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The natural and forced vibrations of a continuous Warren truss resting on equidistant
roller supports are studied. In the analyses, the longitudinal inertial forces are neglected in
the equation of motion and the mass of the truss is replaced by two sets of lumped masses at
the nodes. In the forced vibration case, the truss is subjected to transverse harmonic loads
acting at the nodes. The truss can be considered as an equivalent system with cyclic
bi-periodicity: periodicities due to the repetitive units of the truss and the supports
respectively. Therefore, the governing equation for such a system can be uncoupled by
applying U-transformation twice to form a set of single-degree-of-freedom equations. Such
equations can be used to solve for the natural frequencies of the trusses or their responses
due to external excitations. Typical Warren trusses are taken as examples to demonstrate the
advantages of the proposed method and the accuracy that can be achieved. The response of
a truss with six substructures and four supports with a harmonic load acting at the centre
node is investigated.

( 2001 Academic Press
1. INTRODUCTION

Bi-periodic structures were investigated by many researchers using various methods,
including transfer matrix method [1], wave approach [2}4], standard sti!ness and
transmission methods [5], and U-transformation method [6, 7]. The bi-periodic Warren
truss considered in the present study is a periodic structure with periodic supports. The
period of the truss is normally di!erent from that of the supports.

The transverse vibration of a Warren truss with two simply supported ends and lumped
masses at the nodes was investigated by Cai et al. [8] using U-transformation technique
[9}11] where the truss was regarded as a single periodic structure. More recently, the static
analysis of a Warren truss with equidistant roller supports subjected to transverse loading
has been solved by Cai et al. [12] using the same technique. Details of U-transformation
and its applications are given in the book by Chan et al. [13]. In this paper, the
U-transformation technique is applied to the natural and forced vibration analyses of
a continuous Warren truss with periodic roller supports. As an example, a Warren truss
with 2n substructures and n#1 supports is considered. The numerical results of natural
frequencies for n"2, 3, 4, 5, 6, 30, R are found from the frequency equations. The response
0022-460X/01/360157#18 $35.00/0 ( 2001 Academic Press
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of a truss with six substructures and four supports under the action of loading applied at the
centre node is also studied.

The proposed dynamic analysis approach has many obvious advantages over the
numerical methods in the optimal design, sensitivity analysis and computing cost. It must
be pointed out that it is not easy to obtain accurate results using numerical methods in some
cases because the natural frequencies of a periodic structure are densely populated.
Therefore, the frequencies could be fairly close. In the present approach, the frequency
equation of a continuous truss with n spans is uncoupled to form n individual frequency
equations and the natural frequencies obtained from each equation are dispersed.
Consequently, accurate natural frequencies can be easily found even if n is large.

2. FORMULATION OF THE PROBLEM

Consider a Warren truss with equidistant roller supports subjected to transverse nodal
loads (Figure 1). The truss consists of a linear assembly of identical four-bar sets, as shown
in Figure 2(b), pin-joined at the nodes. Only axial forces act on these bars. The bars in the
longitudinal direction are assumed to have modulus of elasticity E

1
, cross-sectional area

A
1

and length ¸
1

while the inclined bars have modulus of elasticity E
2
, cross-sectional area

A
2

and length ¸
2
. Furthermore, the masses of the bars are assumed to be lumped at the

nodes. They are denoted by M
1

and M
2
, and attached to each of the lower and upper nodes

respectively (Figure 1). In Figure 1, the two integers N and n#1 denote the total numbers
of substructure units and supports respectively. The integer p denotes the number of
substructure units between two adjacent supports.

The Warren truss is composed of a number of repetitive substructure units and a typical
substructure unit is shown in Figure 2(a). Each substructure unit consists of four bars and
four nodes. The serial number of the node is made up of two integers in which the "rst one
denotes the ordinal number of the node in the substructure unit and the second one is the
ordinal number of the substructure unit. The serial numbers of the nodes are given in round
brackets. In order to avoid repetition in the analysis, we consider only the masses and the
nodal loads of two nodes on the left of every substructure unit.

Strictly speaking, such a truss is not a cyclic bi-periodic structure. However, we can
convert it into an equivalent cyclic bi-periodic structure so that the U-transformation
approach can be applied to uncouple the equation of motion. First, the truss is extended by
its symmetrical image and an anti-symmetric loading is applied on the corresponding
extended part as shown in Figure 3. The two bars denoted by dotted lines (Figure 3) are
additional ones without masses. If the two pairs of extreme nodes a}a@ and b}b@ are
imaginarily joined by hinges, the "rst substructure unit is connected to the last one and such
an extended system possesses cyclic periodicity. Under conditions of antisymmetric
vibration, it can be readily shown that the two additional bars are not subjected to any load.
Figure. 1. Plane truss with equidistant roller supports.



Figure. 2. Substructure unit. (a) The serial numbers of the nodes. (b) The displacements of substructure.

Figure. 3. Equivalent system with cyclic bi-periodicity subjected to antisymmetric loads.
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As a result, the antisymmetric vibration of the extended truss will not be a!ected by such
additional bars and the extended truss is equivalent to the original one.

Secondly, the supports are replaced by support reactions which can be determined by the
constraint conditions (zero displacements) at supports. Subsequently, the equivalent truss
can be treated as a cyclic single periodic structure. Such a structure can be analyzed by
means of the U-transformation technique [8].

To carry out analyses of such a structure, one has to de"ne the total potential energy and
kinetic energy of the system. They can be de"ned as follows.

2.1. TOTAL POTENTIAL ENERGY

The total potential energy < of the equivalent system with 2N substructure units can be
expressed as

<"
2N
+
j/1

<
j
, (1)
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where <
j
denotes the total potential energy of the jth substructure unit. In general, <

j
is

<
j
"1

2
MdM NT

j
[K]

sub
MdN

j
!1

2
(MdM NT

j
MFN

j
#MdNT

j
MFM N

j
), (2)

where [K]
sub

denotes the sti!ness matrix of the substructure, MdN
j

and MFN
j

denote the
displacement and load vectors for the jth substructure unit, respectively, and the superior
bar indicates complex conjugation.

For the present case, MdN
j
can be de"ned as

MdN
j
"G

d
L

d
R
H
j

, (3a)

where

Md
L
N
j
"G

u
1

v
1

u
2

v
2
H
j

, Md
R
N
j
"G

u
3

v
3

u
4

v
4
H
j

(3b)

with its components shown in Figure 2(b). The parameters u and v denote the longitudinal
and transverse displacement components respectively.

As two adjacent substructure units must be continuous, we have

Md
R
N
j
"Md

L
N
j`1

, j"1, 2,2, 2N. (4a)

Due to cyclic periodicity, one can show that

Md
L
N
2N`1

,Md
L
N
1
. (4b)

For each substructure unit, the sti!ness can be expressed in matrix form as

[K]
sub

"C
K

11
K

12
K

21
K

22
D , (5)

where

[K
11

]"

K
1
#K

2
cos2 a K

2
sin a cos a !K

2
cos2 a !K

2
sin a cos a

K
2
sin a cos a K

2
sin2 a !K

2
sin a cos a !K

2
sin2 a

!K
2
cos2 a !K

2
sin a cos a K

1
#2K

2
cos2 a 0

!K
2
sin a cos a !K

2
sin2 a 0 2K

2
sin2 a

,

[K
12

]"[K
21

]T"

!K
1

0 0 0
0 0 0 0

!K
2
cos2 a K

2
sin a cos a !K

1
0

K
2
sin a cos a !K

2
sin2 a 0 0

,

[K
22

]"

K
1
#K

2
cos2 a !K

2
sin a cos a 0 0

!K
2
sin a cos a K

2
sin2 a 0 0

0 0 K
1

0
0 0 0 0

,
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in which K
1
,E

1
A

1
/¸

1
, K

2
,E

2
A

2
/¸

2
and a denotes the angle of inclination of the

inclined bars as shown in Figure 1.
As external excitations as well as support reactions are acting on the truss, the load vector

can be written as

(1) ;nsupported nodes

MFN
j
"[0 F

(1,j)
0 F

(2,j)
0 0 0 0]Te*ut, jO1#(k!1)p, k"1, 2,2, 2n. (6a)

(2) Supported nodes

MFN
j
"[0 F

(1, j)
#P

k
0 F

(2,j)
0 0 0 0]Te*ut, j"1#(k!1)p, k"1, 2,2, 2n, (6b)

where P
k
indicates the amplitude of the support reaction at the kth support; F

(1, j)
and F

(2, j)
denote the amplitudes of the external excitations acting at the nodes (1, j ) and (2, j),
respectively; and u and t denote the frequency and time variable respectively. In the above
expressions, the longitudinal forces are assumed to be zero.

As the external excitations acting on the extended truss are antisymmetric by de"nition,
one can show that

F
(1,2N~j`2)

"!F
(1, j)

, j"2, 3,2,N, (7a)

F
(2,2N~j`1)

"!F
(2, j)

, j"1, 2,2,N, (7b)

F
(1,1)

"F
(1,N`1)

"0 (7c)

in which F
(1,j)

( j"2, 3,2, N) and F
(2, j)

( j"1, 2,2,N) are the amplitudes of the external
excitations acting on the original truss.

2.2. KINETIC ENERGY

The kinetic energy ¹ of the equivalent truss can be expressed as

¹"

2N
+
j/1

¹
j
, (8)

where ¹
j
denotes the kinetic energy of the jth substructure unit. One can show readily that

¹
j
"1

2
Md01 ]T

j
[M]

sub
Md0 ]

j
, (9)

where [M]
sub

denotes the mass matrix of a single substructure unit and the dot denotes
di!erentiation with respect to the time variable t.

If the inertial forces in the longitudinal direction are neglected, [M]
sub

can be expressed as

[M]
sub

"C
M

11
0

0 0D , (10)

where

[M
11

]"

0 0 0 0
0 M

1
0 0

0 0 0 0
0 0 0 M

2

.
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Note that MdN
j

( j"1, 2,2, 2N) must satisfy the continuity conditions (equations (4a)
and (4b)), and therefore, they are not independent variables.

3. THE FIRST APPLICATION OF THE U-TRANSFORMATION

As the above equivalent system possesses cyclic periodicity due to repetition of the
substructure units, the U-transformation can be used to decompose the equations of motion
into a set of uncoupled equations. The theory of U-transformation was described in detail
by Chan et al. [6], and therefore, only the pertinent points will be highlighted here.

In the present study, U-transformation is carried out for the displacements MdN
j
, that is

MqN
m
"

1

J2N

2N
+
j/1

e~*( j~1)mtMdN
j
, m"1, 2,2, 2N, (11a)

M f N
m
"

1

J2N

2N
+
j/1

e~*( j~1)mtMFN
j
, m"1, 2,2, 2N, (11b)

where MqN
m

and M f N
j
are the transformed vectors, t"n/N and i"J!1. The system is

anti-symmetric and we have

MqN
2N~m

"MqN N
m
, m"1, 2,2, N (12)

It can be shown readily that the inverse transformations can be de"ned as

Md]
j
"

1

J2N

2N
+

m/1

e*(j~1)mtMqN
m
, j"1, 2,2, 2N, (13a)

MFN
j
"

1

J2N

2N
+

m/1

e*( j~1)mtM f N
m
, j"1, 2,2, 2N. (13b)

Substituting equations (13a) and (13b) into equations (2) and (9) for the total potential
energy< and kinetic energy ¹, summing up 2N terms and noting the identity characteristic
of U-transformation

1

2N

2N
+
j/1

e*(j~1)(m~n)t"G
1,

0,

m!n"0, $2N, $4N,2,

m!n"other integers
(14)

we have

<"
2N
+

m/1

1

2
MqN NT

m
[K]

sub
MqN

m
!

2N
+

m/1

1

2
(MqN NT

m
M f N

m
#MqNT

m
M fN N

m
), (15)

¹"

2N
+

m/1

1

2
MqRN NT

m
[M]

sub
MqR N

m
. (16)

As in the case of Md]
j
, the transformed vector MqN

m
can be written as

MqN
m
,G

q
L

q
R
H
m

. (17)
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Taking into account the continuity condition between adjacent substructure units, one
can show that

Mq
R
N
m
"e*mtMq

L
N
m
, m"1, 2,2, 2N. (18)

The above equation indicates that the corresponding components of Mq
R
N
m

and Mq
L
N
m

have
the same amplitude but there is a phase di!erence of mt.

In matrix form, equation (18) can be rewritten as

MqN
m
"[t]

m
Mq

L
N
m
, m"1, 2,2, 2N, (19)

where

[t]
m
"C

I

e*mtID
in which [I] is the unit matrix of fourth order. It follows that [t]

2N~m
"[tN ]

m
.

Using equation (19) to eliminate Mq
R
N
m

from (15) and (16), one can show that

<"
2N
+

m/1

1

2
MqN

L
NT
m
[K]*

m
Mq

L
N
m
!

2N
+

m/1

1

2
(MqN

L
NT
m
M f N*

m
#Mq

L
NT
m
M fN N*

m
), (20)

¹"

2N
+

m/1

1

2
MqRN

L
NT
m
[M]*

m
MqR

L
N
m
, (21)

where

[K]*
m
"[tN ]T

m
[K]

sub
[t]

m
,

[M]*
m
"[tN ]T

m
[M]

sub
[t]

m
,

M f N*
m
"[tN ]T

m
M f N

m
"G

0
f
(1,m)

#f 0
(1,m)

0
f
(2,m)

H e*ut.

The explicit forms for [K]*
m
, [M]*

m
, f

(1,m)
, f 0

(1,m)
and f

(2,m)
are given in Appendix A.

For a dynamic system, the Lagrange equations of motion [14] can be expressed as

d

dt A
L¹
LqR

i
B!

L¹
Lq

i

#

L<
Lq

i

"Q
i
, i"1, 2,2, (22)

where q
i
and Q

i
denote the generalized co-ordinate and non-potential force respectively. In

the present case, the loading can be regarded as potential forces. Therefore, the
corresponding potential energy is included in <, and Q

i
vanishes. Furthermore, q

i
are

elements of the transformed vector Mq
L
N
m
.

Substituting the total potential energy < and kinetic energy ¹ from equations (20) and
(21) into equation (22), the equations of motion can be written as

[K]*
m
Mq

L
N
m
#[M]*

m
MqK

L
N
m
"M f N*

m
, m"1, 2, . . . , N, 2N. (23)
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Expressing Mq
L
N
m
"[q

(1,m)
, q

(2,m)
, q

(3,m)
, q

(4,m)
]Te*ut, one has

([K]*
m
!u2[M]*

m
) G

q
(1,m)

q
(2,m)

q
(3,m)

q
(4,m)

H"G
0

f
(1,m)

#f 0
(1,m)

0
f
(2,m)

H , m"1, 2,2, N, 2N. (24)

Note that the above equation is a set of independent linear simultaneous equations having
four variables.

As the inertial terms only depend on transverse deformations (q
(2,m)

and q
(4,m)

), we can
eliminate q

(1,m)
and q

(3,m)
, and the above equation becomes

C
k
11,m

!u2M
1

k
12,m

k
21,m

k
22,m

!u2M
2
D G

q
(2,m)

q
(4,m)
H"G

f
(1,m)

#f 0
(1,m)

f
(2,m)

H , m"1, 2,2,N, 2N,

(25)

where

k
/11,m

"k
22,m

"

2K
1
sin2 a[(1!cosmt)(2b!cos2 a)#4cos2 a]

2b2 (1!cosmt)#4b cos2 a#cos4 a
,

k
/12,m

"kM
21,m

"!

2K
1
sin2 a (1#e~imt)[2 cos2 a#b(1!cosmt)]

2b2 (1!cosmt)#4b cos2 a#cos4 a

with b"K
1
/K

2
.

The above equation can be easily solved and the solution can be expressed as

G
q
(2, m)

q
(4, m)

H"
1

D
m
C
k
22,m

!u2M
2

!k
21,m

!k
12,m

k
11,m

!u2 M
1
D G

f
(1,m)

#f 0
(1,m)

f
(2,m)

H (if D
m
O0)

m"1, 2,2 , 2N, (26a)

where

D
m
"(k

11,m
!u2M

1
)(k

22,m
!u2M

2
)!k

12,m
k
21,m

. (26b)

One can then obtain the transverse deformations by carrying out the inverse
U-transformation:

v
(1, j )

"

1

J2N

2N
+

m/1

ei( j!1)mt 1

D
m

[(k
22,m

!u2 M
2
) ( f

(1,m)
#f 0

(1,m)
)!k

12,m
f
(2, m)

], (27a)

v
(2,j )

"

1

J2N

2N
+

m/1

ei(j!1)mt 1

D
m

[!k
21,m

!( f
(1,m)

#f 0
(1,m)

)#(k
11,m

!u2 M
1
) f

(2, m)
], (27b)

where v
(1,j )

and v
(2,j )

denote the amplitudes of the transverse displacements for nodes (1, j)
and (2, j ) respectively. In the above equations, f 0

(1, m)
is a function of P

k
(see Appendix A)

and it can be determined by considering the constraint condition at the support.
Mathematically, the constraints can be written as

v(1, (s!1)p#1)"0, s"1, 2,2, 2n. (28)
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From equation (27a), we have

2n
+
k/1

b
s,k

P
k
#<

s
"0, s"1, 2,2, 2n (29)

in which

b
s,k

,

1

2N

2N
+

m/1

ei(s!k)mpt 1

D
m

(k
22,m

!u2M
2
),

<
s
"

1

J2N

2N
+

m/1

ei(s!k)mpt 1

D
m

[(k
22,m

!u2M
2
) f

(1,m)
!k

12,m
f
(2, m)

].

Here, <
s
represents the transverse displacement of the sth supported node caused by the

external harmonic excitation for the equivalent system without supports. It can be veri"ed
that <

s
(s"1, 2,2, 2n) possess antisymmetry, i.e.,

<
2n`2~s

"!<
s
, s"2,3,2 , n, (30a)

<
1
"<

n`1
"0. (30b)

Equation (29) is a set of linear simultaneous equations with unknowns P
k
(k"1, 2,2 , 2n).

The coe$cients b
s,k

(s, k"1, 2,2, 2n) possess cyclic periodicity as well, namely

b
1,1

"b
2,2

"2"b
2n,2n

, (31a)

b
s,1

"b
s`1,2

"2"b
2n,2n~s`1

"b
1,2n~s`2

"2"b
s~1,2n

, s"2, 3,2, 2n. (31b)

4. THE SECOND APPLICATION OF THE U-TRANSFORMATION

As equation (29) possesses cyclic periodicity due to the repetition of the spans,
U-transformation can be performed to uncouple the equation to form a set of
single-degree-of-freedom equations. These equations can then provide us with the explicit
solutions of the generalized support reactions.

Let the U-transformation be

Q
r
"

1

J2n

2n
+
s/1

e!i (s!1)ru P
s
, r"1, 2,2 , 2n. (32a)

The inverse U-transformation is then

P
s
"

1

J2N

2n
+
r/1

ei(s!1)ru Q
r
, s"1, 2,2 , 2n (32b)

with u"n/n"pt.

Premultiplying (29) by (1/J2n)
2n
+
s/1

e!i (s!1)ru , we have

2n
+
k/1

b
k,1

e!i (k!1)ru Q
r
#b

r
"0, r"1, 2,2 , 2n, (33)

where

b
k,1

"

1

2N

2N
+

m/1

ei(k!1)mu 1

D
m

(k
22, m

!u2M
2
), (34a)

b
r
"

1

J2n

2n
+
s/1

e~i (s!1)ru <
s
. (34b)
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Obviously, the above equation is a set of single-degree-of-freedom equations. Taking into
account the antisymmetric property, one can show that

b
r
"!

2i

J2n

n
+
s/2

sin [(s!1)ru]<
s

(34c)

and

b
2n~r

"bM
r
, b

n
"b

2n
"0. (34d)

Therefore, equation (33) can be rewritten as

a
r
(u)Q

r
#b

r
"0, r"1,2,2 , n!1, (35a)

Q
2n~r

"QM
r
, r"1, 2,2 , n!1, (35b)

Q
n
"Q

2n
"0, (35c)

where

a
r
(u)"

1

p

p
+
k/1

k
22,r`(k~1)2n

!u2M
2

D
r`(k~1)2n

.

If a
r
(u)O0 (r"1, 2,2, n!1), the solution for Q

r
in equation (35a) can be expressed as

Q
r
"!

b
r

a
r
(u)

. (36)

When the speci"c structure and loading parameters are given, Q
r
can be calculated and

the support reactions as well as the nodal displacements can be found.
Recalling the de"nitions of both generalized support reactions f 0

(1, m)
(Appendix A) and

Q
r
, one can establish a direct relation between f 0

(1, m)
and Q

r

f 0
(1,m`(k~1)2n)

"

1

Jp
Q

m
, m"1, 2,2, 2n, k"1, 2,2, p. (37)

In using the above equation, one can calculate the nodal deformations without "rst
"nding the support reactions. It will save considerable computing e!ort.

If a
r
(u)"0, Q

r
will approach in"nity and resonance will occur, that is

p
+
k/1

k
22,r`(k~1)2n

!u2M
2

D
r`(k~1)2n

"0, r"1, 2,2, n!1. (38)

It is obvious that the roots, u, of equation (38) are the natural frequencies of the system.
Note that these vibration modes have non-zero support reactions.

For certain modes of vibration, the support reactions are identically zero. Therefore, it is
not possible to calculate the natural frequencies using the above approach. The
corresponding frequency equation for these cases can be obtained by setting equation (26b)
to zero:

M
1
M

2
u4!(M

1
k
22,m

#M
2
k
11,m

)u2#k
11,m

k
22,m

!k
12,m

k
21,m

"0,

m"n, 2n ,2, pn, (39)

where m is the number of half waves of the natural mode of the original truss. The natural
frequencies can be obtained by solving equation (39).
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5. EXAMPLES

5.1. NATURAL VIBRATION

Consider a continuous Warren truss having 2n substructure units and n#1 supports.
The structural parameters are

K
1
"K

2
"K, M

1
"M

2
"M a"

n
3
, p"2 (40a)

and

N"2n, t"

n
2n

, u"

n
n
, b"1, (40b)

where n is an arbitrary positive integer.
Substituting these parameters into equation (38) yields

(K
1
(r)!X) [(K

1
(r#2n)!X)2!K

2
(r#2n)]#(K

1
(r#2n)!X)

[(K
1
(r)!X)2!K

2
(r)]"0, r"1, 2,2, n!1, n"2, 3,2, R, (41)

where

K
1
(m)"

6(11!7 cosmt)

49!32 cosmt
,

K
2
(m)"

288(1#cos mt)(3!2 cosmt)2

(49!32 cosmt)2
,

X,

Mu2

K

and X denotes the non-dimensional frequency parameter. From the above equation, one
can obtain the natural frequencies and the results for various numbers of spans are
tabulated in Table 1. There are 3(n!1) natural frequencies altogether.

One can further "nd the frequencies corresponding to the cases when the support
reactions are identically zero. From equation (39), one can obtain

(K
1
(m)!X)2!K

2
(m)"0, m"n, 2n. (42)

The solutions to the above equations are

X"4
3

(for m"2n), 6
49

(11G6 J2) (for m"n). (43)

The corresponding frequencies are

u"0)55490966S
K

M
, 1)1547005 S

K

M
, 1)5446530S

K

M
(44)

These natural frequencies are independent of n and in agreement with those for the
portion of truss between two adjacent supports, i.e., the case n"1. The numerical results
are also shown in Table 1. They represent the lower limits of the three frequency bands.

The total number of the natural frequencies is equal to 3n, which is in agreement with the
number of degrees of freedom for the truss considered. The results in Table 1 shown that all
natural frequencies lie in three frequency bands. If n approaches in"nity, each band is full of
natural frequencies.



TABLE 1

Natural frequency u of the trusses with p"2

ks

n 1 2 3

2 0)55490966 0)5822044 1)1547005 1)158549 1)5446530 1)545193

3 0)55490966 0)6016117 1)1547005 1)159699 1)5446530 1)545597
0)5670646 1)156978 1)544889

4 0)55490966 0)5822044 1)1547005 1)158549 1)5446530 1)545193
0)5617220 0)6113639 1)156144 1)160089 1)544785 1)545807

5 0)55490966 0)5935839 1)1547005 1)159298 1)5446530 1)545428
0)5592594 0)6166260 1)155682 1)160267 1)544737 1)545922
0)5724387 1)157641 1)544996

6 0)55490966 0)5822044 1)1547005 1)158549 1)5446530 1)545193
0)5579257 0)6016117 1)155406 1)159699 1)544711 1)545597
0)5670646 0)6197189 1)156978 1)160363 1)544889 1)545990

30 0)55490966 0)5822044 1)1547005 1)158549 1)5446530 1)545193
0)5550296 0)5858539 1)154731 1)158818 1)544655 1)545268
0)5553907 0)5896588 1)154821 1)159068 1)544662 1)545346
0)5559930 0)5935839 1)154968 1)159298 1)544673 1)545428
0)5568375 0)5975856 1)155165 1)159508 1)544690 1)545512
0)5579257 0)6016117 1)155406 1)159699 1)544711 1)545597
0)5592594 0)6054014 1)155682 1)159869 1)544737 1)545682
0)5608393 0)6094850 1)155985 1)160021 1)544768 1)545766
0)5626669 0)6131870 1)156308 1)160153 1)544803 1)545847
0)5647421 0)6166260 1)156641 1)160267 1)544844 1)545922
0)5670646 0)6197189 1)156978 1)160363 1)544889 1)545990
0)5696318 0)6223847 1)157313 1)160440 1)544940 1)546049
0)5724387 0)6245478 1)157641 1)160500 1)544996 1)546097
0)5754783 0)6261437 1)157959 1)160543 1)545057 1)546133
0)5787387 0)6271220 1)158262 1)160568 1)545123 1)546155

R [0)55490966, 0)627451292)t [1)1547005, 1)1605769) [1)5446530, 1)5461623)

Note: Multiplier * JK/M.
s k denotes the ordinal number of the frequency band.
t [u

L
, u

U
) represents u

L
)u(u

U
.
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The upper and lower limits of the frequency bands can be obtained by solving equation
(41) with r"0, n. The natural frequencies can be shown to be

u
1L
"0)55490966S

K

M
, u

1U
"0)62745192 S

K

M
, (45a)

u
2L
"1)1547005S

K

M
, u

2U
"1)1605769 S

K

M
, (45b)

u
3L
"1)5446530S

K

M
, u

3U
"1)5461623 S

K

M
, (45c)

where u
kL

and u
kU

(k"1, 2, 3) denote the lower and upper limits of the kth frequency band
respectively. Note that the lower limits agree with those obtained using equation (44).
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In Table 1, the numerical results show that the natural frequencies of the continuous truss
with di!erent assigned numbers of spans do not include the upper limit of the three
frequency bands, but they can approach every upper bound of the bands as a limit when
n approaches in"nity.

When n is a large number, the natural frequencies are densely distributed in each
frequency band. It is not easy to "nd the dense natural frequencies by conventional
eigenvalue numerical methods. In the present approach, the frequency equation of the
continuous truss with n spans is uncoupled to form n frequency equations. The natural
frequencies obtained from each one are dispersed, namely, they lie in di!erent frequency
bands. Consequently, accurate natural frequencies can be easily found no matter how large
n is.

One can also easily calculate the vibration mode shape. If X
r
denotes a root for X of the

rth equation in equation (42) for a given r, the non-trivial solution for Q
m

(m"1, 2,2, 2n)
can be expressed as

Q
r
"iA, Q

2n~r
"!iA, (46)

with the other Q
m

vanishing where A indicates an arbitrary real constant with the unit of
force.

From equation (37) we can obtain

f 0
(1, r)

" f 0
(1, r`2n)

"

iA

J2
, (47a)

f 0
(1,2n~r)

" f 0
(1,4n~r)

"!

iA

J2
(47b)

with the other f 0
(1, m)

vanishing.
Substituting equations (47a, b), (40a, b) and f

(1, m)
"f

(2, m)
"0 into equation (27a, b), one

can show that

v
(1, j)

"!

A

J2nK
+

m/r, r`2n

sin [(j!1)mt]
K

1
(m)!X

r
[K

1
(m)!X

r
]2!K

2
(m)

, (48a)

v
(2,j )

"!

A

J2nK
+

m/r, r`2n

sinCAj!
1

2BmtD cosA
1

2
mtB

K
3
(m)

[K
1
(m)!X

r
]2!K

2
(m)

, (48b)

where K
1
(m) and K

2
(m) have been de"ned in equation (41), and

K
3
(m)"

24(3!2 cos mt)

49!32 cosmt
(49)

with t"n/2n.
It can be proved that when r is odd, the mode shown in equation (48a, b) is symmetric, i.e.,

v
(1,2n`2~j)

"v
(1,j )

and v
(2,2n`1~j)

"v
(2, j )

; when r is even, the mode is antisymmetric, i.e.,
v
(1,2n`2~j)

"!v
(1, j )

and v
(2,2n`1~j)

"!v
(2, j )

.

5.2. FORCED VIBRATION

Consider now a Warren truss having six substructures and four roller supports subjected
to a harmonic loading Feiut acting at the centre node (Figure 4).



Figure. 4. Plane truss with six substructures and four supports subjected to a harmonic force at the centre node.
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The structural parameters are given as

N"6, n"3, K
1
"K

2
"K, M

1
"M

2
"M, a"

n
3

(50a)

and

t"

n
6
, u"

n
3
, b"1, p"2. (50b)

The amplitudes of the nodal loads can be expressed as

F
(1,4)

"F, F
(1,j)

"0, jO4, (51a)

F
(2, j )

"0, j"1, 2,2, 6. (51b)

One can show readily that

f
(1,m)

"!

i

J3
sin

mn
2

F, m"1, 2,2 , 12, (52a)

f
(2, m)

"0, m"1, 2,2, 12. (52b)

Substituting the relevant formulae in equation (27a) with j"4, the amplitude response
function for the loaded node can be found in an explicit form as

v
(1,4)

"H(X)
F

K
, (53)

where

H(X)"
4

3

(K
1
(1)!X)(K

1
(7)!X)

(K
1
(1)!X)[(K

1
(7)!X)2!K

2
(7)]#(K

1
(7)!X)[(K

1
(1)!X)2!K

2
(1)]

#

K
1
(3)!X

3[(K
1
(3)!X)2!K

2
(3)]

. (54)

The frequency response curve, v
(1,4)

versus X, is plotted in Figure 5, showing "ve
resonance frequencies. When X is close to these points, H(X) will approach in"nity. These



Figure. 5. Frequency response curve, H"v
(1,4)

K/F, X"u2 M/K.
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resonance frequencies can also be determined by setting the denominators of equation (53)
to zero, that is

(K
1
(1)!X)[(K

1
(7)!X)2!K

2
(7)]#(K

1
(7)!X)[(K

1
(1)!X)2!K

2
(1)]"0, (54a)

(K
1
(3)!X)2!K

2
(3)"0. (54b)

The roots for X in equation (54b) are 6
49

(11G6 J2) and the roots in equation (54a) are
0)3619367, 1)338599 and 2)388870. These "ve resonance frequencies correspond to the
symmetric modes of the truss. It is pointed out that there are four other resonance

frequencies (0)5670646 JK/M , 1)1547005 JK/M , 1)1595699 JK/M and 1)544889

JK/M) at which antisymmetric modes exist. For these mode shapes, the transverse
deformation is zero at the loaded node, and therefore the generalized force exciting the
mode is zero. No resonant response can be generated and so resonance peaks at these
frequencies do not appear on the diagram.
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One can check the present solutions by comparing its results with those of the static case.
In the static case, X will approach zero, v

(1,4)
will approach H (0) F/K, where

H (0)"
4

3

K
1

(1)K
1
(7)

K
1
(1)[K2

1
(7)!K

2
(7)]#K

1
(7)[K2

1
(1)!K

2
(1)]

#

K
1
(3)

3[K2
1
(3)!K

2
(3)]

"

353

210
.

(55)

This result is in agreement with the exact static displacement obtained by Cai et al. [12]. It
is well known that when X approaches in"nity, v

(1,4)
approaches zero.

6. CONCLUSIONS

In the present study, the application of U-transformation has been extended from static
analysis to dynamic analysis of continuous Warren trusses. The trusses considered belong
to the category of bi-periodic structures. In order to fully utilize the property of
bi-periodicity, the proposed analysis method requires the application of U-transformation
twice. The governing equation of harmonic vibration is derived and uncoupled to form a set
of single-degree-of-freedom equations, which lead to a set of frequency equations and
frequency response function. There are two kinds of frequency equations corresponding to
support reactions, vanishing and non-vanishing respectively. It is well known that the
natural frequencies of a periodic structure lie densely in the frequency bands. It is not easy to
accurately calculate these dense natural frequencies by using numerical methods. In this
study, however, the natural frequencies corresponding to each frequency equation for an
assigned r or m lie in di!erent frequency bands (i.e., they are dispersed), so accurate
frequencies can be easily found by the present method.

The proposed method is applicable to the dynamic analysis of other types of periodic
trusses with periodic supports.
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APPENDIX A

After transformation, the sti!ness matrix, mass matrix and force vector are as follows.
(a) Sti+ness matrix

[K]*
m
"

C
2K

1
(1!cosmt)#2K

2
cos2a 0 !K

2
cos2 a(1#e!imt) !K

2
sin a cos a(1!e-imt)

0 2K
2
sin2 a !K

2
sin a cosa (1!e!imt) !K

2
sin2 a (1#e!imt)

!K
2
cos2 a(1#eimt) !K

2
sin a cos a(1!eimt) 2K

1
(1!cosmt)#2K

2
cos2 a 0

!K
2
sin acos a (1!eimt) !K

2
sin2 a(1#eimt) 0 2K

2
sin2 a D

(A1)

(b) Mass matrix

[M]*
m
"

0 0 0 0
0 M

1
0 0

0 0 0 0
0 0 0 M

2

. (A2)

Note that [K]*
m

and [M]*
m

are Hermitian matrices, i.e., [KM ]*T
m

,[K]*
m

and
[MM ]*T

m
,[M]*

m
.

(c) Force vector

The force vector can be de"ned as

M f N
m
"[0 f

(1,m)
#f 0

(1,m)
0 f

(2,m)
0 0 0 0]T eiut, (A3)

where

f
(1,m)

"

!2i

J2N

N
+
k/2

sin(k!1)mtF
(1,k)

,

f
(2,m)

"

!2i

J2N
eimt/2 N

+
k/1

sinAk!
1

2BmtF
(2,k)

,

f 0
(1,m)

"

1

J2N

2n
+
k/1

e!i (k!1)pmt P
k
.
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In the condensed form, we have

M f N*
m
"G

0

f
(1,m)

#f 0
(1,m)

0

f
(2, m)

H eiut . (A4)
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