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Natural frequencies and buckling stresses of laminated composite beams are analyzed by
taking into account the complete e!ects of transverse shear and normal stresses and rotatory
inertia. By using the method of power series expansion of displacement components, a set of
fundamental dynamic equations of a one-dimensional higher order theory for laminated
composite beams subjected to axial stress is derived through Hamilton's principle. Several
sets of truncated approximate theories are applied to solve the eigenvalue problems of
a simply supported laminated composite beam. In order to ensure the accuracy of the
present theory, convergence properties of the "rst seven natural frequencies are examined in
detail. Numerical results are compared with those of the published existing theories and
FEM solutions. The modal displacement and stress distributions in the depth direction are
obtained and plotted in "gures. The present global higher order approximate theories can
predict the natural frequencies, buckling stresses and interlaminar stresses of multilayered
composite beams as accurately as three-dimensional elasticity solutions.
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1. INTRODUCTION

The application of composite materials to structural members has increased due to high
strength/sti!ness for light weight and facility to materialize "bre orientation, material and
stacking sequence. However, these materials pose new problems, such as e!ects of
transverse shear deformation due to the low ratio of transverse shear modulus to axial
modulus, failure due to delamination and other secondary e!ects in the material formation.

The classical laminated beam theory, based on the Euler}Bernoulli hypothesis, is
inaccurate for a moderately deep laminated beam with relatively soft transverse shear
modulus and for highly anisotropic composites. The inaccuracy is due to neglecting the
transverse shear and normal strains in the laminate. In order to take into account the e!ects
of low ratio of transverse shear modulus to the in-plane modulus, the "rst order shear
deformation theory of Timoshenko has been developed. However, since in the theory the
transverse shear strain is assumed to be constant in the depth direction, a shear correction
factor has to be incorporated to adjust the transverse shear sti!ness for studying the static
or dynamic problems of beams. The accuracy of solutions of the "rst order shear
deformation theory will be strongly dependent on predicting better estimates for the
shear correction factor i2. It has been shown that the classical and "rst order shear
deformation theories are inadequate to predict the accurate solutions of laminated
composite beams.
0022-460X/01/360047#16 $35.00/0 ( 2001 Academic Press



48 H. MATSUNAGA
In order to obtain accurate predictions of the stress distributions of simply supported
laminated composite plates and beams subjected to sinusoidal loading, Pagano [1, 2] has
developed the three-dimensional elasticity theory. However, dynamic problems of
laminated composite beams have not been studied as extensively as plates. Accurate
solutions based on the three-dimensional elasticity theory are often computationally
expensive.

Several approximately re"ned one-dimensional higher order theories have been proposed
to analyze the response characteristics of beams. In recent years discrete layerwise theories
have been presented to obtain more accurate information on the ply level. Based on
a generalized laminate plate theory, a "nite-element model of laminated composite plates
that accurately describes the three-dimensional e!ects has been developed by Robbins and
Reddy [3]. Although such theories have been proved to be one of the best alternatives to
three-dimensional elasticity theories, these theories require numerous unknowns for
multilayer laminates and are often computationally expensive in obtaining accurate
solutions. Since the total number of unknowns is dependent on the number of layers in
a laminate, the number of unknowns will increase dramatically as the number of layers
increases. Aitharaju and Averill [4] have developed a "nite-element formulation for the
stress analysis of laminated composite beams subjected to sinusoidal loading. The theory
assumes a zig-zag distribution of the in-plane displacement "eld with satisfying transverse
shear continuity at the lamina interfaces and the transverse normal stress to be constant
through the thickness of the laminate. Since the sti!ness matrix of the element can be
stacked in the depth direction, the number of degrees of freedom is independent of the
number of layers.

A number of single-layer (global) higher order beam theories that include the e!ects of
transverse shear deformations have been published in the literature. Although various
models of higher order displacement "elds have been considered, most of these theories are
the third order theories in which the axial displacements are assumed to be a cubic
expression of the depth co-ordinate and the transverse displacement to be a quadratic
expression at most. It has been pointed out that, in general, single-layer second and third
order theories are adequate in representing global responses, such as natural frequencies
and buckling stresses, but inadequate in representing the local responses, such as stress
distributions in each layer of laminates. It seems to be a hasty conclusion to analyze the
response characteristics of laminated composite beams by using single-layer higher order
theories. For a deep isotropic beam, a one-dimensional higher order theory has been
developed and has been applied to the statics and dynamics of a very deep beam by
Matsunaga [5}7]. Natural frequencies and buckling stresses of deep isotropic beams
subjected to axial stress have been analyzed by using the approximate one-dimensional
higher order theories. Remarkable e!ects of transverse shear deformation and depth change
have been predicted in the results. For the vibration and stability problems of general
cross-ply composite plates, a global higher order theory has been developed by Matsunaga
[8]. It has been shown that a global higher order plate theory can predict accurate results
not only for the natural frequency and buckling stress but also for the distribution of
displacements and stress components in cross-ply multilayered composite plates. However,
general higher order theories of beams which take into account the complete e!ects of shear
and normal strains and rotatory inertia have not been investigated in the vibration and
stability problems of multilayered composite beams.

This paper presents a global higher order theory for analyzing natural frequencies and
buckling stresses of laminated composite beams. The complete e!ects of transverse shear
and normal stresses and rotatory inertia can be taken into account within the approximate
one-dimensional theory. Several sets of the governing equations of truncated approximate
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theories are applied to the analysis of vibration and buckling problems of a simply
supported multilayered elastic beam subjected to axial stress. Based on the power series
expansions of continuous displacement components, a fundamental set of equations of
a one-dimensional higher order beam theory is derived through Hamilton's principle.
Natural frequencies and buckling stresses of a laminated composite beam subjected to axial
stress are obtained by solving the eigenvalue problem numerically. Convergence properties
of the present numerical solutions are shown to be accurate for the natural frequencies with
respect to the order of approximate theories. Several comparisons of the present results are
also made with previously published results. For multilayered composite beams the
distribution of modal displacements and modal stresses in the depth direction has also been
obtained accurately in the ply level. The modal transverse stresses have been obtained by
integrating the three-dimensional equations of motion in the depth direction starting from
the top or bottom surface of the laminated beams. The total number of unknowns depend
on the order of approximate theories, but is not dependent on the number of layers in any
multilayered beams. The present results obtained by various sets of approximate theories
are considered to be accurate enough for general laminated composite beams with small
length-to-depth ratio. One-dimensional global higher order theory in the present paper can
predict the natural frequencies, buckling stresses and modal stress distributions of simply
supported multilayered composite beams accurately when compared to the published
solutions in the literature.

2. FUNDAMENTAL EQUATIONS OF LAMINATED COMPOSITE BEAMS

Consider a straight uniform laminated beam of length ¸ as shown in Figure 1, having
a rectangular cross-section of depth H which consists of K-layers and width B which is
assumed to be su$ciently small relative to the depth. A Cartesian co-ordinate system
(x, y, z) is de"ned on the central axis of the beam, where the x-axis is taken along this axis
with the y-axis in the width direction and the z-axis in the depth direction. Assuming that
the deformations of the beam take place in the x}z plane, the displacement components in
a beam can be expressed as

u,u (x, z; t), v,v (x, z; t)"0, w,w(x, z; t), (1)
Figure 1. K-layers cross-ply laminated composite beam and co-ordinates.
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where t denotes time. The displacement components may be expanded into power series of
the depth co-ordinate z as follows:

u"
=
+
n/0

(n)u zn, w"

=
+
n/0

(n)w zn , (2)

where n"0, 1, 2,2 ,R.
Based on this expression of the displacement components, a set of the linear fundamental

equations of a one-dimensional higher order theory of beams can be summarized in the
following.

2.1. STRAIN}DISPLACEMENT RELATIONS

Strain components may also be expanded as follows:

e
xx
"

=
+
n/0

(n)e
xx

zn, c
xz
"c

zx
"

=
+
n/0

(n)c
xz

zn, e
zz
"

=
+
n/0

(n)e
zz

zn (3)

and strain}displacement relations can be written as
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where a comma denotes partial di!erentiation with respect to the co-ordinate subscripts
that follow.

2.2. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

Under the assumption of plane strain or plane stress in the width direction, by
introducing stress components p

xx
, q

xz
"q

zx
and p

zz
, Hamilton's principle is applied to

derive the equations of motion and natural boundary conditions of a beam. In order to treat
vibration and stability problems of a beam subjected to uniformly distributed axial stress
p
0
"p

0
(z), additional work due to this stress which is assumed to remain unchanged during

vibrating and/or buckling is taken into consideration. It is also assumed that stresses are
free on the top and bottom surfaces of the beam.

The principle for the present problems may be expressed as follows:
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(5)

where the overdot indicates partial di!erentiation with respect to time and o"o (z) denotes
the mass density, d<, the volume element, p

0
, the axial stress which is assumed to be

expanded as follows:

p
0
"

=
+
l/0

p(l)

0
zl , (6)

where l"0, 1, 2,2 ,R.
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By performing the integration over the area of cross-section of the beam and the variation
as indicated in equation (5), the equations of motion are obtained as follows:
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with p(k)
0

, o(k) and H
k
denoting the initial axial stress, mass density of kth layer and thickness

co-ordinate of the lower side of kth layer, respectively, and K denotes the total number of
layers in the laminated beams.

The stress resultants are de"ned as follows:
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For the boundary conditions at the ends on the central axis, the quantities
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are to be prescribed.

2.3. CONSTITUTIVE RELATIONS

For elastic and orthotropic materials of each layer of laminated composite beams, the
two-dimensional constitutive relations for the kth layer can be written under the
assumption of plane stress in the width direction of the beam as
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with E(k)
x

and E(k)
z

being Young's modulus and l(k)
xz

and l(k)
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are the Poisson ratio. The "rst
su$x of l denotes the direction of stress and the second, that of expansion and contraction.
The following relation can be established by the reciprocal theorem:
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2.4. STRESS RESULTANTS IN TERMS OF THE EXPANDED DISPLACEMENT COMPONENTS

Stress resultants can be derived from equations (10) and (13) in terms of the expanded
displacement components as follows:
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2.5. EQUATIONS OF MOTION IN TERMS OF THE EXPANDED DISPLACEMENT COMPONENTS

The equations of motion can be expressed in terms of the expanded displacement
components by using equations (16) as
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2.6. MTH ORDER APPROXIMATE THEORY

Since the fundamental equations mentioned above are complex, approximate theories of
various orders may be considered for the present problem. A similar set of the following
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combination of Mth (M*1) order approximate equations is proposed in the case of
isotropic beams by Matsunaga [5}7]. This combination of the selected terms of
displacement components is suggested from the form of shear strain components in
equation (4) as follows:

u"
2M~1
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m/0

(m)u zm, w"

2M~2
+

m/0

(m)w zm , (20)

where m"0, 1, 2 ,3,2 . The total number of the unknown displacement components is
(4M!1).

In the above cases of M"1, an assumption that the normal strain e
zz

is zero is inherently
imposed. Another set of the governing equations of the lowest order approximate theory
(M"1*) is derived with the use of an assumption that the normal stress p

zz
is zero. For

#exural problems, this theory corresponds to the Timoshenko beam theory with the shear
correction coe$cient i2"1. Under this assumption, if the shear strain c

xz
vanishes through

the depth of a beam, the lowest order approximate theory reduces to the classical beam
theory.

3. NAVIER SOLUTION FOR SIMPLY SUPPORTED BEAMS

In order to show the applicability and reliability of the present one-dimensional higher
order theories for the analysis of vibration and buckling problems of a laminated composite
beam, a simply supported beam (with movable hinged end) subjected to axial stress is
analyzed. In the following analysis, the axial stress p

0
is assumed to distribute uniformly in

the depth direction. Only the "rst term of the expanded in-plane stress (6) is considered, i.e.,
p
0
"p(0)

0
which is the same for each layer.

Boundary conditions (11) and (12) can be expressed at the x-constant ends

(n)u
,x
"0, (n)w"0. (21)

Since a beam is in a state of uniform stresses, the axial stress is considered to be
constant during vibrating and/or buckling. Following the Navier solution procedure,
displacement components that satisfy the equations of boundary conditions (21) may be
expressed as
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where the displacement mode number r"1, 2, 3,2, R.
The equations of motion are rewritten in terms of the generalized displacement

components (n)u
r
and (n)w

r
.

The dimensionless axial or buckling stress K is de"ned as follows:
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where
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The dimensionless frequency X is de"ned as follows:

X"uHJo(1)/E (1)
x

. (25)

4. EIGENVALUE PROBLEM FOR VIBRATION AND BUCKLING PROBLEMS

The equations of motion (18) and (19) can be rewritten by collecting the coe$cients for
the generalized displacements of any "xed value r. The generalized displacement vector MUN
is expressed as

MUNT"M (0)u
r
,2 , (2M~1)u

r
; (0)w

r
,2 , (2M~2)w

r
N. (26)

The dynamic equation can be expressed as the following eigenvalue problem:

([K]!X2 [M]) MUN"M0N, (27)

where the matrix [K] denotes the sti!ness matrix which may contain the terms of the axial
stress and matrix [M], the mass matrix.

For buckling problems, the natural frequency vanishes and the stability equation can be
expressed as the following eigenvalue problem:

([K]#K[S]) MUN"M0N, (28)

where the matrix [K] denotes the sti!ness matrix and matrix [S], the geometric-sti!ness
matrix due to the axial stress.

The number of eigenvalues is the same as that of the components of the generalized
displacement vector for each displacement mode number of r. Although all the eigenvalues
and eigenvectors can be computed, the dominant eigenvalue which corresponds to the
minimum natural frequency or the critical buckling stress is of great concern. When the
lowest natural frequency vanishes, the axial stress reduces to the critical buckling stress of
the beam.

5. DETERMINATION OF MODAL STRESS DISTRIBUTION

Although the transverse stress components can be calculated from the constitutive
relations, these stresses may not satisfy the continuity conditions at the interface between
layers and stress boundary conditions on the top and bottom surfaces of a laminated beam.
Axial stress component has no reference to the surface boundary conditions and can be
obtained by the constitutive relations. The transverse shear and normal stresses are
determined by integrating the equations of motion of a three-dimensional elastic
continuum. The modal axial stress of the kth layer can be derived in terms of the expanded
displacement components by introducing the strain}displacement relations (4) into the
constitutive relations (13). The modal transverse stresses of the kth layer are obtained by
integrating the three-dimensional equations of motion in the depth direction starting from
the top (or bottom) surface of the laminated beam as follows:
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where C (k)
1

and C (k)
2

are constants obtained from the stress conditions on the top and bottom
surfaces of the kth layer. If the boundary conditions of transverse stresses are prescribed on
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one of the top or bottom surfaces, the stress boundary conditions on the other surface can
be satis"ed through the equations of motion (18) and (19). Because of the discontinuity of
the axial stress at layer interfaces, the integration is performed in a piecewise manner. The
modal stress components in the kth layer of laminated composite beams can be expressed as
follows:
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6. NUMERICAL EXAMPLES AND RESULTS

6.1. NUMERICAL EXAMPLES

The e!ects of transverse shear and normal stresses and rotatory inertia on natural
frequencies and buckling stresses of a simply supported cross-ply laminated composite
beam subjected to axial stresses are studied through numerical examples. The following sets
of orthotropic material constants of each layer are taken to be the same in all the layers and
the "bre orientations may be di!erent among layers.

Material 1 [9, 10]:

E (k)
L
"14)5]1010 N/m2, E (k)

T
"0)96]1010 N/m2, G (k)

LT
"0)41]1010 N/m2,

G (k)
TT

"0)34]1010 N/m2, l
LT

"l
TT

"0)3. (34)

Material 2 [11]:

E (k)
L
"40E (k)

T
, G (k)

LT
"0)6 E

T
, G (k)

TT
"0)5 E

T
, l

TL
"l

TT
"0)25. (35)

Material 3 [12}14]:

E
L
"144)8 GPa, E

T
"9)65 GPa, G

LT
"4)14 GPa, G

TT
"3)45 GPa, l

LT
"0)3.

(36)

Material 4 [1, 2]:

E (k)
L
"25]106 psi, E (k)

T
"106 psi, G (k)

LT
"0)5]106 psi,

G (k)
TT

"0)2]106 psi, l
LT

"l
TT

"0)25. (37)
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The lower su$xes ¸ and ¹ signify the direction parallel to the "bres and the transverse
direction respectively. The "bre orientations of the di!erent laminas alternate between 03
and 903 with respect to the x-axis. The thickness of each layer is identi"ed for the 03 and 903
layers in the laminates. Both symmetric and non-symmetric laminations with respect to the
middle plane are considered. The axial stress p

0
is identical in each layer. The mass density

is also assumed to be uniform in the thickness direction, i.e., o(1), o(2) ,2, o(k) are identical.
In the symmetrical laminates having odd number of layers, the 03 layers are at the outer

surfaces of the laminate. For the symmetric cases, since the longitudinal and transverse
vibrations are not coupled, the mechanical responses of lateral vibrations become identical
both for movable and immovable hinged ends. While, for the non-symmetric cases, all
modes are coupled axially and laterally, the mechanical responses of lateral vibrations
become di!erent between movable and immovable ends.

All the numerical results are obtained for the case of plane stress in the width direction
and are shown in the dimensionless quantities. The absolute values of buckling stresses are
shown in the following results.

6.2. CONVERGENCE OF NATURAL FREQUENCIES AND COMPARISON WITH THOSE

OF EXISTING SOLUTIONS

In order to verify the accuracy of the present solutions, convergences of the "rst seven
natural frequencies of cross-ply laminated composite beams without axial stress of the
present approximate theories are examined in Table 1. Comparisons with existing results
[9, 10] are also performed for simply supported symmetric [03/903/903/03] cross-ply
laminated composite beams of Material 1 with the depth parameter ¸/H"10 as also
shown in Table 1. Using a third order shear deformation theory which is somewhat di!erent
from that of Khdeir and Reddy [11], a cross-ply symmetric laminated composite beams has
been analyzed by Singh and Abdelnaser [9]. The "rst order shear deformation
Timoshenko-type theory has been applied to obtain the natural frequencies of symmetric
and non-symmetric laminated composite beams by Abramovich and Livshits [10].
Although the simply supported boundary conditions used in references [9, 10] are
TABLE 1

Comparison and convergence of frequencies of cross-ply laminated beams ([03/903/903/03];

X]J12 (¸/H)2, ¸/H"10, r"1}7; Material 1)

Present solutionA

Mode Reference Reference
no. [9]s [10]t M"1 M"1* M"2 M"3 M"4 M"5

1 2)3189 2)3194 2)3663 2)0014 2)3101 2)3099 2)3095 2)3093
2 7)0171 7)0029 7)3350 6)5786 6)9821 6)9786 6)9771 6)9756
3 12)132 12)037 12)8043 11)9471 12)0515 12)0381 12)0366 12)0339
4 17)301 17)015 18)2488 15)37051 17)1373 17)1047 17)1042 17)1006
5 22)533 21)907 23)07251 17)4271 22)2173 22)1548 22)1535 22)1492
6 * 23)3371 23)6063 22)8574 22)71311 22)54371 22)53211 22)53201
7 27)881 26)736 28)8910 28)2174 27)3055 27)2028 27)1965 27)1914

sThird order shear deformation theory (immovable hinged ends).
tFirst order shear deformation theory (i2"5/6, immovable hinged ends).
APresent solutions: M"1}5; M"1* (First order shear deformation theory, i2"1).



TABLE 2

Comparison of frequencies of cross-ply laminated beams (X](¸/H)2, ¸/H"10, r"1}7;
Material 1)

[03/03] [903/903] [903/03]

Mode
no. Reference [10]s M"5 Reference [10] M"5 Reference [10] M"5

1 8)4827 8)4853 9)6974 9)7018 8)1439 4)4646
2 25)460 25)5489 36)958 37)0206 21)661 15)7873
3 43)621 44)0287 77)597 77)8567 43)788 30)5898
4 61)551 62)5462 108)831 108)78731 63)787 46)8575
5 79)175 80)9823 127)3 127)9560 89)150 63)7345
6 96)572 99)3602 182)75 184)0237 89)3131 74)36891
7 108)831 108)78061 217)662 217)32112 114)30 80)8742

sFirst order shear deformation theory (i2"5/6, immovable hinged ends).
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immovable hinged ends, the results for symmetrical laminated composite beams coincide
with those for movable hinged ends. The superscript on the right shoulder of natural
frequency in Table 1 is longitudial vibration mode number, r.

It is noticed that the proper order of the present higher order approximate theories may
be estimated according to the level of ¸/H. Since the present results for M"1}4 converge
accurately enough within the present order of approximate theories, only the numerical
results for M"5 are discussed in the following.

For three types of two symmetric laminates [03/03] and [903/903] and a non-symmetric
one [03/903], the "rst seven natural frequencies are compared with the results [10] in
Table 2. The simply supported boundary conditions used in reference [10] are immovable
hinged ends. A good agreement is obtained with the reference for the symmetric cases, while
a considerable di!erence can be noticed for the non-symmetric case. It is noted that the
simply supported boundary conditions used in reference [10] are immovable hinged ends,
while the results for the present analysis are for movable hinged ends. The veri"cation for
this non-symmetric case with movable hinged ends is shown for the di!erent numerical
examples in Table 3.

Table 3 shows a comparison of the fundamental natural frequencies with the results [11]
for simply supported symmetric and non-symmetric cross-ply laminated beams with
movable hinged ends. A good agreement it obtained with the references both for the
symmetric and non-symmetric cases. The results of reference [11] are obtained from the
classical beam theory (CBT) and the "rst (FOBT), second (SOBT) and third order (TOBT)
theories. In the third order theory, Reddy assumes parabolic distribution of the transverse
shear stress that is zero at the top and bottom surfaces of the beam and neglects the
transverse normal strain.

In Table 4 the "rst three natural frequencies of four-layers-simply supported symmetric
cross-ply laminated composite beams are compared with the results in the literature
[12}14]. For symmetric cross-ply laminated composite beams, free vibration frequencies
based on the Timoshenko-type theory have been obtained for some boundary conditions by
Chandrasekhara et al. [12]. Dynamic sti!ness analysis of symmetric and non-symmetric
cross-ply laminated beams has been presented by using a "rst order shear deformation
theory in reference [13]. The out-of-plane free vibration problem of symmetric cross-ply



TABLE 3

Comparison of frequencies of cross-ply laminated beams (X1 "uH Jo(1)/E
T
(¸/H)2, r"1;

Material 2)

[03/903] [03/903/03] [03/903/2] 10 layers

Solutions ¸/H"5 ¸/H"10 ¸/H"5 ¸/H"10 ¸/H"5 ¸/H"10

M"5 5)6623 6)7561 9)2001 13)6079 8)0738 10)8485
M"4 5)6651 6)7573 9)2001 13)6080 8)0813 10)8526
M"3 5)6731 6)7615 9)2019 13)6086 8)0887 10)8560
M"2 5)8335 6)8332 9)2033 13)6098 8)0921 10)8568
M"1* 5)9984 6)7866 9)8078 14)1199 8)5427 11)0978
M"1 6)1441 6)9910 9)8178 14)1494 8)5684 11)1533
TOBT 6)128 6)945 9)208 13)614 8)156 10)893
SOBTs 5)863 6)847 9)817 14)149 8)522 11)119
SOBTt 5)685 6)772 9)205 13)670 8)096 10)870
FOBTt 5)953 6)882 9)205 13)670 8)139 10)900
CBT 7)124 7)269 17)421 17)632 12)524 12)680

Note: Present solutions: M"2}5; M"1* (FOBTs plane stress); M"1 (FOBTs plane strain). CBT, FOBT,
SOBT and TOBT are cited from [11]: Classical "rst, second and third order beam theories (s i2"1, ti2"5/6).

TABLE 4

Comparison of frequencies of cross-ply laminated beams ([03/903/903/03], X] (¸/H)2,
¸/H"15, r"1}3; Material 3)

Mode no. Reference [12]s Reference [13]t Reference [14]A M"5B

1 2)5023 2)5024 2)4959 2)4953
2 8)4812 8)4813 8)4663 8)4657
3 15)7558 15)7559 15)7384 15)7599

sTimoshenko-type theory (i2"5/6).
tFirst order shear deformation theory (i2"5/6).
AEuler}Bernoulli and Timoshenko (i2"5/6) beam theories.
BM"5: Present solution.
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laminated composite beams has been studied by the Euler}Bernoulli and Timoshenko
beam theories in reference [14]. A good agreement is obtained with the references for the
symmetric cases.

6.3. NATURAL FREQUENCY AND BUCKLING STRESS OF LAMINATED COMPOSITE BEAMS

The buckling stresses can be calculated usually through stability equation (28) as
eigenvalue problems. Another method to obtain the critical buckling stresses of laminated
composite beams subjected to axial stress is to compute natural frequencies by increasing
the absolute value of compressive stresses till the corresponding natural frequency vanishes.

In the case of a simply supported beam subjected to axial stress K, the natural frequency
X

a
can be expressed explicitly with reference to the natural frequency X

0
of a beam without



TABLE 5

Natural frequencies and buckling stresses of cross-ply laminated beams (M"5, r"1,
[03/903/03/903/2], K"2}11 and 100}101; Material 4)

¸/H"2 ¸/H"5 ¸/H"10

No. of layers X K X K X K

2 0)7423 1)0861 0)1976 3)0062 0)05772 4)1046
4 0)7355 1)0664 0)2269 3)9626 0)07791 7)4772
6 0)7559 1)1262 0)2428 4)5375 0)08302 8)4901
8 0)7910 1)2332 0)2544 4)9837 0)08567 9)0408

10 0)8010 1)2646 0)2572 5)0951 0)08644 9)2045
100 0)8251 1)3418 0)2622 5)2915 0)08774 9)4840

3 0)8495 1)4226 0)2785 5)9721 0)1041 13)3483
5 0)8173 1)3167 0)2732 5)7471 0)09969 12)2423
7 0)8340 1)3710 0)2781 5)9544 0)09837 11)9213
9 0)8456 1)4094 0)2798 6)0264 0)09715 11)6275

11 0)8482 1)4180 0)2781 5)9548 0)09577 11)2992
101 0)8299 1)3577 0)2644 5)3812 0)08873 9)6995
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axial stress. The relation between X
a

and X
0

can be obtained from a comparison of the
equations of motion as follows:

X2
a
"X2

0
#

r2n4

12 A
H

¸B
4

K. (38)

When the natural frequency X
a
vanishes under the axial stress, elastic buckling occurs and

the critical buckling stress K
cr

relates to the natural frequency X
0

as

K
cr
"!

12

r2n4 A
¸

HB
4

X2
0
. (39)

The critical buckling stresses of simply supported laminated composite beams subjected to
axial stress can be predicted from the natural frequency of the beams without axial stress.

In Table 5, the natural frequency and the critical buckling stress of simply supported
cross-ply laminated composite beams are shown for symmetric and skew-symmetric
laminates of ¸/H"2, 5, 10. It can be seen that relation (39) is established between the
critical buckling stress and natural frequency in Table 5.

6.4. MODAL DISPLACEMENT AND STRESS DISTRIBUTIONS IN LAMINATED

COMPOSITE BEAMS

Figure 2 gives an indication of the accuracy of the modal displacements and modal
stresses associated with the fundamental frequencies for cross-ply laminated composite
beams made of Material 4. Each of the response quantities in Figure 2 is divided by its
maximum absolute value. The stress boundary conditions at the top and bottom surfaces of
the beam and the continuity conditions at the interfaces between layers are satis"ed
accurately.



Figure 2. Displacements and stresses of cross-ply laminated composite beams. (a) [2-layers, Material 4]:
*K**, ¸/H"2; *L**, ¸/H"5; *n**, ¸/H"10. (b) [3-layers, Material 4]: *K**, ¸/H"2; *L**,
¸/H"5; *n**, ¸/H"10. The superscript of natural frequency is longitudinal vibration mode number, r.
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Since the total number of unknowns of the present global higher order theory does not
increase as the number of layers increases, multilayered composite beams with a large
number of layers can be analyzed without di$culty. Figure 3 shows the modal
displacements and modal stresses associated with the fundamental frequency for



Figure 3. Displacements and stresses of cross-ply laminated composite beam. (a) [100-layers, Material 4]:
*K**, ¸/H"5. (b) [101-layers, Material 4]: *K**, ¸/H"5. The superscript of natural frequency is
longitudinal vibration mode number, r.

MULTILAYERED COMPOSITE BEAMS 61
multilayered composite beams made of Material 4. The corresponding natural frequencies
to the modal displacement and stress components in Figures 2 and 3 are shown in Table 5.

7. CONCLUSIONS

Natural frequencies and buckling stresses of simply supported multilayered composite
beams have been analyzed by using a global higher order beam theory. In order to analyze
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the complete e!ects of higher order deformations on the natural frequencies and buckling
stresses of cross-ply laminated composite beams, various orders of the expanded
approximate laminate theories have been presented. It is shown through the numerical
examples that the present global higher order theories can provide accurate results for
natural frequencies and buckling stresses of general cross-ply laminated composite beams.
The total number of unknowns is not dependent on the number of layers in any
multilayered beams. It should be pointed out that the present theory has the advantage of
predicting natural frequencies of multilayered composite beams without increasing the
unknowns involved as the number of layers increases.

The distribution of modal displacements and modal stresses in the depth direction has
also been obtained accurately in the ply level. The modal transverse shear and normal
stresses have been obtained by integrating the three-dimensional equations of motion in the
depth direction. The stress boundary conditions at the top and bottom surfaces of the beam
and the continuity conditions at the interfaces between layers have been satis"ed.

It has been shown that a global higher order plate theory can predict not only the natural
frequency and buckling stress but also the accurate distribution of modal displacements and
stress components in multilayered composite beams.
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