Journal of Sound and Vibration (2001) 245(5), 771-784 \
doi:10.1006/jsvi.2001.3615, available online at http://www.idealibrary.com on | DE %I,i“

®

VIBRATION OF BEAMS WITH GENERALLY RESTRAINED
BOUNDARY CONDITIONS USING FOURIER SERIES

H. K. Kim

Department of Fuel Mechanical Design, KEPCO Nuclear Fuel Co. Technical Center, Daejeon,
Korea. E-mail: hkkim@mail.knfc.co.kr

AND

M. S. Kim

Department of Mechanical Engineering, Pusan National University, Pusan, Korea
(Received 21 July 2000, and in final form 28 November 2000)

This work presents a method to find accurate vibration frequencies of beams with
generally restrained boundary conditions using Fourier series. The suggested method is very
convenient to find an accurate frequency parameter for beams with not only classical
boundary conditions but also non-classical boundary conditions restrained by rotational
and translational springs. Numerical results for various degenerate cases are compared with
existing results for natural frequency obtained by conventional analysis. The results indicate
that the present method can be used very effectively in the design of beams with various
supporting conditions.
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1. INTRODUCTION

Considerable research has been carried out with regard to the problem of free vibration of
beams with elastical restraints. Chun [ 1] considered the free vibration of a Bernoulli-Euler
beam hinged at one end by a rotational spring with constant spring stiffness and with the
other end free. Maurizi [ 2] solved the problem of free vibration of a uniform beam hinged at
one end by a rotational spring and subjected to the restraining action of a translational
spring at the other end by using exact expression of trigonometric and hyperbolic function.
Laura [3] obtained an approximate solution to the transverse vibrations of continuous
beams subject to an axial force and carrying concentrated masses on elastic restraints by
means of the classical Ritz method. Rao [4] derived exact frequency and normal mode
shape expressions for generally restrained Bernoulli-Euler beams with unsymmetrical
translations and rotations at either end. Abbas [5] has studied the problem of elastically
restrained Timoshenko beams and presented some results for a degenerate case of
Bernoulli-Euler beams. Rao [6] studied the free vibration and stability behavior of a simply
supported uniform beam with non-linear elastic end restraints against rotation by using the
standard finite-element formulation. Register [ 7] derived a general expression for the modal
frequencies and investigated the eigenvalue for a beam with symmetric spring boundary
conditions. Recently, Kang [8] studied the effects of the boundary stiffness and damping on
modal parameters by using rotational and translational springs with complex stiffness.
Grief [9, 10] presented a component mode method based on Fourier series for vibration of
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structures by using Lagrange’s equations and Lagrange multipliers. Chung [11] presented
a solution method for calculating the natural frequencies and modes of beams with any of
the classical boundary conditions and with unlimited intermediate supports by using
Fourier series in conjunction with Lagrange multipliers. Also, the applicability of Fourier
series to the dynamic analysis of beams with arbitrary boundary conditions was studied by
Wang [12].

In this study, the frequency equations for Bernoulli-Euler beams with general restraints
are derived in matrix form by using Fourier series. The matrix form frequency equations
make it very easy to solve the beams problems with generally restrained boundary
conditions as well as classical boundary conditions by assigning appropriate restraint
constants. For the purpose of illustration, several degenerate cases are considered. The
numerical results are also presented in three-dimensional plots to show the effects of
restraints on the natural frequencies.

2. GENERAL THEORETICAL FORMULATIONS

Consider a uniform Bernoulli-Euler beam with elastically restrained ends. The restraints
are provided by either a translational or a rotational spring, or both at its ends. The
equation of motion for free flexural vibrations of a uniform elastic beam ignoring shear
deformation and rotary inertia effects is

*w(x, 1) *w(x, 1)
El——— A———=0, 1
P Te M
where w(x, ) is the lateral displacement at distance x along the length of the beam and time
t, EI the flexural rigidity of the beam, p the mass density and A4 the cross-sectional area of
the beam.
For any mode of vibration, the lateral displacement w(x, t) may be written in the form

w(x, t) = y(x)cos wt, )

where (x) is the modal displacement function and w the natural frequency. The function
Y(x) may be written either as a Fourier sine series or as a cosine series. In the present study,
we consider a Fourier sine series as a mode function. The function is defined in two separate
regions, one for boundary points and the other for the intermediate region between the
boundary points as follows:

v =y e

. om
Y Amsmix, 0<x<L.
m=1 L

)

Since direct differentiation of a Fourier sine series leads to a cosine series without the
constant term, it is not considered to be a complete set of functions. To obtain correct series
expressions for derivatives of a Fourier series, Stoke’s transformation must be employed.
Stoke’s transformation consists of defining each derivative with an independent series and
of integrating by parts the newly defined series to obtain the relationship between the
Fourier coefficients.
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Figure 1. An elastic Bernoulli-Euler beam with rotational and translational restraints.

The derivatives of /(x) based on the usual definitions of Fourier series become

d L — VYo |2
l//(x)_l// lﬁ + Z[Z{lpL(_

— Yo} + ocmAm} coso,x, 0<x<L, 4

dx L

o, = mnu/L,

d;li( x) 21 |:L W= D" — Yo} + :|sin omx, 0<x<L,

Y'(0) = o, Y'(L)=yrL, )
d3 N // 0
dli(;C) = + z:: |: (_1 W < {lpL _1 lpO} + Oin m>:|

xcoso,,x, 0<x<L (6)

and
d*(x)

ot 21 |: Wi(—= 0" — o} — om <2lﬁL(—1)m—l//0}+ocmAm>]xsinocmx,

0<x<L. (7)

The function can also be represented by Fourier cosine series in a similar manner.

To obtain a general expression for the flexure of beams, we consider free—free beam
having both rotational and translational springs at its ends, as shown in Figure 1.
Substitution of equations (2)-(7) into equation (1) results in the equation

5 | =0t — Ehan {21 = )~ i F0n( 17— o)+t fsin |

xcoswt =0, (8)

where w is the natural circular frequency of the system. Then, we can rewrite above equation
(8) as follows:

i:: [(Eloc w2> A, + jAEi {on (W6 — (— V™7 + o (— )" — 1/10)}] sin o, cos wt = 0.
)



774 H. K. KIM AND M. S. KIM

Therefore, the coefficient A4,, can be written in terms of g, Y7, Y, and Y, as follows:

0 2

w" " m, [ 1 m EI

A 3L72 {( o —(=1)"1) — arzn( Yo —(—=1) lpL)}, Wy = pjai' (10)
Hence, the displacement function for the free vibration of a beam having no geometrical

constraints at both ends becomes

e 605

7(02 {6 —(= D™1) — oo —(=1)"Y)} sina,xcos wt. (1)

m=1 m n

The elastically restrained boundary conditions of the beam shown in Figure 1 are as
follows:

63 a N2
Towo = — El 5 R, % — EI ‘(;xvf at x = 0, (12, 13)
63 ) N2
TLWL—EIaV;, RL%:—EI% atx =L (14, 15)

in which T, and T, are translational spring constants, and R, and R, are rotational spring
constants at x = 0 and L respectively.

The substitution of equations (4) and (6) into equations (12)-(15) leads to the four
simultaneous homogeneous equations

o0 /14 (_ 1)"%4 , _ o m2)v4- l//
—<1+2mzlm> < +22 >¢L+<To+znzzm>L_§

», m=17"

(w3 G Yo, (16)
< +22(—1*0) g_<1+2m§:114’14m4> ( i (= 1y 21‘*)%3
i <TL o i A’”_’}ﬂ)f _o, (17)
<1 2R° i e m’ 4> Vo + <2n—1$2°§1 (A_ bm >xp <E0 + 2R, mil 7 i4m4>%
- <E0 2R, mil %)f_ _o, (18)

2R —1 2R 2 _ _ 2 (=1t
(2 5 S v (1-22 8 i (Revam, 3 )Y

+ (EL + 2R, i # >"’L 0, (19)
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Figure 2. SS beam with rotational restraints.

where

_ T, - T,J* - RL - R,L
= , =, = —, R =
° T EI L™ EI Ro EI

L — EI s
wz:g m4TC4 ~4:,0AL4602 ﬂ4
"opA\ L* ) n*EIl n*

(20)

For a non-trivial solution, the determinant of the coefficient matrix of equations (16)—(19)
must vanish, i.e.,

[S:;;l=0 (i,j=1,2,3,4). (21)

Each element of this determinant is shown in Appendix A. From the determinant frequency,
the equation of an elastic Bernoulli-Euler beam with rotational and translational restraints
is obtained.

3. DEGENERATE CASES

Several degenerate cases are considered to show that the determinant derived in this
paper can apply to classical boundary conditions and non-classical boundary conditions
restrained by general springs.

3.1. SS BEAM WITH ROTATIONAL RESTRAINTS

For a simply supported beam with rotational springs at both ends as shown in Figure 2,
the resulting boundary conditions are

oo
lpo O, 0 ox 6)(:2 at x 0,
o oy (22)
lpL =0, R, 76x =—EI sz at x = L.

Hence, the frequency determinant is found from equations (18) and (19) by retaining the
rows and columns associated with g and 7 of rotational restraints. The resulting
frequency determinant is

=0 (23)
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Figure 3. SF beam with rotational and translational springs.

or we can get same result from equation (21) by just putting To — oo and T; — oo instead
of equation (23).

3.2. SF BEAM WITH ROTATIONAL SPRING AT SIMPLY SUPPORTED END AND SUBJECTED TO
A TRANSLATIONAL RESTRAINT AT THE FREE END

For an SF beam with a rotational spring at the simply supported end and subjected to
a translational restraint at the free end as shown in Figure 3, the resulting boundary
conditions are

oy oY
Yo =0, 07y e at x =0,
) s (24)
0 0
6—):/2/20, TLlpL:EIT):g at x = L.

In this case the frequency determinant is found from equations (17) and (18) by retaining the
rows and columns associated with {; and 7. The resulting frequency determinant is

S2,1 S2.4

=0 (25)

$3,1 834

or we can get the same result from equation (21) by just putting Ty — o0 and R, =0
instead of equation (25).

3.3. SF BEAM WITH ROTATIONAL SPRING AT SIMPLY SUPPORTED END AND
POINT MASS AT FREE END

For an SF beam with a rotational spring at the simply supported end and point mass at
the free end as shown in Figure 4, the resulting boundary conditions are

o 02y
l,b() - 0’ RO ax = EI 76)(:2 at x = 0,
>y 0%y >y 29
0
Voo, MY _El tx=L
oz o2 axs B

In this case the frequency determinant is also found from equations (17) and (18) by
retaining the rows and columns associated with ¥y and 7 similar as in the previous
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Figure 5. CF beam with point mass and translational spring.
example except for replacing T, with — M(n* A*) in equation (17). The resulting frequency

determinant is

< Loy )m}> <—M(n4z4)+2n2 y ij””:)

S A —m =

2RO m? _ _ 2 (=1t
<1 Z }4 4) _<R0+2R0 Z Fra——

m=1

=0, (27

where

]\7I—M
=

(28)

Of course we can get the same result from equation (21) by just putting To— o0, R, =0and
T. — — M(n* J*) instead of equation (27).

3.4. CF BEAM WITH POINT MASS AND TRANSLATIONAL SPRING RESTRAINT AT FREE END

For an CF beam with point mass and translational spring restraint at the free end as
shown in Figure 5, the boundary conditions are

0
vo=0. Y _0 atx=o
0x
2 2 3 (29)
0 F 0
Tx‘f:o, T, — Mfalf—mfa ‘/; at x = L.
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TABLE 1

The first natural frequency parameter (B) for FF beam with symmetric spring boundary
conditions (Ry = R, = R, Ty =T, = T, R = RL/EI, T = TL3/EI)

R
T 0-01 01 1 10 102 103 10* 103 10°
0-01 0-377 0377 0377 0377 0377 0377 0377 0377 0377
01 0-670 0-670 0-670 0-670 0-670 0670 0-670 0-670 0-670
1 1-187 1-187 1-188 1-190 1-191 1-191 1-191 1-191 1-191
10 2:036 2-:038 2:057 2:093 2-103 2-105 2-105 2:105 2-105
102 2-879 2-:897  3-031 3369 3510 3528 3530 3531 3-531
103 3114 3141 3355 4056 4489 4558 4566 4566 4567
10* 3142 3169 3395 4158 4656 4739 4747 4748 4748
10° 3-144 3172 3-399 4-169 4-674 4757 4-766 4767 4767
106 3-145 3173 3400 4170 4676 4759 4768 4769 4769
TABLE 2

The second natural frequency parameter (f8,) for FF beam with symmetric spring boundary
conditions (Ry = R, = R, Ty = T, = T, R = RL/EI, T = TL3/EI)

R
T 0-01 0-1 1 10 102 10° 10* 103 10°
0-01 0-744 1253 2111 2909 3136 3164 3167 3167  3-167
01 0-963 1317 21125 2913 3139 3167 3170 3170  3-170
1 1-589 1-706 2247 2954 3168 3195 3198 3198  3-198
10 2785 2:804 2950 3290 3424 3442 3444 3444 3444
10? 4-681 4681 4681 4681 4681 4681 4681 4681 4681
103 6-039 6:049 6137 6540 6892 6956 6963 6964 6964
10* 6-260 6274 6398 7026 7671 7801 7-815 7817 1817
103 6-282 6296 6425 7078 7755 7891 7906 7908 7908
10° 6-285 6299 6427 7084 7763 7900 7915 7917 7917

TABLE 3

The third natural frequency parameter (f3) for FF beam with symmetric spring boundary
conditions (Ry =R, =R, Ty =T, = T,R = RL/EI, T = TL*/EI)

R

T 0-01 0-1 1 10 102 103 10* 10° 10°
0-01 4774 4809 5089 5885 6273 6328 6334 6335 6335
0-1 4775 4-811 5090 5885 6274 6329 6334 6335 6335
1 4793 4828 5103 5892 6278 6332 6338 6338 6339
10 4-960 4990 5232 5953 6316 6368 6374 6374 6374
10% 6:130 6139 6216 6508 6694 6723 6726 6726 6726
10° 8:583 8585 8603 8692 8781 8799 8801 8-801 8-:801
10* 9-341 9-350 9430 9921 10612 10780 10:799 10-801  10-801
10° 9-417 9-427 9515 10066 10-849 11-038 11-060 11062  11-062

106 9-425 9434 9524 10080 10-872 11-063 11-085 11-087  11-087
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Figure 6. Plot of the first natural frequency parameter ($,) for FF beam with symmetric spring boundary
conditions (Ry = R, = R, Ty = T, = T, R = RL/EI, T = TL3/EI).
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Figure 7. Plot of the second natural frequency parameter (f5,) for FF beam with symmetric spring boundary
conditions (Ry = R, = R, Ty = T, = T, R = RL/EI, T = TL*/EI).

The resulting frequency determinant is found from equations (4) and (17) by deleting i, and
V7 and replacing T, with T; — M(z* /*). The resulting frequency determinant is

0 (—1)”%4 _ - 5 © mzﬂﬁ
<1 —|—2m§1 pEg— T, — M(n*2*) + 2n mz::1 pEa—
(5 75)

. =0 (30)
= <1_|_2 Z (—l)i>

7.522/14_},”4 m=1/14_m4

m=1

or we can get the same results from equation (21) by putting T, — o0, Ry — o0, Ry, = 0 and
Ty = (T,L3/EI) — M(z* 1%,
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Figure 8. Plot of the third natural frequency parameter (f3) for FF beam with symmetric spring boundary
conditions (Ry =R, =R, To =T, =T,R = RL/EI, T = TL3/EI).

TaBLE 4

The first natural frequency parameter (B,) for CF beam with translational spring and point
mass at free end (T, = T, L*/EI, M = M/pAL)

Point mass (M)

T, 0 001 01 1 10 102 103 10* 103
0 1-8766  1-8583 1-7239 1-2484 07360 04161 02341 01316 00740
0-01 18781  1-8598 17253 12495 07366 04164 02343 01318 00741
01 1-8916  1-8731 17379 12587 07421 04195 02360 01327 0-0746
1 20115 1:9922 18500 1-3413 07908 0-4471 02515 0-1415 0-0795
10 2:6403  2:6192 24550 17992 10617 0-6002 03377 0-1899 0-1068
102 36418 36370 35920 29847 17809 1-0068 0-5665 0-3186 0-1791
10° 3-8993  3-8992 3:8986 38907 31397 1-7785 1-0007 0-5628 0-3165
10* 39253 39253 39253 39252 39244 31600 1-7783 10001 0-5624
103 39278 39278 39278 39278 39278 3-9278 3-1620 1:7783  1-0000
10° 39281 39281 39281 39281 39281 3-9281 39281 3-1623 17783

4. NUMERICAL ANALYSIS

Numerical investigations have been performed to confirm the validity of the present
formulation for a uniform Bernoulli-Euler beam with elastically restrained ends as well as
typical classical boundary conditions.

The frequency determinants derived through the present formulation involve an infinite
series of algebraic terms. Therefore, the accuracy of the solution depends on the number of
terms in the series. The sensitivity of the number of terms was investigated, but are not
presented in this paper. For most cases, 50 terms were enough to get desirable accuracy. The
natural frequencies are obtained by monitoring values of the frequency parameter f3; until
the determinant goes to zero.

The eigenvalues for the FF (free-free) beam with symmetrical spring boundary conditions
as shown in Figure 1 are provided in Tables 1, 2 and 3. Figures 6, 7, and 8 are the
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TABLE 5

The second natural frequency parameter (B,) for CF beam with translational spring and point
mass at free end (T, = T, L?>/EI, M = M/pAL)

Point mass (M)

T, 0 0-01 01 1 10 10? 103 104 10°
0 4-6978 46532 44019 40327 39400 3-9293 39283 39281 3-9281
0-01 4-6979 4-6533 44019 4-0327 39400 39293 39283 39281 39281
0-1 4-6988 4-6541 44024 40327 39400 3-9293 3-9283 39281 3-9281
1 47075 4-6622 44068 4-0331 39400 39293 39283 39281 39281

10 47977 47463 44537 40362 39400 3-9293 3:9283 39281 3-9281

102 5-6201 55513 50541 40803 39405 39293 39283 39281 3:9281

103 6-8787 6:8741 6:8218 55014 39481 3:9294 39283 39281 3-9281

10* 7-0532 7-0532  7-0527 70473 56095 39302 39283 39281 39281

10° 7-0693 70693 70693 70693 7-0687 56220 39283 3-9281 3-9281

108 7-0709 7-0709  7-0709 7-0709 7-0709 7-0709 56233 39282 39281

TABLE 6

The third natural frequency parameter (B3) for CF beam with translational spring and point
mass at free end (T, = T L*/EI, M = M/pAL)

Point mass (M)

Ty, 0 0-01 0-1 1 10 102 103 10* 103
0 7.8601 7.7880 7.4544 71367 7.0781 7.0718 7.0712 7.0711 7.0711
0.01 7.8601 7.7880 7.4544 71367 7.0781 7.0718 7.0712 7.0711 7.0711
0.1 7.8609 7.7882  7.4545 71367 7.0781 7.0718 7.0712 7.0711 7.0711
1 7.8627 7.7898  7.4551 71367 7.0781 7.0718 7.0712 7.0711 7.0711
10 7.8816 7.8064 74611 7.1369 7.0781 7.0718 7.0712 7.0711 7.0711
10% 8.0909 7.9920 7.5294 7.1391 7.0782 7.0718 7.0712 7.0711 7.0711
103 9.5572 9.4983 8.8105 7.1718 7.0782 7.0718 7.0712 7.0711 7.0711
10* 10.1580 10.1574 10.1512 9.6803 7.0827 7.0718 7.0712 7.0711 7.0711
10° 102079 10.2079 10.2078 10.2073 9.9430 7.0723 7.0712 7.0711 7.0711
10° 102127  10.2127 10.2127 102127 10.2127 9.9932 7.0712 7.0711 7.0711

three-dimensional plots of Tables 1, 2 and 3 respectively. These values were obtained from
equation (21) using the first 50 terms of the infinite series. The present results obtained with
he first 50 terms and those of reference [7] show quite a good agreement. However, if we
compare these results in more detail, we find that the present results with the first 50 terms
are slightly higher than those of reference [ 7] with an accuracy of 0-0-88% deviation. From
an engineering point of view, the accuracy will be considered sufficient. If we need a more
accurate result, however, it will be easily achieved by considering more terms of the series.

The eigenvalues for the CF (clamped-free) beam with point mass and translational spring
boundary conditions as shown in Figure 5 are provided in Tables 4, 5 and 6. Figures 9, 10
and 11 are the three-dimensional plots of Tables 4, 5 and 6 respectively. These values were
obtained from equation (21) using the first 500 terms of the infinite series. T = 1-0E6,
R, = 1-0E6 were assigned to simulate fixed condition at one end. All of these calculations
were performed with MATHEMATICA.
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Figure 9. Plot of the first natural frequency parameter (f;) for CF beam with translational spring and point
mass at free end (T, M).

7
p
5
1000000 >~ 100000
1000 10000
0
. 10

Translational 1-0 Point mass

spn’ng(i) (M)

Figure 10. Plot of the second natural frequency parameter (f3,) for CF beam with translational spring and point
mass at free end (T, M).

Besides the cases whose results have been presented in this paper, the various degenerate
cases have been investigated and showed good agreement with the previous results shown
in references [12-14], although not presented here.

5. CONCLUSIONS

The frequency expressions for Bernoulli-Euler beams with generally restrained boundary
conditions have been presented by using Fourier series as a mode function. The expressions
are quite general since identical Fourier series expressions may be used for many different
physical problems like beams, columns, strings, plates and shells with both classical and
non-classical boundary conditions. Several degenerate cases are investigated to confirm
that the expressions are valid to solve beam problems with a variety of boundary
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Figure 11. Plot of the third natural frequency parameter (f83) for CF beam with translational spring and point
mass at free end (T, M).

conditions. The three-dimensional plots of natural frequency parameters for a beam with
both translational and rotational restraints at its ends have been presented to graphically
illustrate how the parameters change with the spring constants. And the numerical results
and its three-dimensional plots for a CF beam with translational spring and point mass at
its free end have also been presented to illustrate the change of frequency parameters with
varying conditions.

On the basis of these results, the frequency expressions derived in the present paper can

be used in the design of beams with various supporting conditions.

10.
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