
Journal of Sound and <ibration (2001) 245(5), 771}784
doi:10.1006/jsvi.2001.3615, available online at http://www.idealibrary.com on
VIBRATION OF BEAMS WITH GENERALLY RESTRAINED
BOUNDARY CONDITIONS USING FOURIER SERIES

H. K. KIM

Department of Fuel Mechanical Design, KEPCO Nuclear Fuel Co. ¹echnical Center, Daejeon,
Korea. E-mail: hkkim@mail.knfc.co.kr

AND

M. S. KIM

Department of Mechanical Engineering, Pusan National ;niversity, Pusan, Korea

(Received 21 July 2000, and in ,nal form 28 November 2000)

This work presents a method to "nd accurate vibration frequencies of beams with
generally restrained boundary conditions using Fourier series. The suggested method is very
convenient to "nd an accurate frequency parameter for beams with not only classical
boundary conditions but also non-classical boundary conditions restrained by rotational
and translational springs. Numerical results for various degenerate cases are compared with
existing results for natural frequency obtained by conventional analysis. The results indicate
that the present method can be used very e!ectively in the design of beams with various
supporting conditions.
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1. INTRODUCTION

Considerable research has been carried out with regard to the problem of free vibration of
beams with elastical restraints. Chun [1] considered the free vibration of a Bernoulli}Euler
beam hinged at one end by a rotational spring with constant spring sti!ness and with the
other end free. Maurizi [2] solved the problem of free vibration of a uniform beam hinged at
one end by a rotational spring and subjected to the restraining action of a translational
spring at the other end by using exact expression of trigonometric and hyperbolic function.
Laura [3] obtained an approximate solution to the transverse vibrations of continuous
beams subject to an axial force and carrying concentrated masses on elastic restraints by
means of the classical Ritz method. Rao [4] derived exact frequency and normal mode
shape expressions for generally restrained Bernoulli}Euler beams with unsymmetrical
translations and rotations at either end. Abbas [5] has studied the problem of elastically
restrained Timoshenko beams and presented some results for a degenerate case of
Bernoulli}Euler beams. Rao [6] studied the free vibration and stability behavior of a simply
supported uniform beam with non-linear elastic end restraints against rotation by using the
standard "nite-element formulation. Register [7] derived a general expression for the modal
frequencies and investigated the eigenvalue for a beam with symmetric spring boundary
conditions. Recently, Kang [8] studied the e!ects of the boundary sti!ness and damping on
modal parameters by using rotational and translational springs with complex sti!ness.
Grief [9, 10] presented a component mode method based on Fourier series for vibration of
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structures by using Lagrange's equations and Lagrange multipliers. Chung [11] presented
a solution method for calculating the natural frequencies and modes of beams with any of
the classical boundary conditions and with unlimited intermediate supports by using
Fourier series in conjunction with Lagrange multipliers. Also, the applicability of Fourier
series to the dynamic analysis of beams with arbitrary boundary conditions was studied by
Wang [12].

In this study, the frequency equations for Bernoulli}Euler beams with general restraints
are derived in matrix form by using Fourier series. The matrix form frequency equations
make it very easy to solve the beams problems with generally restrained boundary
conditions as well as classical boundary conditions by assigning appropriate restraint
constants. For the purpose of illustration, several degenerate cases are considered. The
numerical results are also presented in three-dimensional plots to show the e!ects of
restraints on the natural frequencies.

2. GENERAL THEORETICAL FORMULATIONS

Consider a uniform Bernoulli}Euler beam with elastically restrained ends. The restraints
are provided by either a translational or a rotational spring, or both at its ends. The
equation of motion for free #exural vibrations of a uniform elastic beam ignoring shear
deformation and rotary inertia e!ects is

EI
L4w (x, t)

Lx4
#oA

L2w (x, t)

Lt2
"0, (1)

where w(x, t) is the lateral displacement at distance x along the length of the beam and time
t, EI the #exural rigidity of the beam, o the mass density and A the cross-sectional area of
the beam.

For any mode of vibration, the lateral displacement w(x, t) may be written in the form

w(x, t)"t (x) cosut , (2)

where t(x) is the modal displacement function and u the natural frequency. The function
t(x) may be written either as a Fourier sine series or as a cosine series. In the present study,
we consider a Fourier sine series as a mode function. The function is de"ned in two separate
regions, one for boundary points and the other for the intermediate region between the
boundary points as follows:
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Since direct di!erentiation of a Fourier sine series leads to a cosine series without the
constant term, it is not considered to be a complete set of functions. To obtain correct series
expressions for derivatives of a Fourier series, Stoke's transformation must be employed.
Stoke's transformation consists of de"ning each derivative with an independent series and
of integrating by parts the newly de"ned series to obtain the relationship between the
Fourier coe$cients.



Figure 1. An elastic Bernoulli}Euler beam with rotational and translational restraints.
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The derivatives of t(x) based on the usual de"nitions of Fourier series become
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The function can also be represented by Fourier cosine series in a similar manner.
To obtain a general expression for the #exure of beams, we consider free}free beam

having both rotational and translational springs at its ends, as shown in Figure 1.
Substitution of equations (2)}(7) into equation (1) results in the equation
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where u is the natural circular frequency of the system. Then, we can rewrite above equation
(8) as follows:
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Therefore, the coe$cient A
m

can be written in terms of tA
0
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L
, t

0
, and t
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as follows:
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Hence, the displacement function for the free vibration of a beam having no geometrical
constraints at both ends becomes
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The elastically restrained boundary conditions of the beam shown in Figure 1 are as
follows:
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in which ¹
0

and ¹
L

are translational spring constants, and R
0

and R
L

are rotational spring
constants at x"0 and ¸ respectively.

The substitution of equations (4) and (6) into equations (12)}(15) leads to the four
simultaneous homogeneous equations
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Figure 2. SS beam with rotational restraints.
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For a non-trivial solution, the determinant of the coe$cient matrix of equations (16)}(19)
must vanish, i.e.,

DS
i,j

D"0 (i, j"1, 2, 3, 4). (21)

Each element of this determinant is shown in Appendix A. From the determinant frequency,
the equation of an elastic Bernoulli}Euler beam with rotational and translational restraints
is obtained.

3. DEGENERATE CASES

Several degenerate cases are considered to show that the determinant derived in this
paper can apply to classical boundary conditions and non-classical boundary conditions
restrained by general springs.

3.1. SS BEAM WITH ROTATIONAL RESTRAINTS

For a simply supported beam with rotational springs at both ends as shown in Figure 2,
the resulting boundary conditions are
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Hence, the frequency determinant is found from equations (18) and (19) by retaining the
rows and columns associated with tA

0
and tA
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of rotational restraints. The resulting

frequency determinant is
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Figure 3. SF beam with rotational and translational springs.
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or we can get same result from equation (21) by just putting ¹M
0
PR and ¹M

L
PR instead

of equation (23).

3.2. SF BEAM WITH ROTATIONAL SPRING AT SIMPLY SUPPORTED END AND SUBJECTED TO

A TRANSLATIONAL RESTRAINT AT THE FREE END

For an SF beam with a rotational spring at the simply supported end and subjected to
a translational restraint at the free end as shown in Figure 3, the resulting boundary
conditions are
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In this case the frequency determinant is found from equations (17) and (18) by retaining the
rows and columns associated with tA

0
and tA

L
. The resulting frequency determinant is

K
s
2,1

s
2,4

s
3,1

s
3,4
K"0 (25)

or we can get the same result from equation (21) by just putting ¹M
0
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L
"0

instead of equation (25).

3.3. SF BEAM WITH ROTATIONAL SPRING AT SIMPLY SUPPORTED END AND

POINT MASS AT FREE END

For an SF beam with a rotational spring at the simply supported end and point mass at
the free end as shown in Figure 4, the resulting boundary conditions are
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In this case the frequency determinant is also found from equations (17) and (18) by
retaining the rows and columns associated with tA

0
and tA

L
similar as in the previous



Figure 4. SF beam with rotational spring and point mass.

Figure 5. CF beam with point mass and translational spring.
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example except for replacing ¹M
L

with !MM (n4 j4) in equation (17). The resulting frequency
determinant is
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Of course we can get the same result from equation (21) by just putting ¹M
0
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L
"0 and
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L
P!MM (n4 j4) instead of equation (27).

3.4. CF BEAM WITH POINT MASS AND TRANSLATIONAL SPRING RESTRAINT AT FREE END

For an CF beam with point mass and translational spring restraint at the free end as
shown in Figure 5, the boundary conditions are
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TABLE 1

¹he ,rst natural frequency parameter (b
1
) for FF beam with symmetric spring boundary

conditions (R
0
"R

L
"R, ¹

0
"¹

L
"¹, RM "R¸/EI , ¹M "¹¸3/EI)

RM

¹M 0)01 0)1 1 10 102 103 104 105 106

0)01 0)377 0)377 0)377 0)377 0)377 0)377 0)377 0)377 0)377
0)1 0)670 0)670 0)670 0)670 0)670 0)670 0)670 0)670 0)670
1 1)187 1)187 1)188 1)190 1)191 1)191 1)191 1)191 1)191

10 2)036 2)038 2)057 2)093 2)103 2)105 2)105 2)105 2)105
102 2)879 2)897 3)031 3)369 3)510 3)528 3)530 3)531 3)531
103 3)114 3)141 3)355 4)056 4)489 4)558 4)566 4)566 4)567
104 3)142 3)169 3)395 4)158 4)656 4)739 4)747 4)748 4)748
105 3)144 3)172 3)399 4)169 4)674 4)757 4)766 4)767 4)767
106 3)145 3)173 3)400 4)170 4)676 4)759 4)768 4)769 4)769

TABLE 2

¹he second natural frequency parameter (b
2
) for FF beam with symmetric spring boundary

conditions (R
0
"R

L
"R, ¹

0
"¹

L
"¹, RM "R¸/EI , ¹M "¹¸3/EI)

RM

¹M 0)01 0)1 1 10 102 103 104 105 106

0)01 0)744 1)253 2)111 2)909 3)136 3)164 3)167 3)167 3)167
0)1 0)963 1)317 2)125 2)913 3)139 3)167 3)170 3)170 3)170
1 1)589 1)706 2)247 2)954 3)168 3)195 3)198 3)198 3)198

10 2)785 2)804 2)950 3)290 3)424 3)442 3)444 3)444 3)444
102 4)681 4)681 4)681 4)681 4)681 4)681 4)681 4)681 4)681
103 6)039 6)049 6)137 6)540 6)892 6)956 6)963 6)964 6)964
104 6)260 6)274 6)398 7)026 7)671 7)801 7)815 7)817 7)817
105 6)282 6)296 6)425 7)078 7)755 7)891 7)906 7)908 7)908
106 6)285 6)299 6)427 7)084 7)763 7)900 7)915 7)917 7)917

TABLE 3

¹he third natural frequency parameter (b
3
) for FF beam with symmetric spring boundary

conditions (R
0
"R

L
"R, ¹

0
"¹

L
"¹, RM "R¸/EI , ¹M "¹¸3/EI)

RM

¹M 0)01 0)1 1 10 102 103 104 105 106

0)01 4)774 4)809 5)089 5)885 6)273 6)328 6)334 6)335 6)335
0)1 4)775 4)811 5)090 5)885 6)274 6)329 6)334 6)335 6)335
1 4)793 4)828 5)103 5)892 6)278 6)332 6)338 6)338 6)339

10 4)960 4)990 5)232 5)953 6)316 6)368 6)374 6)374 6)374
102 6)130 6)139 6)216 6)508 6)694 6)723 6)726 6)726 6)726
103 8)583 8)585 8)603 8)692 8)781 8)799 8)801 8)801 8)801
104 9)341 9)350 9)430 9)921 10)612 10)780 10)799 10)801 10)801
105 9)417 9)427 9)515 10)066 10)849 11)038 11)060 11)062 11)062
106 9)425 9)434 9)524 10)080 10)872 11)063 11)085 11)087 11)087
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Figure 6. Plot of the "rst natural frequency parameter (b
1
) for FF beam with symmetric spring boundary

conditions (R
0
"R

L
"R, ¹

0
"¹

L
"¹, RM "R¸/EI, ¹M "¹¸3/EI).

Figure 7. Plot of the second natural frequency parameter (b
2
) for FF beam with symmetric spring boundary

conditions (R
0
"R

L
"R, ¹

0
"¹

L
"¹, RM "R¸/EI, ¹M "¹¸3/EI).
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The resulting frequency determinant is found from equations (4) and (17) by deleting t
0
and

tA
L

and replacing ¹M
L

with ¹M
L
!MM (n4 j4). The resulting frequency determinant is
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Figure 8. Plot of the third natural frequency parameter (b
3
) for FF beam with symmetric spring boundary

conditions (R
0
"R

L
"R, ¹

0
"¹

L
"¹, RM "R¸/EI, ¹M "¹¸3/EI).

TABLE 4

¹he ,rst natural frequency parameter (b
1
) for CF beam with translational spring and point

mass at free end (¹M
L
"¹

L
¸3/EI , MM "M/oA¸)

Point mass (MM )

¹M
L

0 0)01 0)1 1 10 102 103 104 105

0 1)8766 1)8583 1)7239 1)2484 0)7360 0)4161 0)2341 0)1316 0)0740
0)01 1)8781 1)8598 1)7253 1)2495 0)7366 0)4164 0)2343 0)1318 0)0741
0)1 1)8916 1)8731 1)7379 1)2587 0)7421 0)4195 0)2360 0)1327 0)0746
1 2)0115 1)9922 1)8500 1)3413 0)7908 0)4471 0)2515 0)1415 0)0795

10 2)6403 2)6192 2)4550 1)7992 1)0617 0)6002 0)3377 0)1899 0)1068
102 3)6418 3)6370 3)5920 2)9847 1)7809 1)0068 0)5665 0)3186 0)1791
103 3)8993 3)8992 3)8986 3)8907 3)1397 1)7785 1)0007 0)5628 0)3165
104 3)9253 3)9253 3)9253 3)9252 3)9244 3)1600 1)7783 1)0001 0)5624
105 3)9278 3)9278 3)9278 3)9278 3)9278 3)9278 3)1620 1)7783 1)0000
106 3)9281 3)9281 3)9281 3)9281 3)9281 3)9281 3)9281 3)1623 1)7783
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4. NUMERICAL ANALYSIS

Numerical investigations have been performed to con"rm the validity of the present
formulation for a uniform Bernoulli}Euler beam with elastically restrained ends as well as
typical classical boundary conditions.

The frequency determinants derived through the present formulation involve an in"nite
series of algebraic terms. Therefore, the accuracy of the solution depends on the number of
terms in the series. The sensitivity of the number of terms was investigated, but are not
presented in this paper. For most cases, 50 terms were enough to get desirable accuracy. The
natural frequencies are obtained by monitoring values of the frequency parameter b

i
until

the determinant goes to zero.
The eigenvalues for the FF (free}free) beam with symmetrical spring boundary conditions

as shown in Figure 1 are provided in Tables 1, 2 and 3. Figures 6, 7, and 8 are the



TABLE 5

¹he second natural frequency parameter (b
2
) for CF beam with translational spring and point

mass at free end (¹M
L
"¹

L
¸3/EI , MM "M/oA¸)

Point mass (MM )

¹M
L

0 0)01 0)1 1 10 102 103 104 105

0 4)6978 4)6532 4)4019 4)0327 3)9400 3)9293 3)9283 3)9281 3)9281
0)01 4)6979 4)6533 4)4019 4)0327 3)9400 3)9293 3)9283 3)9281 3)9281
0)1 4)6988 4)6541 4)4024 4)0327 3)9400 3)9293 3)9283 3)9281 3)9281
1 4)7075 4)6622 4)4068 4)0331 3)9400 3)9293 3)9283 3)9281 3)9281

10 4)7977 4)7463 4)4537 4)0362 3)9400 3)9293 3)9283 3)9281 3)9281
102 5)6201 5)5513 5)0541 4)0803 3)9405 3)9293 3)9283 3)9281 3)9281
103 6)8787 6)8741 6)8218 5)5014 3)9481 3)9294 3)9283 3)9281 3)9281
104 7)0532 7)0532 7)0527 7)0473 5)6095 3)9302 3)9283 3)9281 3)9281
105 7)0693 7)0693 7)0693 7)0693 7)0687 5)6220 3)9283 3)9281 3)9281
106 7)0709 7)0709 7)0709 7)0709 7)0709 7)0709 5)6233 3)9282 3)9281

TABLE 6

¹he third natural frequency parameter (b
3
) for CF beam with translational spring and point

mass at free end (¹M
L
"¹

L
¸3/EI , MM "M/oA¸)

Point mass (MM )

¹M
L

0 0)01 0)1 1 10 102 103 104 105

0 7.8601 7.7880 7.4544 7.1367 7.0781 7.0718 7.0712 7.0711 7.0711
0.01 7.8601 7.7880 7.4544 7.1367 7.0781 7.0718 7.0712 7.0711 7.0711
0.1 7.8609 7.7882 7.4545 7.1367 7.0781 7.0718 7.0712 7.0711 7.0711
1 7.8627 7.7898 7.4551 7.1367 7.0781 7.0718 7.0712 7.0711 7.0711

10 7.8816 7.8064 7.4611 7.1369 7.0781 7.0718 7.0712 7.0711 7.0711
102 8.0909 7.9920 7.5294 7.1391 7.0782 7.0718 7.0712 7.0711 7.0711
103 9.5572 9.4983 8.8105 7.1718 7.0782 7.0718 7.0712 7.0711 7.0711
104 10.1580 10.1574 10.1512 9.6803 7.0827 7.0718 7.0712 7.0711 7.0711
105 10.2079 10.2079 10.2078 10.2073 9.9430 7.0723 7.0712 7.0711 7.0711
106 10.2127 10.2127 10.2127 10.2127 10.2127 9.9932 7.0712 7.0711 7.0711
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three-dimensional plots of Tables 1, 2 and 3 respectively. These values were obtained from
equation (21) using the "rst 50 terms of the in"nite series. The present results obtained with
he "rst 50 terms and those of reference [7] show quite a good agreement. However, if we
compare these results in more detail, we "nd that the present results with the "rst 50 terms
are slightly higher than those of reference [7] with an accuracy of 0}0)88% deviation. From
an engineering point of view, the accuracy will be considered su$cient. If we need a more
accurate result, however, it will be easily achieved by considering more terms of the series.

The eigenvalues for the CF (clamped-free) beam with point mass and translational spring
boundary conditions as shown in Figure 5 are provided in Tables 4, 5 and 6. Figures 9, 10
and 11 are the three-dimensional plots of Tables 4, 5 and 6 respectively. These values were
obtained from equation (21) using the "rst 500 terms of the in"nite series. ¹M

0
"1)0E6,

RM
0
"1)0E6 were assigned to simulate "xed condition at one end. All of these calculations

were performed with MATHEMATICA.



Figure 9. Plot of the "rst natural frequency parameter (b
1
) for CF beam with translational spring and point

mass at free end (¹M
L
, MM ).

Figure 10. Plot of the second natural frequency parameter (b
2
) for CF beam with translational spring and point

mass at free end (¹M
L
, MM ).
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Besides the cases whose results have been presented in this paper, the various degenerate
cases have been investigated and showed good agreement with the previous results shown
in references [12}14], although not presented here.

5. CONCLUSIONS

The frequency expressions for Bernoulli-Euler beams with generally restrained boundary
conditions have been presented by using Fourier series as a mode function. The expressions
are quite general since identical Fourier series expressions may be used for many di!erent
physical problems like beams, columns, strings, plates and shells with both classical and
non-classical boundary conditions. Several degenerate cases are investigated to con"rm
that the expressions are valid to solve beam problems with a variety of boundary



Figure 11. Plot of the third natural frequency parameter (b
3
) for CF beam with translational spring and point

mass at free end (¹M
L
, MM ).
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conditions. The three-dimensional plots of natural frequency parameters for a beam with
both translational and rotational restraints at its ends have been presented to graphically
illustrate how the parameters change with the spring constants. And the numerical results
and its three-dimensional plots for a CF beam with translational spring and point mass at
its free end have also been presented to illustrate the change of frequency parameters with
varying conditions.

On the basis of these results, the frequency expressions derived in the present paper can
be used in the design of beams with various supporting conditions.
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