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This paper presents a computer model for simulating dynamic responses of an automotive
fuel rail system. Part I of this paper deals with the mathematical modelling of an individual
injector. To reduce the complexity of this problem, the injector is discretized into three
segments with a "lter at the top, a coil spring and needle assembly in the middle, and four
ori"ces at the bottom. The #uid #owing through these segments is coupled and described by
a one-dimensional unsteady Bernoulli's equation. Loss factors K

F
and K

O
are used to

account for the losses of kinetic energy as #uid enters the injector through the "lter at the top
and discharges through ori"ces at the bottom respectively. The value of K

F
is assumed

constant and determined experimentally. The value of K
O
, however, varies because the #uid

kinetic energy changes with the passage cross-sectional area between the needle and the
valve seat. In this investigation, K

O
is correlated to the needle motion, which is governed by

a second order ordinary di!erential equation. The forces exerted on the needle include the
magnetic and coil spring forces, which control the opening and closing of the injector. The
pressure #uctuations inside the injector caused by the opening and closing of the needle are
described by a damped wave equation. The dynamic responses of the injector are then
obtained by solving a set of nine equations simultaneously. The calculated pressure
#uctuations inside an injector are compared with the measured data under various pulse
widths and speeds. Good agreement is obtained in each case.
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1. INTRODUCTION

The ability to control the quantity and timing of fuel delivered by an electronic fuel injection
system has provided automotive engineers with a means to improve the performance
and e$ciency of present-day automobiles. However, as demands on fuel economy,
emissions, and vehicle performance increase, more improvements on the electronic
fuel injection system are being pursued. The vibrations of a fuel injection system caused
by periodic opening and closing of injectors have long been identi"ed as one of
the most important noise sources of an automobile [1]. Test data have shown that
these vibrations may lead to metering errors, pulse-to-pulse variations, and deterioration
in the quality of spray atomization. In some cases, they may even produce resonance,
which contributes to or results in fuel injection systems failure and engine damage.

An essential component in the fuel injection systems is the fuel injector. In the past
decade, interesting improvements in injector designs have been proposed [2, 3]. Recently,
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much e!ort has been devoted to studies of the #ow inside an injector and to development of
computer models to predict the dynamic responses of an injection system. For example,
Becchi [4], Goyal [5], Kumar et al. [6], Sobel et al. [7], Krepec et al. [8], and Ziejewski
et al. [9] used numerical techniques to simulate the pump}line}nozzle injection systems for
diesel engines.

Strunk [10] showed how the design variables may in#uence the performance of
a pump}line}nozzle injection system and provided guidelines for its tuning. These results
were based on a simpli"ed mathematical model for the hydraulic circuit of the systems.
Many assumptions were made in this mathematical modelling, for example, a constant
velocity of the pump piston during the injection cycle, linear resistance of the injection
nozzle, negligence of the dynamics of the injector needle, etc.

Catania et al. [11] demonstrated simulations of a distributor-type diesel fuel injection
system by using a second order ordinary di!erential equation for describing the injector
needle motion, and a conventional lumped mass model for the continuity and compressibility
of the fuel #ow. Smith and Spinweber [12] constructed a digital simulation model for the
solenoid fuel injector, which was divided into three sub-models for electromagnetic,
mechanical, and #ow "eld, respectively. The electromagnetic sub-model described the
interaction of the iron magnetic #ux path with the solenoid coil windings. The mechanical
sub-model described force interaction on the injector pintle and its consequent trajectory. The
#ow sub-model described essentially the static #ow of the injector from zero lift to full
lift. Yang et al. [13, 14] studied dynamic responses of a multi-port electronic fuel delivery
system. In their model, a third order equation was employed to account for the e!ects of
magnetic- and #ow-induced forces as well as the mechanical friction force inside the injector
chamber. Spurk et al. [15] developed a mathematical model for BOSCH injectors in which
the unsteady compressible #ow inside the injector and steady incompressible #ow in inlet and
outlet sections were considered. The equations of motion for needle and body were derived.
Some empirical parameters such as the sti!ness coe$cients and the damping coe$cient
related to the roughness between the body seat surface and the needle seat surface, and the
loss coe$cient for the sieve were assumed in the computation. In this way, the needle motion
inside the injector and the pressure history at the valve seat were calculated.

Ren and Nally [16] utilized the axisymmetry property to model a quarter of a fuel injector
from the upstream of the valve seat to the downstream of the ori"ce by using a non-uniform
body-"t grid with a total of 105 000 computational cells. The #uid dynamics was analyzed by
solving the ensemble-averaged, three-dimensional mass and momentum conservation
equations. In this model, the #ow was assumed to be isothermal and incompressible. The
main numerical results included the relationship between the static #ow rate and the fuel
pressure, the relationship between the static #ow rate and the ori"ce size, the relationship
between needle lift and the discharge coe$cient, and the transient e!ects during the opening
and closing periods.

Although di!erent models have been developed to describe the fuel injection systems, few can
accurately predict the transient responses of a fuel injection system, especially the pressure
#uctuations inside the injectors caused by rapid opening and closing of the valves. The present
paper attempts to "ll this void by developing a mathematical model to describe pressure
#uctuations inside an injector. The results thus obtained are validated experimentally on a fuel
rail system mounted on a test bench operating under the same conditions as those of a vehicle.

2. MODELLING OF AN INJECTOR

The fuel injector is a complex structure containing many intricate components. The
major component is a solenoid actuated needle valve assembly that controls the #ow
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passage through the ori"ces at the bottom of the valve seat. Since the upstream pressure of
an injector is high (3)6 bar) and the downstream pressure is low (equal to the manifold
pressure inside a cylinder chamber), the needle is pushed "rmly against the valve seat. When
the solenoid is activated by an electrical signal from the engine controller, a magnetic force
is generated that overcomes the spring force and pushes the needle upwards. As the needle is
lifted, fuel accelerates from a near-zero velocity to a maximum value and discharges into the
cylinder chamber through the ori"ces. Meanwhile, the pressure inside the injector drops to
the minimum then bounces back to a maximum value. These pressure #uctuations
continue, but their amplitudes decay gradually to the ambient level and remain constant
until the solenoid is deactivated. Once the magnetic force is removed, the coil spring pushes
the needle back to its seat and stops the #ow almost instantly. This sudden blockage of the
#ow generates a pressure surge and #uctuations thereafter. These pressure #uctuations
propagate throughout the entire fuel rail, causing the system to vibrate.

To describe the pressure #uctuations inside an injector exactly, it would be necessary to
solve the entire #ow "eld and its interaction with various boundary surfaces. Such a task is
not possible even with the most advanced computer system now available. On the other
hand, most engineering models oversimplify the problem and yield little insight. While some
models give good correlation between the calculated and measured responses, they are
often case-dependent.

In the present investigation, a mathematical model is developed that relates the responses
of an injector to its design parameters. To simplify the complexity of the problem, the
injector is divided into three segments with a "lter at the top, a solenoid actuated needle and
coil spring assembly in the middle, and four ori"ces at the bottom sections respectively (see
Figure 1).

Assume that the #uid is homogeneous and incompressible and that the #ow through
each segment of an injector is unsteady but one-dimensional. Note that the #uid
Figure 1. Schematic of test set-up for injector and pressure transducers.
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incompressibility assumption is permissible because the density of the test #uid is high, the
overall dimensions of the fuel rail system are small, and the upstream pressure is high
(3)6 bar). The dimensions of the injector and fuel rail further allow to neglect the potential
di!erences between any two points along the fuel rail system. Under these conditions, one
can apply Newton's second law to #uid particles and integrate the equation of motion along
a streamline to obtain [17]
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where P
i
and <

i
represent the pressure and #ow velocity at any two locations along the

streamline s
i
, i"1 and 2, respectively, Q is the volume #ow between s

1
and s

2
, A

av
is the

corresponding average cross-sectional area inside an injector, and o is the density of
the #uid.

Equations similar to equation (1) but with consideration of the loss of kinetic energy are
often used to simulate the phenomena due to sudden valve closure and water hammer in
pipes [18]. Introducing loss factors to account for the losses of kinetic energy as the fuel
#ows through the "lter and ori"ces, we can write equations governing pressures and #ow
velocities at the top, middle, and bottom sections as
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where P
in

and P
out

are the pressure at the inlet and outlet of the injector, respectively,<
in

and
<
O

are the corresponding #ow velocities at these two locations, P
T

and P
B

are the pressures
at the top and bottom sections inside the injector, respectively, <

T
and <

B
are the

corresponding #ow velocities, <
F

is the #ow velocity passing through the "lter, and
h"(s

T
!s

B
) is the length of the injector.

Note that in this case the inlet and outlet are immediately adjacent to the top and bottom
sections of the injector, (s

in
!s

T
)P 0 and (s

B
!s

O
)P0. Hence the last term on the

right-hand side of equation (1) is omitted in equations (2a) and (2c). Further, we assume that
loss of kinetic energy occurs only at the top and bottom of an injector. Therefore, loss
factors K

F
and K

O
are introduced in equations (2a) and (2c), which describe the losses of

kinetic energy as the #uid enters the injector through the "lter at the top and as the #uid is
discharged through ori"ces at the bottom sections respectively.

Applying the mass conservation law [19] to the top and bottom sections of the injector
yields, respectively, leads to
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where A
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O
are the cross-sectional areas of fuel passage through the inlet, top

section, bottom section, and ori"ces of the injector respectively.
Since the "lter is "xed, it is reasonable to assume a constant value for the loss factor K

F
,

which can be determined experimentally. Applying the mass conservation law between the
inlet and the top section of the injector, we have
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TABLE 1

Parameters used in simulating the magnetic force f
m

n b
n

u
n

1 0)9620 714
2 !0)1739 2142
3 !0)1264 3570
4 0)0582 4998
5 0)0264 6426
6 !0)0265 7854
7 !0)0240 9282

Figure 2. Simulation of the magnetic force acting on the needle: ==, measured; }} }, simulated.
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where Q
F
is the volume #ow passing through the "lter and A

F
the cross-sectional area of the

"lter. Using equations (2a) and (4), we can then write K
F

as
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Therefore, by measuring the #ow into the injector, the pressure di!erence (P
in
!P

T
) across

the "lter, and the cross-sectional areas A
F
, A

in
, and A

T
, we can determine K

F
.

The loss factor K
O

can be estimated using the theory of internal #ows through a sudden
expansion chamber [20]. In this particular case the expansion occurs around the valve seat.
Moreover, the loss of the #uid kinetic energy changes with the passage cross-sectional area
between the needle and the valve seat, which varies with the needle motion. Consequently,
K

O
is de"ned as a function of the needle displacement x, which is governed by a second
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order ordinary di!erential equation.
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where D is the diameter of the bottom section inside the injector and x satis"es the equation
of motion
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where m represents the lumped mass of the needle, k stands for the spring constant, c
0

is the
viscous damping coe$cient of the spring, and f

p
and f

m
are the spring pre-loading and

magnetic forces exerted on the needle respectively. Note that because of a small
cross-sectional area ((10~6m2), the e!ect of the #uid force on the needle is negligibly small.
Numerical results demonstrate that omission of the #uid force has little impact on the
responses of needle motion.

Test data show that when the solenoid is activated, the magnitude of the magnetic force
f
m

rises from zero to maximum in a non-linear manner. Experimental results indicate that
the time it takes for the magnetic force to reach its maximum value is approximately 1)5 ms.
However, when the solenoid is deactivated, the magnitude of f

m
drops to zero instantly.

Based on the measured data, an empirical formula is developed to describe the rise and fall
of this magnetic force f

m
.
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where f
max

is the maximum value of the magnetic force, t
0

the time when the solenoid is
activated, and t

p
the pulse width during which the magnetic force is sustained. The values of

b
n
and u

n
, n"1}7, are given in Table 1. Figure 2 shows the comparison of measured and

simulated magnetic forces using equation (8) as the solenoid is activated and deactivated.
Note that t

0
is periodic synchronizing with the engine speed and t

p
is "xed for a particular

engine design.
The pressure #uctuations caused by opening and closing of the needle will propagate

throughout the entire fuel rail system. To describe this propagation phenomenon, we
require the pressure #uctuations to satisfy the wave equation, which can be derived by
applying the Navier}Stokes equation to a one-dimensional laminar #ow of a Newtonian
#uid [21], using the continuity [22] and thermodynamic [23] equations, and neglecting the
high order terms:
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where y is the co-ordinate in the #ow direction inside the injector, t the time, c the speed of
sound of the #uid, and l the kinematic viscosity. The pressure #uctuations are related to
velocities by the following linearized moment equation:

L<
Ly

"!

1

oc2

LP

Lt
. (10)



TABLE 2

Input of typical injector design parameters and material properties of test -uid

Parameters Descriptions

m Mass of the needle
k Coil spring constant acting on the needle
c
0
s Approximate damping coe$cient acting on the needle

f
p

Pre-loading coil spring force acting on the needle
f
max

Maximum magnetic force acting on the needle
K

F
Loss factor for the "lter at the top

h Length of the injector
D Diameter of the bottom section
A

in
Cross-sectional area at the inlet

A
F

Cross-sectional area of the "lter
A

T
Cross-sectional area of the top section

A
B

Cross-sectional area of the bottom section
A

O
Cross-sectional area of all ori"ces

A
av

Average cross-sectional area of the injector
o Density of n-heptane
c Approximate speed of sound of n-heptane
l Approximate viscosity of n-heptane

sNote that in this paper c
0
"1 (Ns/m) is selected for the sake of convenience. The exact value of the damping

coe$cient of the coil spring is unknown. However, numerical tests indicate that the pressure #uctuations are not
sensitive to the value of c

0
.
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Equations (2)} (10) completely de"ne the pressure #uctuation responses inside a fuel
injector.

3. TEST SET-UP

The mathematical model described above is validated experimentally. To measure the
responses of an injector, two Kulite XT-123C-100 pressure transducers were installed, one
at the top (near the entrance) and the other at the bottom (above the ori"ces) sections (see
Figure 1). This instrumented injector was mounted on a fuel rail system consisting of a fuel
tank, pump, regulator, controller, supply and return lines. A pressure regulator was used to
maintain a constant back pressure, and a controller was used to control the opening and
closing of the injector. With this set-up, one can simulate various working conditions of
a fuel injection system under di!erent injector pulse widths and engine speeds. In this
investigation, the pressure #uctuations were measured under three di!erent speeds, namely,
700, 750, and 1050 r.p.m. respectively. These speeds were chosen to simulate engine idle and
o!-idle conditions. For each of these speeds, the pulse widths were set at 2)5 and 7 ms
respectively. The #uid used in the experiments was n-heptane, which has the same viscosity
and density as those of gasoline, but provides greater stability. The measured data were
recorded and stored in a desktop computer automatically for post-processing. The
sampling rate of data acquisition was set at 24 kHz.

4. VALIDATIONS

The responses of an injector were obtained by solving equations (2)} (10) simultaneously.
In particular, the wave equation (9) was solved by using "nite (backward) di!erence method
[21]. The pressure boundary conditions at the inlet and outlet were P

in
and P

out
respectively.



Figure 3. Comparison of pressure #uctuations inside an injector at 700 r.p.m. and 2)5 ms pulse width:
(a) bottom; (b) top; ==, measured; } } }, calculated.
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Note that the #ow passages inside an injector were not straight, but had twists and
turns. Since an accurate trace of #ow passage was not possible, the exact length of
#ow passage inside an injector was unknown. Numerical tests indicated that satisfactory
results could be obtained when the length of #ow passage was set at four times the injector
length h. This e!ective #ow passage was discretized into nine segments and the pressure
#uctuations at all nodes along this passage were calculated. The values of pressure
#uctuations corresponding to the locations of P

T
and P

B
were then compared with the

measured data.
In carrying out the numerical computations, dimensions of an injector must be speci"ed.

Table 2 lists some typical design parameters and properties of the test #uid as the input to
the computer model.

Substituting the parameters given in Table 2 into equations (2)} (10), we can solve
pressure #uctuations at various locations inside the injector. Figure 3 demonstrates



Figure 4. Comparison of pressure #uctuations inside an injector at 750 r.p.m. and 2)5 ms pulse width:
(a) bottom; (b) top; ==, measured; } } }, calculated.
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comparisons of the calculated and measured pressure #uctuations at the bottom and top
sections of the injector at 700 r.p.m. and a 2)5 ms pulse width.

Results show that the present computer model is capable of capturing the main
characteristics of pressure #uctuations inside an injector. As the injector is opened, the
pressure drops immediately because of rarefaction. This rarefaction is followed by rapid
oscillations that decay exponentially to the ambient level due to #uid viscosity. When the
injector is closed suddenly, compression occurs, which causes a strong pressure surge
known as the &&water hammer'' e!ect inside the injector. The amplitude of this pressure surge
decays exponentially in an oscillatory manner to the ambient level as the injector remains
closed. These pressure drops and surges inside an injector and fuel rails are periodic,
synchronizing with the engine's cyclic motion. In this paper, we only display comparisons of
pressure #uctuations around the opening and closing of an injector (about 6}10 ms) in order



Figure 5. Comparison of pressure #uctuations inside an injector at 1050 r.p.m. and 2)5 ms pulse width:
(a) bottom; (b) top; ==, measured; } } }, calculated.
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to show the details of oscillations. If comparisons were given for an entire cycle, which is
about 57)1}85)7 ms for 700}1050 r.p.m., the plots would consist of pockets of overcrowded
peaks at the opening and closing times and nothing in between, which would make
validations of the present computer model di$cult.

Experimental data indicate that the amplitude of the pressure surge or drop can be twice
as high (or low) as that of the ambient level. These pressure surges and drops are the major
sources of vibration, noise, and metering errors of a fuel injection system.

Figure 3 shows that the calculated pressure drop at the bottom section as the injector
is just opened agrees almost perfectly with the measured data. The calculated pressure
surge at the same location when the injector is suddenly closed is overestimated by 30
per cent. This discrepancy may be due to a rigid boundary condition at the seat in the
modelling, which leads to a higher value of pressure surge than the actual one. However,



Figure 6. Comparison of pressure #uctuations inside an injector at 700 r.p.m. and 7 ms pulse width: (a) bottom;
(b) top; ==, measured; } } }, calculated.
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the decay of pressure #uctuations after the pressure surge agrees well with the measured
data (see Figure 3(a)). The calculated pressure drop and surge at the top section when
the injector is opened and closed agree satisfactorily with the measured data. However,
the decays of the calculated pressure #uctuations at the top section after the injector is
opened and closed are slower than the measured ones (see Figure 3(b)). These discrepancies
could be attributed to the deterioration of the pressure transducers' performance in the
high-frequency regime. In other words, the transducer may fail to respond to the
high-frequency #uctuations consistently. Also, the sampling rate of 24 kHz may not be high
enough, thus resulting in a relatively #at pressure #uctuation curve rather than an
oscillatory one.

Similar phenomena are observed in other situations. Figures 4 and 5 depict comparisons
of the pressure #uctuations under the same pulse width but at 750 and 1050 r.p.m.



Figure 7. Comparison of pressure #uctuations inside an injector at 750 r.p.m. and 7 ms pulse width: (a) bottom;
(b) top; ==, measured; } } }, calculated.

812 Q. HU E¹ A¸.
respectively. Comparisons of the calculated and measured #uctuations at these same
locations but at 7 ms pulse width and three di!erent speeds are illustrated in Figures 6}8
respectively.

5. CONCLUDING REMARKS

A computer model is developed for predicting dynamic responses of an automotive fuel
injector. The pressures inside an injector are described by one-dimensional unsteady
Bernoulli's equations. The #uid kinetic energy at ori"ces is correlated to needle motion,
which is controlled by the magnetic and pre-loading coil spring forces. Further, the pressure
#uctuations are required to satisfy a damped wave equation. The computer model thus
developed captures the main characteristics of the responses of an injector. The calculated
pressure #uctuations agree with the measured data under various working conditions in



Figure 8. Comparison of pressure #uctuations inside an injector at 1050 r.p.m. and 7 ms pulse width: (a) bottom;
(b) top; ==, measured; } } }, calculated.
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general. Some discrepancies around pressure surge are observed. One reason could be the
deterioration of the pressure transducers' performance in the high-frequency regime and the
low sampling rate of experimental data.
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