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Stabilized space}time "nite-element methods are employed to investigate vortex-induced
vibrations of a light circular cylinder placed in a uniform #ow at Reynolds number in the
range of 103}104. The governing equations for the #uid #ow are the Navier}Stokes
equations for incompressible #ows. The cylinder is mounted on lightly damped, #exible
supports and allowed to vibrate, both in the in-line and cross-#ow directions under the
action of aerodynamic forces. Results are presented for various values of the structural
frequency of the oscillator including those that are super-harmonics of the vortex-shedding
frequency for a stationary cylinder. In certain cases the e!ect of the mass of the oscillator is
also examined. The motion of the cylinder alters the #uid #ow signi"cantly. To investigate
the long-term dynamics of the non-linear oscillator, beyond the initial transient solution,
long-time integration of the governing equations is carried out. For e$cient utilization of the
available computational resources the non-linear equation systems, resulting from the
"nite-element discretization of the #ow equations, are solved using the preconditioned
generalized minimal residual (GMRES) technique. Flows at lower Reynolds numbers are
associated with organized wakes while disorganized wakes are observed at higher Reynolds
numbers. In certain cases, competition is observed between various modes of vortex
shedding. The #uid}structure interaction shows a signi"cant dependence on the Reynolds
number in the range that has been investigated in this article. In certain cases lock-in while in
some other cases soft-lock-in is observed. The trajectory of the cylinder shows very
interesting patterns including the well-known ¸issajou "gure of 8. Several mechanisms of the
non-linear oscillator for self-limiting its vibration amplitude are observed.
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1. INTRODUCTION

Flow past an oscillating cylinder has received continued attention in the past few decades.
In addition to being a building block in the understanding of blu! body #ows it has a large
number of applications in several engineering situations. Flow past an oscillating cylinder is
associated with a variety of interesting phenomena. For example, a cylinder subjected to
cross-#ow vibrations exhibits the phenomenon of lock-in. The vortex-shedding frequency
related to the oscillating cylinder shifts to the frequency of cylinder vibrations [1]. However,
this happens only if the oscillation amplitude is larger than a certain threshold value.
Lock-in is observed for a fairly wide range of cylinder vibration frequencies centered around
the vortex shedding frequency for a stationary cylinder. Interestingly, the threshold
amplitude, beyond which lock-in takes place, increases with the increase in di!erence
between the vibration frequency and the vortex shedding frequency of the stationary
cylinder. Lock-in is also observed for cylinders that are mounted on #exible supports and
are allowed to undergo vortex-induced oscillations [2]. Another interesting phenomenon
0022-460X/01/350923#24 $35.00/0 ( 2001 Academic Press
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associated with vortex-induced oscillations is hysteresis. The oscillation amplitude, for
a certain range of Reynolds number and close to the outer limits of the frequencies for
lock-in, depends on whether the #ow speed is decreased or increased during the experiment
[3]. Several explanations have been o!ered by researchers in the past. While some
researchers attribute it to the non-linear springs in the mountings, others suspect it to be
a consequence of variable structural damping. More details of these phenomena can be
found in the work by Toebes [4], Gri$n [5], Tanida et al. [6], Gri$n and Ramberg [7],
King [8], Durgin et al. [9], Lecointe et al. [10], Chen [11], Williamson [12], Olinger and
Sreenivasan [13], Ongoren and Rockwell [14, 15], Blevins [16], Mittal and Tezduyar [17],
Mittal et al. [18], Chang and Sa [19], and Mittal and Kumar [20]. Many of these studies
focus on the wake of the cylinder that is subjected to forced oscillations at various
frequencies, including those that are sub- and super-harmonics of the natural
vortex-shedding frequency for a stationary cylinder. Some of the studies deal with
vortex-induced oscillations of a cylinder mounted on #exible supports. Most of the earlier
research e!orts are based on laboratory experiments while some of the more recent ones
[10, 17}20] utilize computational methods.

Mittal and Tezduyar [17] reported their results for a computational study of #ows past
an oscillating cylinder using the "nite-element method. They observed that a cylinder
subjected to in-line oscillations at a certain frequency results in a symmetric mode of vortex
shedding. For a cylinder restricted to cross-#ow vortex-induced vibrations, they were able
to observe the phenomena of lock-in and hysteresis. The Reynolds numbers for their
computations are in the range of 290}300. They also attempted to explain the cause of
hysteresis through numerical experiments and concluded that it is a consequence of lock-in.
Lock-in occurs only if the vibration amplitude of the cylinder is greater than a certain
threshold value [1]. For a certain range of Reynolds number, if the initial condition
corresponds to a cylinder vibrating with large amplitude that is beyond the threshold value
for lock-in, the vortex-shedding frequency locks on to the structural frequency and one
realizes a high-amplitude solution. On the other hand, if one begins with a solution that
corresponds to low-amplitude oscillations, that is below the threshold required for lock-in,
a low-amplitude solution is realized. Later, in another study, Mittal and Kumar [20]
applied their methodology to investigate the #uid-induced vibrations of a lighter cylinder,
mounted on lightly damped spring supports, and free to move in cross-#ow and in-line
directions. The mass of the oscillator in this study is 1/100th of the one in the earlier
investigation by Mittal and Tezduyar [17]. The lighter mass is used to encourage in-line
oscillations. The Reynolds number for their study is 325 and computations are carried out
for various values of the structural frequency including the sub- and super-harmonics of the
natural vortex-shedding frequency for a stationary cylinder. The computations lead to
various interesting observations. Lock-in is observed for a range of values of the structural
frequency, but, in a slightly modi"ed form. Over a certain range of structural frequency (F

s
),

when it is slightly larger than the natural vortex-shedding frequency (F
o
), the vortex-

shedding frequency of the oscillating cylinder does not exactly match the structural
frequency; there is a slight detuning that increases as F

s
moves away from F

o
. Mittal and

Kumar referred to it as soft lock-in. They also observed that this phenomenon of soft lock-in
is associated with light cylinders only. As the mass of the cylinder is increased, the
vortex-shedding frequency of the oscillating cylinder shifts towards the structural frequency
of the oscillator. They proposed that soft lock-in is a mechanism of the non-linear oscillator
to self-limit its vibration amplitude. The #ow "eld changes signi"cantly to restrict the
amplitude of cylinder vibration. The other mechanisms of the oscillator to restrict its
vibration amplitude, via a change in the #ow "eld, are a reduction in the magnitude of
aerodynamic forces and the appearance of additional frequencies in their power spectra.
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In this article, the investigation carried out by Mittal and Kumar [20] is being extended
to #ows at higher Reynolds numbers. The Reynolds numbers, based on the diameter of the
cylinder, free-stream speed and the #uid viscosity, lie between 103 and 104. Unlike the #ows
for low Reynolds numbers the wake behind the cylinder, for high Reynolds numbers, is
quite disorganized. In certain cases a competition is observed between various modes of
vortex shedding. In this context, the dependence of the solution on the Reynolds number is
observed to be quite signi"cant. For certain cases, the e!ect of the mass of the oscillator is
also studied.

The outline of the rest of the article is as follows. A brief review of the governing equations
for incompressible #uid #ow and for the motion of a rigid body under the in#uence of
unsteady #uid forces is given in section 2. Section 3 describes the stabilized "nite-element
formulation of the governing equations. It is based on the space}time "nite-element method
in which the "nite-element interpolation functions depend both on space and time. This way
the deformation of the spatial domain is taken into account automatically. This method,
known as the DSD/SST (deforming spatial domain/stabilized space}time) technique, was
introduced by Tezduyar et al. [21, 22]. To stabilize the computations against spurious
numerical oscillations and to enable the use of equal-order-interpolation velocity}pressure
elements the Galerkin/least-squares (GLS) stabilization technique is employed. Section
3 describes the "nite element formulation incorporating these stabilizing terms. To
accommodate the motion of the cylinder, and therefore the mesh, special mesh-moving
schemes, as described by Mittal and Tezduyar [17], are used. Such special purpose
mesh-moving strategies are very quick and allow one to completely do away with the
remeshing. The non-linear equation systems resulting from the "nite-element discretization
of the #ow equations are solved using the generalized minimal residual (GMRES) technique
[23] in conjunction with diagonal preconditioners. Results and discussions are presented in
section 4 and we end with some concluding remarks in section 5.

2. THE GOVERNING EQUATIONS

Let X
t
LRnsd and (0, ¹) be the spatial and temporal domains, respectively, where n

sd
is

the number of space dimensions, and let C
t
denote the boundary of X

t
. The spatial and

temporal co-ordinates are denoted by x and t. The Navier}Stokes equations governing
incompressible #uid #ow are

oA
Lu

Lt
#u )$u!fB!$ )r"0 on X

t
for (0, ¹ ), (1)

$ ) u"0 on X
t
for (0, ¹ ). (2)

Here o, u, f and r are the density, velocity, body force and the stress tensor respectively. The
stress tensor is written as the sum of its isotropic and deviatoric parts:

r"!pI#T, T"2ke(u), e(u)"1
2
(($u)#($u)T), (3)

where p and k are the pressure and viscosity. Both the Dirichlet and Neumann-type
boundary conditions are accounted for, represented as

u"g on (C
t
)
g
, n ) r"h on (C

t
)
h
, (4)



926 S. MITTAL AND V. KUMAR
where (C
t
)
g
and (C

t
)
h
are complementary subsets of the boundary C

t
. The initial condition on

the velocity is speci"ed on X
t
at t"0:

u(x, 0)"u
0

on X
0
, (5)

where u
0

is divergence free.
A solid body immersed in the #uid experiences unsteady forces and in certain cases may

exhibit rigid body motion. The motion of the body, in the two directions along the cartesian
axes, is governed by the following equations:

XG #2nF
s
fXQ #(nF

s
)2X"

C
D

M
for (0, ¹ ), (6)

>G #2nF
s
f>Q #(nF

s
)2>"

C
L

M
for (0, ¹). (7)

Here, F
s

is the reduced natural frequency of the oscillator, f is the structural damping
coe$cient, M is the non-dimensional mass of the body, while C

L
and C

D
are the

instantaneous lift and drag coe$cients for the body respectively. The free-stream #ow is
assumed to be along the x-axis, XG , XQ and X denote the normalized in-line acceleration,
velocity and displacement of the body, respectively, while >G , >Q and > represent the same
quantities associated with the cross-#ow motion. In the present study, in which the rigid
body is a circular cylinder, the displacement and velocity are normalized by the radius of
the cylinder and the free-stream speed respectively. The reduced natural frequency of the
system, F

s
is de"ned as 2 f

s
a/;

=
, where f

s
is the actual frequency of the oscillator, a is the

radius of the cylinder and ;
=

is the free-stream speed of the #ow. The non-dimensional
mass of the cylinder is de"ned as M"2m

b
/o

=
a2 , where m

b
is the actual mass of the

oscillator and o
=

is the density of the #uid. The initial conditions for the displacement and
velocity of the cylinder are speci"ed at t"0:

X(0)"X
0
, XQ (0)"XQ

0
, (8)

>(0)">
0
, >Q (0)">Q

0
. (9)

The equations governing the #uid #ow are solved in conjunction with those for the motion
of the cylinder. The force acting on the body is calculated by integrating the #ow variables
on the body surface. The resulting drag and lift coe$cients are used to compute the
displacement and velocity of the body which are then used to update the location of the
body and the no-slip boundary condition for the velocity "eld on the body surface.

3. FINITE-ELEMENT FORMULATIONS

To accommodate the motion of the cylinder and the deformation of the mesh the
stabilized "nite-element formulation is employed. In order to construct the "nite-element
function spaces for the space}time method, we partition the time interval (0, ¹) into
subintervals I

n
"(t

n
, t

n`1
), where t

n
and t

n`1
belong to an ordered series of time levels

0"t
0
(t

1
(2(t

N
"¹. Let X

n
"X

tn
and C

n
"C

tn
. We de"ne the space}time slab Q

n
as

the domain enclosed by the surfaces, X
n
, X

n`1
, and P

n
, where P

n
is the surface described by

the boundary C
t
as t traverses I

n
. As is the case with C

t
, surface P

n
is decomposed into (P

n
)
g

and (P
n
)
h

with respect to the type of boundary condition (Dirichlet or Neumann) being
imposed. For each space}time slab we de"ne the corresponding "nite-element function
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spaces (Shu )
n
, (Vhu )

n
, (Sh

p
)
n
, and (Vh

p
)
n
. Over the element domain, this space is formed by

using "rst order polynomials in space and time. Globally, the interpolation functions are
continuous in space but discontinuous in time.

The stabilized space}time formulation for deforming domains is then written as follows:
given (uh )

n~
, "nd uh3 (Shu )

n
and ph3(Sh

p
)
n
such that ∀wh3 (Vhu )

n
, qh3(Vh

p
)
n

PQ
n

wh )oA
Luh

Lt
#uh )$uh!fB dQ#PQ

n

e (wh) :r (ph , uh) dQ#PQ
n

qh$ ) uh dQ

#

nel
+
e/1

PQe
n

1

o
q CoA

Lwh

Lt
#uh )$whB!$ )r (qh , wh)D

)CoA
Luh

Lt
#uh )$uh!fB!$ ) r (ph , uh )DdQ

#

nel
+
e/1

PQe
n

d$ )who$ ) uh dQ#PX
n

(wh)`
n
)o ((uh )`

n
!(uh)~

n
) dX"P(P

n
)
h

wh ) hhdP . (10)

This process is applied sequentially to all the space}time slabs Q
1
, Q

2
,2 , Q

N~1
. In the

variational formulation given by equation (10), the following notation is used:

(uh)$
n
"lim

e?0

u(t
n
$e), (11)

PQ
n

(2) dQ"PI
n
PX

n

(2) dXdt, (12)

PP
n

(2) dP"PI
n
PC

n

(2) dCdt. (13)

The computations start with

(uh)~
0
"u

0
, (14)

where u
0

is divergence free.
In the variational formulation given by equation (10), the "rst three terms and the

right-hand side constitute the Galerkin formulation of the problem. The series of element-
level integrals involving the coe$cients q and d are the least-squares terms that are added to
the basic Galerkin formulation to ensure the stability of the computations. This type of
stabilization is referred to as the Galerkin/least-squares (GLS) procedure and is
a generalization of the streamline-upwind/Petrov}Galerkin (SUPG) and pressure-
stabilizing/Petrov}Galerkin) (PSPG) method [24]. In the current formulation q and d are
given as

q"AA
2EuhE

h B
2
#A

4l
h2B

2

B
~1@2

, (15)

d"
h

2
EuhEz, (16)
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where

z"G
(R%u
3

),

1,

Re
u
)3,

Re
u
'3

and Re
u
is the cell Reynolds number. Both stabilization terms are weighted residuals, and

therefore maintain the consistency of the formulation. The sixth term in equation (10)
enforces weak continuity of the velocity "eld across the space}time slabs.

The equations of motion for the oscillator given by equations (6)} (9) are also cast in the
space}time formulation in the same manner as described in the work by Tezduyar et al. [22]
and Mittal [25].

4. RESULTS AND DISCUSSIONS

A cylinder of non-dimensional mass M"4)7273 and the structural damping coe$cient
f"3)3]10~04 is placed in a uniform #ow. The outer boundary of the computational
domain is rectangle whose upstream and downstream edges are located at 8 and 22)5
cylinder diameters from the center of the cylinder respectively. The upper and lower edges
are placed at eight diameters from the center of the cylinder. At the cylinder surface, the
no-slip boundary condition is applied for the velocity. Free-stream values are assigned for
the velocity at the upstream boundary while at the downstream boundary, the viscous stress
vector is assumed to be zero. On the upper and lower boundaries, the component of velocity
normal to and the component of stress vector along these boundaries is prescribed zero
value. Computations are carried out for Reynolds numbers 1000, 1500 and 10 000 for
various values of the non-dimensional structural frequency (F

s
) of the spring}mass system.

The e!ect of mass (M) of the oscillator is also investigated for some cases. The Reynolds
number is based on the diameter of the cylinder, free-stream velocity and the viscosity of the
#uid. Results for a similar set-up at Reynolds number 325 have been reported in an earlier
article [20]. Mittal and Tezduyar [17] reported results for a heavier cylinder whose motion
is restricted to the cross-#ow direction for #ows with Reynolds numbers in the range of
290}360. The mass of the cylinder in the present study and the one reported in reference
[20] is 1/100th of the one considered by Mittal and Tezduyar [17]. The lower mass of the
oscillator is to encourage in-line oscillations. The damping coe$cient has the same value in
all the three studies.

All the computations reported in this article are carried out on the Digital workstations
at IIT Kanpur in 64 bit precision. Equal-in-order basis functions for velocity and pressure,
that are bilinear in space and linear in time, are used and 2]2]2 Gaussian quadrature is
employed for numerical integration. The non-linear equation systems resulting from the
"nite-element discretization of the #ow equations are solved using the GMRES technique
[23] in conjunction with diagonal preconditioners.

In all the cases, "rst the fully developed unsteady solution is computed for #ow past
a stationary cylinder at the Reynolds number of interest. This solution is used as an initial
condition for computing the #ow past the oscillating cylinder. The computations are carried
out using three "nite-element meshes. Mesh M1 consists of 6181 nodes and 6000 elements,
M2 has 8453 nodes and 8230 elements while the "nest mesh the mesh M3 is made up of 8537
nodes and 8330 elements. A view of the mesh, M3, and its close-up is shown in Figure 1. The
mesh-moving scheme is the same as the one used by Mittal and Tezduyar [17]. Figure
2 summarizes the variation of the non-dimensional cross-#ow and in-line oscillation
amplitudes, and the vortex-shedding frequency with respect to the structural frequency of



Figure 1. Flow past an oscillating cylinder: the "nite-element mesh, M3, with 8537 nodes and 8330 elements.
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the oscillator for various Reynolds numbers. The Strouhal number corresponding to the
vortex-shedding frequency for the stationary cylinder for all the three Reynolds numbers,
from our computations, is 0)25. This value will be referred to as the natural vortex-shedding
frequency (F

o
) in the rest of the article. Compared to the experimental results [26] this value

is slightly on the higher side. It has been observed in the past by various researchers [27}29]
that 2-D computations tend to over-predict the mean drag coe$cient and the Strouhal
number while results from 3-D computations are closer to experimental observations. It is
also well known that beyond a Reynolds number of approximately 300 the 3-D e!ects in the
wake of the cylinder become signi"cant [30]. The Reynolds number for the #ows considered
in this article is much higher than this critical value and 3-D e!ects are expected to be
important. However, due to the constraints of the available computational resources,
simulations reported in this article are restricted to 2-D only. The 3-D e!ects will be taken
up in a later study.

From Figure 2 it can be observed that the e!ect of the Reynolds number on the
vortex-shedding frequency of the oscillating cylinder is signi"cant when the structural
frequency (F

s
) of the oscillator is close to the natural shedding frequency (F

o
) of the cylinder.

On the other hand, when the value of F
s
is relatively far o! from F

o
the e!ect of Reynolds

number on the vortex-shedding frequency is not too large. In general, the amplitude of
vibrations in the cross-#ow direction is larger compared to that in the in-line direction. It is
well known that the motion of the cylinder alters the #ow "eld signi"cantly. For a cylinder
that is forced to vibrate at a frequency that is slightly di!erent from the natural vortex-
shedding frequency (F

o
), and an amplitude that is larger than a certain threshold value, the

phenomenon of lock-in is observed; the vortex-shedding frequency locks on to the vibration
frequency. A similar phenomenon is observed in the case of vortex-induced oscillations of
a cylinder mounted on spring support. Mittal and Tezduyar [17] reported their
computational results for a cylinder that is allowed to vibrate in the cross-#ow direction
only. They observed lock-in and hysteresis and were able to explain it based on data from
experiments of other researchers. Mittal and Kumar [20] carried out an investigation for
a lighter cylinder that is free to vibrate in cross-#ow and in-line directions. They observed
that the lock-in frequency depends on the mass of the oscillator. For light cylinders, over
a certain range of structural frequency, when F

s
is slightly larger than F

o
the vortex-shedding

frequency of the oscillating cylinder does not exactly match the structural frequency; there is
a slight de-tuning that increases as F

s
moves away from F

o
. They termed the phenomenon as

soft lock-in and suggested that this is a mechanism of the non-linear oscillator to self-limit
its oscillation amplitudes. Both the above-mentioned computational studies were carried
out for #ows with Reynolds numbers in the vicinity of 325. In the present study it is
observed, as before, that the #ow is signi"cantly altered as a result of the cylinder motion.



Figure 2. Flow past an oscillating cylinder: variation of the non-dimensional in-line and cross-#ow oscillation
amplitudes, and the Strouhal number (related to the dominant frequency in the time history of the lift coe$cient)
with respect to the structural frequency of the oscillator. ) ) )h) ) ) ), Re"1000; d, Re"1500; £' , Re"10 000.
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The &&de-tuning'' that was observed for the Reynolds number 325 #ow is seen in a more
exaggerated form in the present case.

4.1. Re"1000

The solution for #ow past a stationary cylinder at Reynolds number 1000 is shown in the
top rows of Figures 3 and 4. We observe that the Strouhal number corresponding to
the dominant frequency of the lift variation is 0)25 and the mean drag coe$cient is 1)48. The
amplitude of the unsteady component of drag coe$cient is 0)21, while that of the lift
coe$cient is 1)36. During each cycle of vortex shedding a vortex is alternately shed from the
upper and lower surfaces of the cylinder. They convect downstream to form the karman
vortex street as shown in Figure 3.

The "rst case of the vortex-induced oscillation in this study corresponds to the
non-dimensional structural frequency (F

s
) of 0)20. The time histories of the drag and lift

coe$cients in this case are shown in Figure 4. The trajectory of the cylinder is shown in
Figure 5. It can be observed that the cylinder vibrations are mainly in the cross-#ow
direction. As soon as the cylinder is released from rest the in-line oscillations are quite
signi"cant but eventually they get damped out. The vortex shedding frequency for the
oscillating cylinder is 0)23. This value of the vortex-shedding frequency corresponds to
neither F

s
nor F

o
; it lies somewhere in between. As was observed in an earlier study by Mittal

and Kumar [20] for lower Reynolds number, this is a soft lock-in. Figure 3 shows the
vorticity and pressure "elds for the temporally periodic solution. Compared to the #ow for
a stationary cylinder, it can be observed that as a result of the cylinder vibrations the lateral
width of the wake increases and longitudinal spacing between the vortices decreases. The
latter e!ect can be attributed to the decrease in the vortex-shedding frequency of
the oscillating cylinder. For F

s
"0)24, compared to the previous case, the amplitude of the

in-line and cross-#ow oscillations is larger for this value of F
s
. The vortex-shedding

frequency is 0)24. The frequency of the cross-#ow oscillations is equal to the structural
frequency of the oscillator. As expected, since the drag force experienced by the cylinder
oscillates at twice the frequency of the lift force, the in-line vibrations occur at twice the
cross-#ow oscillation frequency of the oscillator. The trajectory of the cylinder corresponds
to a ¸issajou "gure of 8. The same observations have been made earlier by researchers
during laboratory experiments [11, 16]. A very similar behavior is exhibited by the
oscillator for F

s
"0)27. Lock-in is observed in this case also. The vortex-shedding frequency

of the oscillating cylinder locks-in to the structural frequency. It is interesting to observe
that, as in the previous case, the power spectrum of the lift coe$cient displays two peaks
(F

s
and 3F

s
), while the drag coe$cient oscillates with only one frequency (2F

s
). This is

perhaps related to the self-limiting nature of the motion of the non-linear oscillator. It is well
known that the vortex-excited oscillations of a blu! body are self-limited; the #uid #ow
adjusts so that the oscillation amplitude is restricted to a certain upper limit. It has been
observed by Mittal and Kumar [20] that the various mechanisms by which the oscillator is
able to self-limit its vibration amplitude are a reduction in the amplitude of the
aerodynamic forces, appearance of additional frequency components in the time histories of
the #uid forces and de-tuning of the vortex-shedding frequency from the structural
frequency. The extra peak in the lift coe$cient (3F

s
), in the present case, is perhaps to limit

the amplitude of cross-#ow cylinder vibration. Since the in-line oscillations are of much
smaller amplitude, such a peak is not seen in the power spectrum for the drag coe$cient.
Another interesting observation that can be made from the time histories in the simulations
is regarding the abruptness with which the cylinder motion latches on to a limit cycle. For



Figure 3. Re"1000 #ow past stationary and oscillating cylinder: vorticity and pressure "elds for the various
cases.
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Figure 4. Re"1000 #ow past stationary and oscillating cylinder: time histories of the drag and lift coe$cients
for the stationary cylinder and for F

s
"0)20, 0)24, 0, 27, 0)35, 0)40, and 0)49.
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example, for F
s
"0)27 the cylinder undergoes fairly disorganized motion till about t"350.

At t"370, approximately, the vortex shedding becomes very regular and the cylinder
motion also reaches a temporally periodic state. This highlights the need of long-time
integration of the governing equations to observe the long-term dynamics of such non-linear
systems. Unlike the previous cases, for F

s
"0)35, the cylinder motion and the vortex



Figure 5. Re"1000 #ow past an oscillating cylinder: trajectories of the cylinder for the various cases.
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shedding do not reach a temporally periodic solution in this case. The time histories suggest
the possibility of mode-competition between two (or more) modes of vortex shedding. The
vorticity and pressure "elds at t"790, 820, 1060, 1160 and 1240 are shown in Figure 6. This
picture con"rms the presence of competition between two modes of vortex shedding. One of
the two modes is the one that is observed for a stationary cylinder in which counter-rotating
vortices are shed alternately from upper and lower surfaces of the cylinder in each cycle of
vortex shedding. Ongoren and Rockwell [15] refer to this mode as Antisymmetrical mode
A-I. The other mode of vortex shedding that can be observed in Figure 6 is the
Antisymmetrical mode A-III in which, during each cycle of shedding, in addition to a pair of
counter-rotating vortices another weak vortex is shed from the cylinder. Williamson and
Roshko [12] have also observed mode-competition in their laboratory experiments and
have explained the cause of the sudden mode changes. The solutions for F

s
"0)40 are shown

in Figures 4 and 7. The #ow pictures in Figure 7 are at t"245, 285, 290 and 352. Swinging
of the near wake can be observed from this "gure. Such wake swings are not observed in
#ows at low Reynolds numbers [20]. The next computation is for F

s
"0)49 ("2F

o
). This



Figure 6. Re"1000 #ow past an oscillating cylinder with F
s
"0)35: vorticity and pressure "elds at t"790, 820,

1060, 1160 and 1240.
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Figure 7. Re"1000 #ow past an oscillating cylinder with F
s
"0)40: vorticity and pressure "elds at t"245, 285,

290 and 352.
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case is quite interesting. From Figure 4 it can be observed that the quantities corresponding
to the in-line oscillations are closer to a temporally periodic state compared to those for the
cross-#ow vibrations. This may be related to the observation that in this case the structural
frequency coincides with the frequency of variation of drag for #ow past a stationary
cylinder. To further encourage the in-line oscillations of the cylinder this case is recomputed
with a lower mass of the oscillator (M"1)0). The solutions for this computation are shown
in Figures 8 and 3. Almost immediately after the cylinder is released from rest its motion
latches on to the limit cycle. It displays a two-period mode for the in-line motion and
a single-period mode for the cross-#ow oscillations. The trajectory of the cylinder is quite



Figure 8. Re"1000 #ow past an oscillating cylinder: time histories of the drag and lift coe$cients for F
s
"0)49

and M"1 and for F
s
"0)60 and 0)75.

Figure 9. Re"1000 #ow past an oscillating cylinder: variation of the non-dimensional cross-#ow oscillation
amplitudes, with the normalized reduced structural frequency. The results from the experiments of Gri$n and
Ramberg are also shown. F

max
is the reduced frequency for which the maximum oscillation amplitude is observed.

h' , Gri$n and Ramberg; £' , Present computations.
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di!erent from that observed in the previous cases. The vortex-shedding mode corresponds
to the Antisymmetrical mode A-III [15] in which during each cycle of vortex shedding
a pair of counter-rotating vortices and another single weaker vortex is shed from the
cylinder. The same mode of vortex shedding is observed for F

s
"0)60 (with the original

mass of the oscillator). The #ow picture at a time instant for the temporally periodic
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solution is shown in Figure 3. In the previous case (M"1, F
s
"0.49), the additional single

vortex, that is shed in addition to the vortex pair of each cycle, is released from the upper
surface while in the present case (M"4)7273, F

s
"0)60), it is released from the lower surface

of the cylinder. The power spectrum of the lift coe$cient, in the current case, shows two
peaks, one at the vortex-shedding frequency (0)22) and the other at twice the value (0)44). In
the other cases of periodic vortex shedding for an oscillating cylinder when the
Antisymmetrical mode A-I is observed, the second peak in the power spectrum of the lift
coe$cient corresponds to thrice the vortex-shedding frequency. The cause of the
appearance of the second peak is quite di!erent in the two cases. For F

s
"0)60 it is caused

by the additional single vortex shed during each vortex-shedding cycle while the peak in the
latter case is due to the local modi"cation of the #ow to self-limit the cross-#ow vibration
amplitude. The last case that has been studied for Re"1000 is for F

s
"0)75 ("3F

o
). The

solutions corresponding to this case are shown in Figures 3, 5 and 8. The cylinder undergoes
small amplitude vibrations and the #ow "eld is quite similar to that for a stationary
cylinder. The power spectrum for the lift coe$cient shows only one dominant frequency.
This is consistent with our earlier observation that for the Antisymmetrical mode A-I of
vortex shedding the second peak in the power spectrum for the lift coe$cient appears only
when the cylinder vibrates with a large amplitude in the cross-#ow direction.

In Figure 9 results from the present computations are compared to the results of Gri$n
and Ramberg [31] for their experiments with a cylinder allowed to vibrate in water. It can
be noticed that the two sets of results are in fairly good agreement. This observation
increases our con"dence in the present set of computations.

4.2. Re"1500

Based on the observation that the #ows at Re"1500 and 1000 for a stationary cylinder
are quite similar, it is expected that the qualitative behavior of the oscillator at the two
Reynolds numbers should be the same. However, as will be seen later in this section, for
certain values of F

s
, qualitatively di!erent behavior is seen for the two Reynolds numbers.

Figure 10 shows the time histories of the drag and lift coe$cients for the stationary cylinder
at Re"1500. It is quite similar to the corresponding solution at Re"1000. The amplitude
of the time-varying components of lift and drag coe$cients are a little larger for Re"1500
but the Strouhal number corresponding to the variation of lift coe$cient is the same for
both the #ows. The top row in Figure 11 shows the vorticity and pressure "elds at one time
instant for the temporally periodic solution. The rest of the rows in this "gure show
solutions for the oscillating cylinder. The second row shows the #ow "eld for F

s
"0)20. As

a result of the cylinder motion the lateral width of the wake increases and the vortex-
shedding frequency decreases as is suggested by the increased longitudinal spacing between
the vortices. The time histories for the aerodynamic coe$cients and displacements of the
cylinder are shown in Figure 10. The trajectory of the cylinder is shown in Figure 12. The
cylinder undergoes large amplitude cross-#ow vibrations and relatively low amplitude
in-line oscillations. Its trajectory resembles a Lissajous "gure of 8. The Strouhal number
corresponding to the vortex-shedding frequency is 0)22. As was the case for F

s
"0)20,

Re"1000 the vortex-shedding frequency is larger than the structural frequency but smaller
than F

s
and larger than F

o
. The third row in Figure 11 shows the #ow "eld for the oscillating

cylinder for F
s
"0)26 at t"363. The related time histories are shown in Figure 10 and the

trajectory of the cylinder in Figure 12. This case is very interesting from the point of view of
competition between various modes of vortex shedding. The third row in Figure 11,
corresponding to t"363, shows the Symmetric mode S of vortex shedding. However, the



Figure 10. Re"1500 #ow past a stationary and oscillating cylinder: time histories of the drag and lift
coe$cients and normalized cylinder displacements.
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pictures at some other time instants (not shown here) display the Antisymmetrical mode
A-III of vortex shedding. This can also be observed from the time histories of the lift
coe$cient and cross-#ow displacement of the cylinder in Figure 10. For example, for
320(t(350 (anti-symmetric shedding), approximately, the amplitude of the temporal
variation of lift coe$cient is quite large compared to that for 300(t(320 and t'350
(symmetric shedding). Similarly, the cross-#ow oscillations during 300(t(320 and



Figure 11. Re"1500 #ow past stationary and oscillating cylinder: vorticity and pressure "elds for the various cases.

Figure 12. Re"1500 #ow past an oscillating cylinder: trajectories of the cylinder for the various cases.

940 S. MITTAL AND V. KUMAR



Figure 13. Re"104 #ow past a stationary and oscillating cylinder: time histories of the drag and lift coe$cients
and normalized cylinder displacements.
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t'350 (symmetric shedding) are smaller than those during 320(t(350 (anti-symmetric
shedding). Interestingly, the #ow does not display such a mode competition for this value of
F
s
for Re"1000. This suggests a strong dependence of the #ow on Reynolds number for

this range of values of F
s
. The solution corresponding to F

s
"0)76 ("3F

o
) is shown in

Figure 10 and the last row of Figure 11. The #ow "eld looks quite similar to the #ow past
a stationary cylinder. The oscillation amplitudes are quite small and the path of the cylinder
motion resembles a "gure of 8 with comparable amplitudes of the cross-#ow and in-line
vibrations.

4.3. Re"10,000

Flows past stationary cylinder at Re"1000 and 1500 are associated with periodic
vortex shedding. At larger Reynolds number the #ow becomes more complex: the wake
ceases to exhibit a temporally periodic nature and is accompanied by a bias
towards a particular side, away from the center line [32]. The top row of Figure 13 shows
the time histories of the drag and lift coe$cients for a stationary cylinder places in a
uniform #ow at Re"104. The #ow "eld at t"200 is shown in Figure 14. The initial
condition for this computation is the unsteady solution at Re"103. The downward bias
of the wake and interesting vortex dynamics can be clearly observed from the "gure. Vortex
pairing and their tumbling around as they are convected downstream is quite apparent. The
near wake of the cylinder suggests that the vortex shedding still corresponds to the
Antisymmetrical mode A-I. In addition to the large vortex pair several smaller vortices are
also shed during each cycle of vortex shedding. These smaller vortices are responsible for
the additional frequencies in the power spectra for the drag coe$cient. The Strouhal
number based on the dominant frequency in the time histories of the drag and lift coe$cient
is 0)25.

The solution for the case with oscillating cylinder for F
s
"0)25 ("F

o
) is shown in Figures

13 and 14. The trajectory of the cylinder is shown in Figure 15. It can be observed that the
cylinder undergoes fairly large amplitude disorganized motion. For the stationary cylinder,
it was observed that the wake behind the cylinder is biased to one side. In the present case
swinging of wake to either side can be observed. Some of the frames during the simulation
suggest the Antisymmetrical mode A-III of vortex shedding. Figures 13 and 14 also show
the solution for F

s
"0)50 ("2F

o
). Even though the amplitudes of the unsteady components

of the lift and drag coe$cients is quite high, the amplitude of the cylinder oscillations is
quite small. It is interesting to observe that the non-dimensional dominant frequency in the
time variation of the drag coe$cient and the in-line oscillations is 0)12 while that
corresponding to lift coe$cient and cross-#ow oscillations is 0)22. Swinging of the wake and
jumps between modes of vortex shedding has been observed during the simulation. For
example, the #ow at t"810 and t"860 correspond to Antisymmetrical mode A-I and
Symmetrical mode S of vortex shedding respectively. To encourage larger amplitude
oscillations of the cylinder the computations were also carried out with a lower mass of the
oscillator (M"1). The solutions for this case are shown in Figures 13 and 14. In this case
the movement of the separation point on the cylinder surface is quite violent as a result of
the large amplitude cylinder motion. A large number of smaller vortices are shed in addition
to the ones associated with shedding for a stationary cylinder. Complex vortex interactions
can be noticed in the resulting wake. The cylinder oscillations in the cross-#ow direction are
more organized than those in the in-line direction. Finally, results are shown for F

s
"0)60

with the original mass of the oscillator (M"4)7273) in Figures 13, 14 and 15. The
vortex-shedding mode for this computation suggests the usual Antisymmetrical mode A-I.



Figure 14. Re"104 #ow past stationary and oscillating cylinder: vorticity and pressure "elds for the various cases.
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Figure 15. Re"104 #ow past an oscillating cylinder: trajectories of the cylinder for the various cases.
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The non-dimensional frequency for the variation of drag coe$cient is 0)12 while that for the
lift coe$cient is 0)24.

5. CONCLUDING REMARKS

Vortex-induced vibrations of a light cylinder placed in a uniform #ow at Reynolds
Number in the range of 103}104 have been studied using a stabilized space}time
"nite-element formulation. The cylinder, mounted on #exible supports, is allowed to
vibrate, both in the in-line and cross-#ow directions. The behavior of the oscillator for
various values of the structural frequency (F

s
) including those that are super-harmonics of

the vortex-shedding frequency for the stationary cylinder (F
o
) have been presented. The

e!ect of the mass of the cylinder for certain cases has also been studied. Flows at lower
Reynolds numbers are associated with organized wakes and the motion of the cylinder, at
least at frequencies close to F

o
, attains a limit cycle. The motion of the cylinder alters the

#uid #ow signi"cantly. For a certain range of the structural frequency, (F
s
), lock-in is

observed; the vortex-shedding frequency of the oscillating cylinder shifts to F
s
. In some

other cases the vortex-shedding frequency of the oscillating cylinder does not exactly match
the structural frequency; there is a slight de-tuning. This phenomenon is referred to as soft
lock-in. At certain values of F

s
, the motion of the cylinder a!ects not only the frequency of

vortex shedding but also the mode of vortex shedding. In many cases, the non-linear
#uid-oscillator system takes a long time to evolve from the initial condition (unsteady #ow
past stationary cylinder) to the "nal temporally periodic solution. Usually, the changeover
from the long transience to the limit cycle is quite abrupt. This points to the need of accurate
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long-time integration of the governing equations to study the dynamics of such non-linear
systems. At higher Reynolds numbers, the vortex shedding is quite disorganized and the
cylinder does not reach a temporally periodic solution. The vortex dynamics in the wake is
extremely complex and so is its e!ect on the motion of the cylinder. High Reynolds number
#ows, past stationary cylinders, are associated with wakes with a bias; the entire wake is
de#ected to one side, away from the center line. For oscillating cylinders, in certain cases,
swinging of wake from side-to-side, around the center line and mode competition between
various modes of vortex shedding is observed. Some of these features of the non-linear
#uid}structure interaction are quite sensitive to the Reynolds numbers. The trajectory of
the oscillating cylinder shows very interesting patterns including the well-known ¸issajou
"gure of 8. Several mechanisms of the non-linear oscillator for self-limiting its vibration
amplitude are observed. As the vibration amplitude increases, the #ow changes and so do
the aerodynamic forces acting on the cylinder, to limit the amplitude of oscillations. The
phenomenon of soft lock-in is also a mechanism of the oscillator to self-limit its oscillation
amplitude and is typically observed for light cylinders that exhibit high-amplitude
vibrations.
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