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An experimental and theoretical investigation of the in#uence of a parallel shear #ow on
the sound propagation in a circular duct is described. The theoretical model is based on
a perturbation expansion at low Mach number of the modal equation for parallel shear
#ows (Pridmore-Brown equation). In this model one assumes a rigid wall and no viscous or
thermal e!ects. The experimental study was performed at low Mach number (M(0)05)
with two propagating acoustic modes, and the Reynolds number range (0(Re(8500)
allowed various pro"les for the mean #ow. Measurement of the pressure gave the behaviour
of the axial wavenumber of modes 0 and 1 that were propagating in our experiment. A good
agreement between experimental and theoretical results was obtained.

( 2001 Academic Press
1. INTRODUCTION

This paper contributes to the study of acoustic propagation in ducts having parallel mean
shear #ow at low Mach number. This subject is of considerable interest in industrial
problems such as noise propagation in aircraft turbofan ducts or noise transmission in
machinery involving #uid #ow, and has been discussed several times in the literature. The
earliest study appears to be that of Pridmore-Brown [1], who established a modal equation
governing the transverse modes in parallel shear #ow ducts. This equation is the
compressible counterpart of the classical Rayleigh equation known in incompressible
parallel #ow instability theory [2]. It is therefore referred to either as the Pridmore-Brown
equation or the compressible Rayleigh equation. It should be noted that the same equation
is found in shallow water theory [3].

Following the paper by Pridmore-Brown, a series of papers dealt with this problem
[4}10], often motivated by the question of attenuation in lined ducts. In this same period,
Peube and Jallet [11] also devised a perturbation expansion technique to "nd the modes
and corresponding wavenumber at low Mach number. More recently, Ko [12] and Nagel
and Brand [13] proposed alternative approaches to the numerical solution of the
Pridmore-Brown equation. Agarwal and Bull [14] have also made a complete analysis of
many properties of axisymmetric and non-axisymmetric modes and wavenumbers, Gogate
and Munjal [15] proposed approximate solutions, and Bihhadi and Gervais [16] recently
0022-460X/01/360137#19 $35.00/0 ( 2001 Academic Press
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extended this treatment to take into account transverse temperature gradients. All of these
studies were primarily concerned with numerical calculation of wavenumbers and
transverse modes, and very few experimental results were presented to show the e!ect of
shear #ow on longitudinal wavenumbers of modes in ducts. Other authors have
investigated theoretical aspects of a modal approach to shear #ow duct problems.
Swinbanks [17], Nilsson and Brander [18] and Mani [19] posed the problem of
completeness of the transverse modes. In particular, Swinbanks analyzed the continuous set
of modes that occur in the Pridmore-Brown problem due to the presence of internal
singularities in the equation.

In this paper, both experimental and theoretical aspects of the multimodal acoustic
propagation in shear #ow ducts are presented. The geometry considered is a circular duct
and the conditions are assumed to be axisymmetric throughout the paper. The theoretical
model presented is based on an asymptotic expansion at low Mach number of the solution
of the Pridmore-Brown equation. The expansion enables one to obtain simple expressions
for axial wavenumbers, transverse modes and cut-o! frequencies for any mean #ow pro"le.
Results from these asymptotic expressions are then compared with numerical computations
and experimental results. The basis for the experimental results is the measurement of phase
di!erence between source and receiver in a circular duct with mean #ow. Measured phases
are processed to give experimental values of wavenumbers for Mach number below 0)05,
which can be compared with the theoretical results.

The paper is organized as follows: in section 2, the modal approach problem for
propagation in mean shear #ow is formulated. The theoretical treatment based on
perturbation expansion in the low Mach number is presented in section 3. Section 4
describes the experimental set-up and protocol and presents initial experimental results.
Section 5 contains the comparison between the experimental and theoretical parts, and
concludes with a proposition for a simple method to reconstruct the mean #ow pro"le from
the acoustic measurement.

2. MODEL PROBLEM

Consider a circular duct of radius R with rigid walls, in which there is a parallel shear #ow
with axial velocity ;(r) (see Figure 1).

The governing equations for axisymmetric in"nitesimal perturbations are the linearized
Euler and mass conservation equations (upon neglecting visco-thermal e!ects)
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having boundary condition Lp/Lr"0 for r"R, where u and v are the axial and radial
components of acoustics velocity, p is the acoustic pressure, o the acoustic density and o

0
the mean density.

By assuming adiabatic conditions, the relation between o and p (equation of state) is
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Figure 1. Geometry of the problem.

ACOUSTIC PROPAGATION IN SHEAR FLOW DUCTS 139
where c
0

is the sound speed at ambient temperature and (D/Dt)"L/Lt#; L/Lz is the
convective di!erentiation operator.

Taking the divergence of equations (1, 2) and the convective di!erential of equation (3),
one obtains
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This is not a wave equation for the pressure p since the source term depends on the
transverse velocity v and consequently on p, but a genuine wave equation can be obtained
by di!erentiating equation (5) once again; then
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Incidentally, a particular e!ect of the presence of shear #ow can be noticed in equation (6);
the equation for the pressure is not second order as in the classical case, but is third order.
This increase in the order of the wave equation re#ects the enlargement of the set of
solutions to include &&hydrodynamic'' solutions and the complex interaction between the
#ow and the acoustic wave [17].

In the modal approach, the acoustic quantities are written as

p(r, z)"P(r) e j(ut!bz), u(r, z)"A(r) e j(ut!bz), v(r, z)"B (r) e j(ut!bz) (7}9)

and one then obtains the Pridmore}Brown equation (PBE)
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where D>"L2/Lr2#(1/r)L/Lr is the transverse Laplacian, primes denote di!erentiation
d/dr, k"u/c

0
and M";(r)/c

0
is the local Mach number. The problem is then to solve

equation (10) in terms of eigenvalues b and eigenfunctions P to obtain the wavenumbers
and modes.

When made dimensionless, equation (10) can be written as

D>P#

2M@
1!KM
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where the radial co-ordinate r is made dimensionless by R, X"kR and K"b/k. In the
following, this dimensionless form of the equation will be used.

Except for the case of uniform #ow, there are usually no analytical solutions to equation
(10). Furthermore, once numerical solutions have been determined, it is impossible to
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establish the completeness of the modes because equation (10) is not of the regular
Sturm}Liouville type. A singularity is associated with the factor 1/(1!KM) in front of the
"rst derivative of P and it is responsible for the presence of a continuous set of eigenvalues
K3[1/M

max
,R), in addition to the classical discrete set [17, 19]. The following is restricted

to the study of the classical discrete eigenvalues, and K
n
and P

n
correspond, respectively, to

the eigenvalue and eigenvector of mode n.

3. THEORETICAL APPROACH: PERTURBATION EXPANSION

3.1. INTRODUCTION

Starting from the PBE with the hard wall boundary condition, the eigenvalue K and the
eigenfunction P are expanded with respect to M as follows. First one notes that
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where the averaged Mach number is M
0
";

m
/c

0
, with ;

m
"Q/S where Q is the #ow rate

and S the cross-sectional area.
These expansions when introduced into the PBE yield a series of linear problems at each

order (for frequencies far from cut-o!, the case of the cut-o! frequencies will be treated in
a later section).
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At each order l (l"1, 2, 3,2 ,) the linear problem is of the form
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In what follows, only the expansion at "rst order is treated. The expression for K
1n

is
found to be
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where the scalar product is de"ned by S f D gT":1
0

f (r)g (r) 2r dr and where the
normalization of P
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is SP
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T"1. Equation (21) is the most important result of the

theoretical part because it allows one to express the wavenumber in a simple form. An
almost similar result was obtained in reference [11], but with an error due to the omission of
the second term on the right-hand side of equation (21).

3.2. PROJECTION OF P
1n

To "rst order perturbation, the system of di!erential equations is reduced to equations
(15)}(18). Problem (15) is equivalent to "nding the transverse mode without mean #ow, and
one obtains
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Inserting this projection into equation (17) yields
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for nOq. It can be noted that the coe$cient A
nn

is a degree of freedom; it is chosen so that
P is normalized according to SP
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). At this point, a restriction on the

perturbation expansion is evident because of the proportionality of A
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Equation (22) provides one with the coe$cients SP
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T, and thus could be used to
obtain K
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from the scalar product of equation (19) by P

0n
; that would extend the

approximation to the second order in the Mach number.
It may be noted, using vectorial notation, that the new transverse eigenfunctions (with

shear #ow) may be written as a function of the eigenfunction without #ow,
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su$ciently small M
0
, one might think that this relation may be inverted. In such a case, an

approximated relation between the modes without and with shear #ow would be obtained,
and this property would suggest completeness of the transverse modes with shear #ow.
Nevertheless, it is mathematically dubious because of the continuous spectrum which is
present when there is shear #ow [17].
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3.3. CUT-OFF FREQUENCIES

So far, the analysis has been performed for frequencies away from the cut-o! frequencies
of the modes without shear #ow. That means that X has been given a "xed value di!erent
from c

n
, or, di!erently stated, that X was not of the form X"c

n
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Equation (27) contains a new term on the right-hand side that is due to the assumed
expression for X2. Then to obtain K

1n
, the solvability condition must be applied to equation

(27) (for second order) rather than equation (26) (for "rst order) as previously.
Eventually, one obtains
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Then, the cut-o! frequency corresponds to the case where there is a unique solution for
this equation (cf. reference [16]): i.e., it corresponds to g"K2
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Obviously, this value is di!erent from the one obtained without #ow (X
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n
) and that

obtained for uniform #ow, because of the e!ect of shear in the #ow, and it depends on K
1n,cl

and c
n
.

3.4. RESULTS

The "rst consequence of the analytical analysis developed in the previous section
concerns the "rst mode, referred to as mode 0. Indeed, from equation (21), it can be seen that
the expression of K

10
does not depend on the form of the means #ow pro"le: always
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"!1. Thus, to a "rst order with respect to M
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, the mode 0 wavenumber is
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Figure 2. Projection coe$cients for mode 0 (A
0q

) and mode 1 (A
1q

) as a function of q, X"4)3.
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with K
00
"$1. So mode 0 is simply convected by the average of the shear mean #ow as far

as "rst order in the Mach number is concerned.
For higher order modes (mode 1, 2, etc,2 ), the situation is more complicated because

P
0n

is not a constant function of r, and a particular mean #ow pro"le must be chosen. For
the case of a parabolic mean #ow pro"le this corresponds to m (r)"2(1!r2) with r)1 (the
factor of 2 ensures that 1/S :m dS"1). K

1n
is then calculated analytically from equation

(21) as
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[20], and this shows that, for a parabolic mean #ow pro"le, the wavenumbers of the higher
order modes (n*1) to the "rst order in Mach number are
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/X2. The perturbation is the same for all the higher order modes

and characterized by the factor 4/3. One can note that for the parabolic pro"le, K
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depend on the frequency X because Sm@P@
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also given by the empirical formula K
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proposed in references [14, 21], with
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M (r) dr, but it has been veri"ed that this is true only for a parabolic pro"le (as far

as polynomial pro"les are concerned).
The coe$cients A

nq
for n"0 (mode 0) and n"1 (mode 1) are shown in Figure 2. They

are very rapidly decreasing functions of q. That means that the projection of modes with
#ow on the modes without #ow can be very e$cient even with very few terms. Moreover,
one can see that the magnitude of P

1n
is much larger for mode 0 than for mode 1. Figures 3

and 4 show the behaviour of the pro"le for the pressure of modes 0 and 1, in the case of
downstream propagation. As already observed by reference [1] for instance, the in#uence of
the shear #ow on the shape of the pressure pro"le is much more important for mode 0 than



Figure 3. Acoustic pro"les for mode 0:***, without #ow t
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; } } } , with parabolic pro"le #ow /
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Figure 4. Acoustic pro"les for mode 1:***, without #ow t
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; } } } , with parabolic pro"le #ow /
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and X"4)3).
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for the higher order modes (in this case, mode 1). The cut-o! frequencies with parabolic #ow
are obtained from equation (30)

X
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n
(1!8

9
M2

0
) . (32)

The parabolic mean #ow pro"le is quite representative for real situations with low
Reynolds number R

e
";

0
R/l (where ;

0
is the averaged velocity over the cross-section of



Figure 5. Mean #ow pro"le for n
p
"2}10.
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the duct and l the kinematic viscosity) of the mean #ow, but as R
e

increases the #ow
becomes turbulent and as a result the pro"le becomes #atter and #atter. In order to model
for change in the pro"le in a simple manner, a family of pro"les of the form

m(r)"
n
p
#2

n
p

(1!rn
p
)

is proposed. They have a constant average over the cross-section and become #atter and
#atter as n

p
is increased. This family of pro"les is shown in Figure 5 for n

p
between 2 and 10.

The perturbative parts of mode 0 and mode 1 pro"les (P
10

and P
11

) are shown in Figures
6 and 7 for a given frequency, when the mean #ow pro"les are those proposed in Figure 5.
P
10

and P
11

represent the distortion of the total acoustic pro"les P
0

and P
1
, and they

decrease when n
p

increases, i.e., when the mean #ow pro"le becomes #atter and #atter for
a given #ow rate. Thus, the more the mean #ow has shear, the more the mode pro"les are
distorted.

3.5. NUMERICAL CALCULATION

In order to verify the "rst order approximation (in Mach number) of the preceding
analysis, a direct numerical integration of the PBE was carried out in the case of a parabolic
mean #ow pro"le. A fourth order Runge}Kutta method was used to integrate the PBE and
to "nd the eigenvalue K

n
, and the results are shown in Figures 8 and 9. These show both

downstream and upstream wavenumbers K
n

corresponding to propagating modes at the
frequency under consideration, for Mach numbers up to 0)5. It can be seen that the "rst
order approximation is valid for each mode for Mach numbers less than 0)05.

4. EXPERIMENTAL SET-UP AND RESULTS

The experimental set-up used allowed study of the axisymmetric acoustic propagation in
a circular duct which was very long compared to the wavelength. The medium used was air



Figure 6. Perturbative part (P
10

(r)) of the pressure for mode 0 for a range of mean #ow pro"les (n
p

varies),
X"4)3.

Figure 7. Perturbative part (P
11

(r)) of the pressure for mode 1 with di!erent mean #ow pro"le (n
p

varies),
X"4)3.

146 V. PAGNEUX AND B. FROELICH
in which a mean #ow was induced for low Mach numbers (0(M(0)05, with M";
0
/c

0
where ;

0
is the mean velocity over the cross-section of the duct and c

0
the sound speed).

The aim was to observe the in#uence of the mean #ow over the propagation in the duct
without the e!ects of duct terminations. The study, therefore, was carried out in the
temporal domain, using a short pulse, instead of the frequency domain, with a continuous
source. Indeed, though it was desired to obtain measurements to compare with harmonic
theory, the short pulse enabled one to avoid the re#ected signals from the duct termination



Figure 8. Downstream and upstream wavenumber K for mode 0 and mode 1 as a function of Mach number
M

0
. Parabolic mean #ow pro"le and X"4: ***, numerical computation: }} } , "rst order approximation.

Figure 9. Downstream and upstream wavenumber K for mode 0, 1 and 2 as a function of Mach number M
0
.

Parabolic mean #ow pro"le and X"8: ***, numerical computation: } } } , "rst order approximation.
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since they can be separated from the direct signal. The reason for wishing to avoid taking
account of the duct termination with a harmonic source is the di$culty of modelling the
radiation impedance of an open-ended duct for instance.

For the range of Mach numbers considered, the Reynolds number (Re";
0
R/l with

R the radius of the duct and l the kinematic viscosity of air) ranges from very low values
(Poiseuille #ow) to about 8500 (turbulent #ow). Hence, the #ow pro"le in the duct takes



Figure 10. Scheme of the experiment: signals are emitted from A for downstream propagation and from B for
upstream propagation.
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a variety of shapes; for Re close to zero the pro"le is parabolic and for higher and higher
values of Re up to 8500 the pro"le becomes #atter and #atter.

4.1. EXPERIMENTAL SET-UP AND FACILITIES

The principle of the experiment is presented in Figure 10: two transducers A and B
capable of both emitting and receiving, are located at the two extremities of the circular duct
of length (¸

1
) 110 cm and radius (R) 0)6 cm. The direction of #ow is from A to B. The signal

is emitted from A for downstream propagation and then received at B, then vice versa for
upstream propagation.

The physical set-up is presented in Figure 11. The #ow is induced by a descending piston
which pushes air through the duct. The maximum pressure imposed by the piston in 30 mb
relative to the atmospheric pressure. If one assumes the air to be incompressible (since
M(0)05), the #ow rate can be satisfactorily obtained by measuring the rate of movement
of the piston.

The piston cylinder is connected to the cavity where transducer A is located. Next, the air
goes through the duct at the outlet of which transducer B is placed. Then the air exits
through a system of calibrated vanes which are used to control the #ow rate. The two
transducers are connected to a commutator which can interchange their roles of emitter and
receiver. This commutator is connected both to a high frequency generator and an ampli"er
and digital analyzer. This latter outputs to a personal computer for data collection.

4.2. PARAMETERS

The distance ¸
2

between each of the transducers and the duct needs to be chosen to
minimize the pressure loss caused by the transducer constricting the #ow. However, if ¸

2
is

too large mode 1 is not excited su$ciently in the duct since the spatial shape of the wave is
too #at and hence too close to the shape of mode 0 at the entrance of the duct. Thus,
a compromise was found which gave acceptable pressure loss of the mean #ow and
excitation of mode 1 in the duct. With this compromise value for ¸

2
the range of #ow rates

proved to be from 0 to 7000 l/h corresponding to a maximal mean #ow velocity of about
17m/s.

The central frequency of the excited pulse has been chosen so as to give two propagating
modes in the duct (kR'3)83). To avoid propagating modes that are not axisymmetric the
sources have been placed as axisymmetrically as possible. Another constraint on the



Figure 11. Experimental set-up; areas through which the #ow goes are darkened.
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frequency arises from the need to be able to separate the two propagating modes in the
received signal; it has to be such that the group velocity of the two modes are su$ciently
di!erent. If this is well done, the wave packet of mode 0 is separated from the packet of
mode 1. In the experiment, kR&4)3 was chosen.

Figure 12 shows the received signal at B in the absence of mean #ow. It can be seen that
the two wave packets are well separated and allow one to select unambiguously the parts
corresponding to the two modes (i.e., mode 0 and mode 1). The times of arrival are t

1
"¸/c

0
for the "rst packet and t

2
"¸/v

g
K2t

1
for the second packet. The sensitivities of the

transducers were adjusted so that the signal received at A (B emitter) was the same as that
represented in Figure 12 for the receiver at B (A emitter). So, in the presence of mean #ow,
the di!erence between the upstream and the downstream propagation is due only to the
e!ect of the mean #ow. Results obtained for a Mach number of 0)02 are presented in
Figure 13 where it can be noted that the signal propagated downstream has a shorter time
of arrival than the upstream one. This is simply due to the convection e!ect of the mean
#ow.

For mode 0, the measurement was performed in two steps; "rst, a time window was
chosen to select only the "rst wave packet, and second a FFT was taken in this window and
this gives the phase due to the propagation between the emitter and the receiver at the
dominant frequency of the emitted signal (40 kHz). The same procedure was repeated after
swapping the roles of emitter and receiver of A and B to obtain the result of downstream
propagation. Taking the di!erence between the downstream and upstream phase
D/"/

d
!/

u
shows the e!ect of the mean #ow. The procedure is the same for mode

1 except that a di!erent time window is taken to pick out only the second wave packet. At



Figure 12. Temporal signal at the receiver without #ow.

Figure 13. Comparison between signals at the receiver for downstream and upstream propagation, M
0
"0)02.
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each combination of #ow rate and selected mode an average of over 100 measurements were
made and the standard deviation did not exceed 2%.

The phase di!erences D/ are presented in Figure 14 which shows that for both modes D/
increased with the Mach number. The slope for mode 0 is quite constant but, for mode 1,
some change in the slope can be observed.



Figure 14. Upstream}downstream phase di!erence, D/"/
d
!/

u
for mode 0 (L) and for mode 1 (#), as

functions of Mach number.
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5. COMPARISON BETWEEN THEORY AND EXPERIMENT

The perturbation theory of section 3 enables one to express the approximations for the
downstream and upstream phases for mode n as

/
d
"!k¸

1
(K

0n
#K

1n
M

0
), /

u
"!k¸

1
(K

0n
!K

1n
M

0
),

which yield (D/
n
"/

d
!/

u
for mode n)

D//M
0
"!K

1n
C

0
, (33)

where C
0
"2k¸

1
and K

1n
is as expressed by equation (21). The factor C

0
depends only on

frequency, temperature and length of the duct. Since it does not vary with the mean #ow, it
is considered here only as a normalization constant. D/

n
/M

0
is normalized by its mean

value for mode 0. That is to say that C
0

is experimentally determined by SD/
0
/M

0
T, and

that one is looking at the quantity C
n
"D/

n
/M

0
/SD//M

0
T"D/

n
/(C

0
M

0
).

Figure 15 shows the behaviour of the experimental values for C
n
for modes 0 and 1 when

the Mach number varied. It is seen that C
0

is fairly constant and approximately close to
unity on the range of Mach numbers considered as predicted by the theory. On the other
hand, for mode 1, C

1
is very close to 4/3, the theoretical value of !K

1n
for a parabolic

pro"le, for M
0

close to zero. It is a consistent result because at such a low value of Mach
number the mean #ow pro"le is almost certainly parabolic. As M

0
is increased C

1
decreases

from 1)33 to 1)1. It must be noted that the mean #ow pro"le cannot be considered to be
strictly constant in the experiment because of the inlet length ¸

e
necessary for the mean #ow

pro"le to be established in the duct. By applying classical evaluation of this entry length
[22], it can be seen that ¸

e
should be maximum in the laminar-turbulent transition and then

decrease sharply for fully developed turbulent #ow. Nevertheless, the mean #ow pro"le can
be considered to be slowly changing on the scale of the acoustic wavelength, and in this case
K

1n
is expressed as a functional of mN in equation (21), where mN (r) is the averaged value of

m along the duct. To model the fact that the mean #ow pro"le changes from a parabolic



Figure 15. Experimental values of C
n
for mode 0 (n"0) and mode 1 (n"1) as a function of Mach number.

Figure 16. Theoretical values !K
1n

for mode 0 (L) and for mode 1 (#) as a function of n
p

representing the
shape of the mean #ow pro"le.
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shape for M
0

close to zero to turbulent shape (i.e., #at), the factor !K
1n

is shown in
Figure 16 as a function of the integer number n

p
characterizing the family of pro"les

m (r)"(n
p
#2)/n

p
(1!rn

p
) (cf. Figure 5). The qualitative behaviour of C

1
is recovered with

this family of pro"les, a fact that tends to con"rm the validity of the theoretical model.
At this point, it seems possible to pose a kind of inverse problem for "nding the mean #ow

pro"le from a knowledge of C
1
. One assumes a pro"le shape of the form, where n is a chosen



Figure 17. Coe$cient c as a function of Mach number.

value,

m(r)"a (1!(1!c)r2!crn), (34)
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where a"1/(1!(1!c)/2!2c/ (n#2)) in order that S1 D mT"1. Then from the
expression for K

1n
(equation (21)) the only remaining unknown coe$cient, c, can be shown

to be

c"
4#3K

1n
!3(n!2)/(n#2)K

1n
!2(1!6I)!12J/X2

, (35)

where I"Srn`1P
0n

D P
0n

T and J"SnrnP
0n

DP@
0n

T are given integrals which have been
numerically computed. If one assumes that K

1n
is determined by the experimental value

C
n
"!K

1n
, one can obtain the value for c from C

n
and hence the pro"le of the mean #ow

(averaged all along the duct). It can be noted that if K
1n
"!4/3, then c"0 and the pro"le

is parabolic. By trying several values of n in equation (34), it was found that n"40 is a value
suitable for approximating typical turbulent mean #ow pro"le as the one proposed in
reference [14]. With this value of n, Figure 17 shows the behaviour of the coe$cient c as M

0
varies. As could be anticipated, for M

0
P0, c is very close to zero which means that the

mean #ow pro"le is nearly parabolic. For larger values of M
0
, c increases to 0)7 con"rming

that the pro"le is becoming #atter because the parabolic part in the assumed pro"le is less
and less important. Figure 18 presents the change of the mean #ow pro"le as M

0
varies, and

it illustrates the results that the inverse method is capable of giving.

6. CONCLUSION

The in#uence of shear #ow on the acoustic propagation in a duct has been investigated,
both theoretically and experimentally. A perturbation expansion is applied to obtain
analytical forms for the wavenumbers of transverse modes at low Mach number, and this
approximation is valid for M

0
(0)05. The results show that mode 0 is not sensitive to the



Figure 18. Set of mean #ow pro"les for di!erent Mach number M
0

obtained by the inverse problem method.
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speci"c shape of mean #ow pro"le. The higher order modes, however, depend on the shape
of the mean #ow pro"le. These theoretical results compare favourably with experimental
results, and an inverse treatment of experimental data is proposed for obtaining
a measurement of the mean #ow pro"le.
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