 1-5 and 2-5,
because flutter modes are (1, 2) and (2, 2) ones, the increase of a critical aerodynamic
pressure is very small. For the stiffened panel with one stiffener, the saturation of the critical
dynamic pressure is found above the hy/c = 0-75 in Figure 4.

Secondly, the effect of the stiffener height on the flutter characteristics of stiffened panels
with equivalent spacing is studied. Figure 4 shows the trend of the linear flutter boundary of
stiffened panels with increasing h,/c. Results show that if the nodal lines of flutter modes
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Figure 7. Time history of unstiffened composite panel subject to thermal load. (a) AT* = 0-0, f* = 300;
(b) AT* =12, B*=300; () AT*=30, p*=300: — ¢&=075 n=025 --- &=075 n=050
——, &=0751n=075.

coincide with the location of stiffener, the increase of the stiffener height to enhance a critical
dynamic pressure is not reasonable. The change of flutter modes with increasing h,/c is
found in Figure 4. The results of stiffened panels with two and three stiffeners show the dip
of critical dynamic pressures. For the behaviors of stiffened panels with two stiffeners, the
flutter modes shift from (a) shape to (c) shape above hy/c =1 as shown in Figure 4.
However, flutter modes change again from (c) shape to (d) shape at a certain region. In the
stiffened panels with three stiffeners, flutter modes shift from (a) shape to (e) shape with
a dramatic decrease of critical dynamic pressures. It is interesting that owing to the change
of flutter mode shape, a dramatic dip in the flutter boundary with increasing hy/c is found.
The difference between the SSSS and CCCC boundary conditions in the flutter
characteristics is shown in Figure 4. Consequently, in the design of stiffened panels without
considering flutter characteristics, an unexpected flutter can occur resulting in structural
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failure. Also, although the increase of stiffener height can suppress a static deflection, it can
abruptly drop the boundaries of a dynamic stability at a certain point.

4.4, NON-LINEAR TRANSIENT ANALYSIS OF STIFFENED PANELS

In addition to linear flutter analysis in a frequency domain, transient non-linear flutter
characteristics of stiffened panels are also investigated using a time-integration scheme. It is
well known that the limit cycle oscillation without a catastrophic failure occurs after
a critical flutter point and results in a fatigue failure of panel structures. The limit cycle
oscillation is due to geometrical non-linearity of structures. Also, chaotic oscillations are
observed in the panel subject to thermal stresses as well as a severe aerodynamic load. In
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Figure 9. Time history of composite panel with two stiffeners subject to thermal load. (a) 4T* = 0-0, * = 500;
(b) AT* = 0-5, f* = 500; (c) AT* = 3-0, f* = 500: ——, & = 075, 5y = 0-25; ———, & = 075, 5y = 0-50;— —, & = 075,
n =075.

this study, chaotic motions as well as limit cycle oscillations of stiffened panels subject to
aero-thermal loads are investigated using a non-linear time-integration scheme.

Firstly, the limit cycle oscillation of stiffened panels with typical fluttering shapes is
analyzed. Figure 5 shows limit cycle oscillations of stiffened panels without thermal stresses.
Three points on the stiffened panel are selected for the nonlinear transient history as follows:

point (a): (¢ =3/4, n = 1/4), point (b): (¢ =3/4,n =1/2), point (c): (¢ = 3/4, n = 3/4).

The non-dimensional parameters are defined as ¢ = x/a and n = y/b. Figure 5(a) shows
the limit cycle oscillation of a stiffened panel including one stiffener with hy/c = 0-5. As the
height of a stiffener increases, the typical fluttering shape is shown in Figure 5(b). As
previously explained, another fluttering shape appears from the mergence of (1, 2) and (2, 2)
modes. Figure 5(c) shows the non-linear transient response of stiffened panels with two
stiffeners. The fluttering shape shown in Figure 5(c) is due to the location of two stiffeners.
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TABLE 2
Effect of stiffener eccentricity on the vibration characteristics of [0/45/ — 45/90]s stiffened
panels with all simply supports

Without stiffener With 1 stiffener ‘With 2 stiffeners With 3 stiffeners
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Fifth mode
s =48-80 s =49'14 5= 5267 s =51-09
5 5 5 5
e -,
S
Sixth mode A
B = 6677 B ="7353 B = 6677 @ = 6810

Results show that the maximum deflection of points (a) and (b) is nearly the same with 180°
phase shift.

Next, flutter characteristics of stiffened panels subject to thermal loads is investigated. It
is well known that thermal stresses can lower the flutter stability of panels. Unlike flat
panels, static aero-thermal deflections at the flutter point can exist in the stiffened panels.
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[0/45/-45/90]s with two stiffeners
alb=1, alc=T5, tlc=1, hjc=3
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alb=1, alc=75, tlc=1, hdc=3
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Figure 10. Vibration history of stiffened panels subject to thermal loads with [0/45/ — 45/90]s lamination and
all simply supports. (a) Stiffened panel with two stiffeners. (b) stiffened panel with three stiffeners: —O—, first mode;
——, second mode; —A—, third mode; —/—, fourth mode; —O—, fifth mode; —O—, sixth mode.

This is due to the thermal moment from the eccentric effect of stiffeners. Figure 6 shows the
linear flutter boundary of stiffened panels subject to thermal loads. In this study, stiffened
panels with one, two and three stiffeners are analyzed. As the temperature of panels
increases, the critical dynamic pressure decreases. Results indicate that stiffened panels with
many stiffeners have a merit for thermal buckling and flutter.

Beyond the linear flutter boundary, non-linear fluttering characteristics such as limit
cycle, non-periodic and chaotic motions are investigated in a time domain. Figure 7 shows
the transient response of an unstiffened panel with the variation of temperature distribution.
Under a critical dynamic pressure, a stable motion is shown in Figure 7(a). But, as
the thermal stresses are induced in the panel with increasing AT*, the limit cycle
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Figure 11. Flutter boundary of stiffened panels subject to thermal loads: ——, aerothermal buckling boundary
of an unstiffened panel; -O—, unstiffened panel; —5-, stiffened panel with two stiffeners; —A—, stiffened panel with
three stiffeners.

oscillation with large amplitude and chaotic motions appears as shown in Figure 7(b) and
(c). Figure 8 shows the aerothermoclastic response of a stiffened panel with one stiffener in
a time domain. Below a critical dynamic pressure, a dynamically stable motion is also
shown in Figure 8(a). When a normalized temperature rises up to 0-5, limit cycle oscillations
with fluttering shape from the mergence of (1, 2) and (2, 2) modes are shown in Figure 8(b).
Chaotic motions also appear with increasing temperature in Figure 8(c). The results of the
transient analysis of stiffened panels with two stiffeners are shown in Figure 9.

The effect of the number of stiffeners on the vibration and flutter characteristics is also
investigated in the frequency and time domain analyses. The analysis model is given as
follows:

Common points.

Lamination: [0/45/ — 45/90]s.

Boundary conditions: all simply supported,

Geometry: a/b =1, a/c =75, t/c =1,

Three models of stiffened panels:

(a) one stiffener with hy/c = 3-0,

(b) two stiffeners with hy/c = 1-5,

(c) three stiffeners with hy/c = 1-0.

Table 2 shows the thermal buckling temperatures, natural frequencies, and mode shapes
of three stiffened panels with the same volume of stiffeners. From the results, the
fundamental frequency and thermal buckling temperature of a stiffened panel with one
stiffener is the highest. In the mode shapes of the stiffened panel with one stiffener, the (2, 1)
mode shape, which is generally a flutter mode, disappeared. Figure 10 shows the vibration
history of stiffened panels with two and three stiffeners subject to thermal loads. In the
region of AT* = 1-0, natural frequencies have the minimum value. However, the natural
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Figure 12. Fluttering phenomena of stiffened panels with two stiffeners. (6 x 6 mesh, 9 node ele.) (a) AT* = 1-0,
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Figure 12. Continued.

frequencies increase again because of geometrical non-linearity. Flutter boundaries of
stiffened panels subject to thermal loads are shown in Figure 11. The non-dimensional
temperature parameter is normalized as the thermal buckling temperature of an unstiffened
panel. The critical dynamic pressure of stiffened panels with three stiffeners is the highest.
Generally, as the temperature increases, flutter boundaries of stiffened panels decrease.
Figure 12 shows the fluttering response of stiffened panels with two stiffeners. The figure
shows results of both time and frequency domains. The dynamically stable motion with
static aero-thermal deflections is observed at AT* =1-0 and fp* = 150 as shown in
Figure 12(a). As the dynamic pressure increases, limit cycle oscillations and periodic
motions are also observed as shown in Figure 12(b) and (c).

5. CONCLUSION

In this study, linear and non-linear flutter characteristics of stiffened panels subject to
thermal loads are investigated using both frequency domain and time domain analyses. The
first order shear deformable plate and Timoshenko beam theories are used for the finite
element modelling of a skin panel and stiffeners considering von Karman non-linear
strain—displacement relationships. A supersonic piston theory is used for modelling
aerodynamic loads.

The effects of the height and number of stiffeners on thermal buckling, vibration and
flutter are studied in the frequency domain. In case the nodal line of flutter modes coincides
with the location of stiffeners, the variations of natural frequencies and flutter bounds is very
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small although the height of stiffeners increases. As the height and number of stiffeners
change, the flutter modes can be changed to another shape resulting in the dramatic
decrease of the critical dynamic pressure. Although the increase of the stiffener height can
suppress a static deflection, it can abruptly drop the boundaries of a dynamic stability at
a certain point.

Also, the non-linear behaviors, such as dynamically stable motion with static
aero-thermal deflections, limit cycle oscillations, periodic motions with large amplitude and
chaotic motions, are observed in the time domain analysis. Since non-linear
large-amplitude motions can give a fatigue failure of stiffened panels, the careful analysis of
fluttering motions for stiffened panels should precede in the stage of structural design.
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APPENDIX A: NOMENCLATURE

length of panel along x direction
length of panel along y direction
thickness of panel along z direction
height of stiffener

thickness of stiffener

eccentricity of stiffener

rigidity of panel

non-dimensional frequency

Mach number

aerodynamic pressure parameter
non-dimensional dynamic pressure

R AR

=
*
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dynamic pressure

residual vector of force balance

aerodynamic damping parameter

free parameters of Newmark’s scheme
incremental time in Newmark’s scheme
non-dimensional temperature

thermal buckling mode

vibration mode shape

convergence tolerance of displacement criteria
convergence tolerance of force criteria

stiffener

derivative with respect to x
derivative with respect to y
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