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A reverse #ow theorem for acoustic propagation in compressible potential #ow has been
obtained directly from the "eld equations without recourse to energy conservation
arguments. A reciprocity theorem for the scattering matrix for the propagation of acoustic
modes in a duct with either acoustically rigid walls or acoustically absorbing walls follows. It
is found that for a source at a speci"c end of the duct, suitably scaled re#ection matrices in
direct and reverse #ow have a reciprocal relationship. Scaled transmission matrices obtained
for direct #ow and reversed #ow with simultaneous switching of source location from one
end to the other also have a reciprocal relationship. A related reverse #ow theorem
specialized to one-dimensional acoustic propagation has also been obtained. Reciprocity
relationships for the scattering coe$cients for propagation are derived, and are found
to be similar though much simpler than in the case of multi-mode propagation. In
one-dimensional #ow, reciprocal relations and power conservation arguments are used to
show that scaled power re#ection and transmission coe$cients are invariant to #ow reversal
and switching of source location from one end of the duct to the other. Numerical
veri"cation of the reciprocal relationships is given in a companion paper.

( 2001 Academic Press
1. INTRODUCTION

The general principle of acoustic reciprocity in a medium at rest is well known and is
derived in reference [1] by direct manipulation of the "eld equations in the case of harmonic
time dependence. By essentially using this starting point, Eversman [2] has demonstrated
and numerically veri"ed reciprocal properties of the scattering matrix for acoustic modes
incident, re#ected, and transmitted in a non-uniform duct in the absence of mean #ow.
Moehring [3], by using an approach based on energy conservation, has arrived at the same
result when di!erences in de"nitions of the normalization of acoustic modes are considered.
Moehring's approach depends on a suitable de"nition of acoustic energy density and
acoustic energy #ux, which are well known in the case of propagation in a stationary
medium. Since the result of Moehring [3] depends on the normal derivative of the acoustic
energy #ux vanishing on the walls of the duct, it would appear to exclude dissipative walls.
However, the classical result [1] concludes that reciprocal relations still hold, provided the
duct walls have a locally reacting impedance model (whether dissipative or not) where for
harmonic disturbances, acoustic particle velocity is proportional to acoustic pressure.
Reciprocity based on energy conservation is more restrictive than necessary.
0022-460X/01/360071#25 $35.00/0 ( 2001 Academic Press
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An appropriate de"nition of acoustic energy and energy #ux also exists for propagation
in a compressible potential #ow [4]. On this basis, Moehring [3] extended his observations
on properties of the scattering matrix to include non-uniform ducts with rigid walls and
potential mean #ow with the result that the reciprocal properties also depend on #ow
reversal. Godin [5] has studied extensively issues of acoustic energy, acoustic reciprocity,
and #ow reversal theorems in a highly generalized sense directly from the "eld equations.
He has not speci"cally addressed the simpler case of propagation in non-uniform ducts with
compressible irrotational #ow, citing Moehring [3] as having demonstrated reverse #ow
reciprocity in this case [6]. Godin's citations to the literature can be consulted for an
extensive survey of the "eld.

Here, the goal is to approach the acoustic reciprocity problem in a compressible potential
#ow in non-uniform ducts directly from the "eld equations in much the same way as the
classical formulation in the case of a stationary medium [1]. Furthermore, it is intended to
show that reciprocity holds for a "nite length dissipative lining imbedded in an otherwise
rigid wall. A foundation for such a formulation in the case of uniform #ows was given by
Flax [7, 8] in connection with unsteady lifting surface theory. The application to potential
#ows in non-uniform ducts given here yields a reciprocity relationship (perhaps more
appropriately referred to as a #ow reversal theorem) which is in terms of acoustic potential
and acoustic density perturbations on an irrotational compressible mean #ow. It can also
be given entirely in terms of acoustic potential perturbations. The reverse #ow reciprocity
formulation which is obtained does not begin with an energy conservation law and leads to
a form similar to Moehring [3]. This investigation is not restricted to a duct with rigid walls.
The reverse #ow reciprocity theorem is then used to establish reciprocal properties of the
scattering matrix for propagation of acoustic modes in a non-uniform duct with
acoustically absorbing walls.

The special case of one-dimensional propagation is also considered and it is shown that
the invariance property for acoustic power transmission in converging}diverging ducts
found by Davis [9] is the result of reciprocity and acoustic power conservation arguments.
His result is extended to more general duct con"gurations.

In the present paper, the theoretical framework is established for the reciprocity (#ow
reversal) relationship, and it is specialized for examining the reciprocal relations which exist
between duct modes propagating in compressible mean #ow. In a companion paper [10],
the results derived here are substantiated by numerical experiments based on a "nite
element simulation using a new implementation of the boundary condition introduced by
the presence of acoustic treatment, the subject of a second companion paper [11].

2. ACOUSTIC PROPAGATION IN A COMPRESSIBLE POTENTIAL FLOW

An extensive discussion of both linear and non-linear formulations for acoustic
propagation in potential #ows has been given by Campos [12]. His work includes a number
of citations to previous work and is the basis for contributions directed mainly toward
analytic or semi-analytic solutions for propagation in ducts (see for example references
[13, 14]). The investigation reported here has been part of the development of numerical
modelling methods for acoustic propagation in non-uniform ducts and therefore, the "nal
form of the governing equations is specialized for that purpose.

The acoustic "eld equations are obtained by the consideration of unsteady perturbations
on a steady compressible potential #ow. Accuracy in calculation of both the steady and
unsteady #ow "elds is necessary for computational veri"cation of the theoretical results
obtained. The starting point for the formulation of both the steady mean #ow and the
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acoustic perturbation consists of the mass and momentum equations and the energy
equation in the form of the isentropic equation of state
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pL , oL , V are #uid properties pressure, density, and velocity, at this point in dimensional form.
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The linearized momentum equation, for irrotational acoustic perturbations, is
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This is used to replace o in equation (4) and the linearized equation of state,
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is used to produce an alternative form of the momentum equation in terms of acoustic
pressure,
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Equation (7) is used to post-process the "eld solution for / to obtain the acoustic pressure
"eld. The acoustic particle velocity and acoustic velocity potential are related according to

v"+/. (8)

The perturbation process also produces the conservation equation for the steady #ow,
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Equations (4)}(11) are now in non-dimensional form where / is the acoustic potential, /
r
is

the local mean #ow (reference) potential, o is the acoustic density, o
r
is the local mean #ow

density, and c
r

is the local speed of sound in the mean #ow. All quantities are made
non-dimensional by using density o

=
and the speed of sound c

=
at some point, in this case

at the plane x"0. Stagnation conditions could also serve as the reference. A reference
length R is de"ned as some characteristic dimension at the plane x"0. In the case of
a circular duct, the reference length is the duct radius at x"0. The acoustic potential is
non-dimensional with respect to c

=
R, and the acoustic pressure with respect to o

=
c2
=
.

Lengths are made non-dimensional with respect to R. Time is scaled with R/c
=

. In the case
of harmonic time dependence, this leads to the de"nition of non-dimensional frequency
g
r
"uR/c

=
. u is the dimensional source frequency. M

=
is the Mach number at the

reference point.
Equation (9) is the "eld equation for the calculation of the compressible potential mean
#ow. Equations (10) and (11) are subsidiary relations that can be used in an iterative
solution which at each stage uses a density "eld derived from the previous iteration step.
+/

r
, c

r
, o

r
are required data for the formulation of the acoustic problem.

3. REVERSE FLOW RECIPROCITY PRINCIPLE

The application of a reciprocity relationship for acoustic propagation in potential #ows
in non-uniform ducts has lagged behind the exploitation of the comparable results for
propagation in a quiescent medium, not because of the di$culty in posing the principle, but
probably because of the di$culty in producing solutions which could be used to test it.
Numerical solutions for duct propagation using the "nite element method (FEM) are now
achievable [15] and provide the capability of determining the complete acoustic "eld in
a duct (and in the far "eld of a duct of "nite length) as well as the scattering matrix for
a non-uniform duct inserted in an otherwise uniform duct of in"nite length. This provides
an opportunity for testing the reciprocity principle and suggests the development of such
a principle for benchmarking of FEM calculations.

The intent here is to approach the reciprocity principle independent of considerations of
energy conservation. A counterpart exists in the literature of unsteady lifting surface theory
in the Reverse Flow Theorem of Flax [7, 8]. A reciprocity principle for acoustic
propagation in non-uniform potential #ows in ducts can be obtained by an extension of the
formulation of Flax.

Consider the volume X shown in Figure 1, which is the interior of a non-uniform duct of
arbitrary cross-section. In examples, the duct will be assumed to be axisymmetric (circular
or annular), but the principle derived is independent of the duct cross-section. The duct
walls can be rigid or locally reacting. The unit normal n is directed out of the volume at each
surface. The source plane S

s
is where the acoustic source nominally is speci"ed and the exit

plane S
e
terminates the duct and may have a re#ection matrix speci"ed. For computations,

the exit plane will be assumed to be non-re#ecting. A typical computational problem would
seek to specify the acoustic "eld within the duct and the scattering matrix at the source
plane for incident acoustic modes. Equations (4) and (5) specify the acoustic "eld within
X subject to appropriate boundary conditions on S, the surface of X.

Let /
1
e*grt be a harmonic solution for the acoustic velocity potential for the case of

a mean #ow speci"ed everywhere in the duct by its reference Mach number M
r
"+/

r
and

with speci"ed boundary conditions. Let /
2
e*grt be a second harmonic solution for exactly

the same duct with di!erent source conditions, but with the #ow reversed, !M
r
"!+/

r
.

It is important to note that in the reversed #ow the reference density o
r
and reference speed



Figure 1. A general duct con"guration showing volume and surface important in the development.
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of sound c
r

are unaltered. Due to equation (4), in the case of a harmonic source at
non-dimensional frequency g

r
, it follows that
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With application of the divergence theorem, equation (12) is recon"gured to
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The acoustic density in the two solutions is de"ned according to
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Equations (14) are used to eliminate the remaining volume integral in equation (13), leaving
the reciprocity principle in terms of acoustic density and potential in a form convenient for
subsequent development:
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An alternate form, in terms of the acoustic pressure, obtained by using equation (7), is
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In establishing reciprocal relationships for the scattering matrix, it is important in this
development that equation (15a) or (15b) have contributions only on the source and exit
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planes, S
s
and S

e
. This requires that the integrand vanish on the duct walls. For a duct with

rigid walls, this occurs because +/
r
' n"0, +/

1 '
n"0, and +/

2 '
n"0 on the walls. In the

case when mean #ow is absent, +/
r
vanishes and o

r
is constant, leading to
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For a locally reacting wall impedance in the absence of mean #ow, acoustic pressure is
proportional to the normal component of particle velocity. This makes the integrand vanish
on the walls of the duct, and equation (16) has contributions only on the source and exit
planes. Reciprocal properties of the scattering matrix are therefore valid in the absence of
#ow for normally reacting impedance walls. This is in spite of the fact that acoustic power is
not conserved.

When mean #ow is present and the walls are normally reacting, further examination is
required to establish that equation (15a) has no contribution on the duct walls. Myers [16]
has shown that the boundary condition at a normally reacting acoustic lining which relates
the boundary displacement f to the component of the acoustic particle velocity normal to
the undisplaced surface is
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The following vector relations are introduced (taking into account the special circumstances
of the present problem):
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Equation (18) can then be reformulated as
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The case considered here is an impedance wall imbedded in an otherwise rigid wall.
Therefore, as shown in Figure 2, acoustic treatment imbedded in S

w
extends less than the

full length of the duct. This is physically realistic, and is also consistent with the type of



Figure 2. A duct con"guration showing uniform extensions and appropriate surface normals.
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reciprocity relation between duct modal amplitudes which is sought. Following the
development of Moehring [17], the last integral can be written as a line integral on the
boundary C of the surface S

w
by using Stokes' theorem. Since the surface S

w
consists of the

wall of the duct (in general of varying cross-section), C is chosen to consist of closed curves
C
1

and C
2

circumscribed on the duct wall outside of the region of the lining, and therefore,
where the duct wall is rigid. There is also a portion of C which runs along the duct wall
between C

1
and C

2
to complete the closed curve of Stokes' theorem, but this curve is

traversed twice, once in each direction, and has no net contribution. The contour C is shown
in Figure 1. To make use of Stokes' theorem, it is required that the acoustic "eld and the
wall displacement be continuous on S

w
. Hence, since the acoustic treatment is of limited

length imbedded in an otherwise rigid wall duct, the transition from rigid wall to admittance
wall, as well as the variation of admittance along the treated wall, must be continuous. If
this condition is met, Stokes' theorem can be cast in the form
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The integral on the surface S
w

vanishes if the line integrals vanish. On a hard wall the line
integrals vanish because the boundary displacement vanishes. This means that if the
condition for the use of Stokes' theorem is met, then the integral of equation (19) is
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With equation (7) this becomes
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At a wall of admittance A, there is a relation between pressure and wall velocity which is
frequency dependent and of the form
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r
f"Ap. (22)

The integral I
w

vanishes and equation (15a) or (15b) have contributions only on the portion
of the surface area S which corresponds to duct cross-sections beyond the impedance wall,
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on the surfaces S
s

and S
e
. With appropriate restrictions on the impedance wall, the

reciprocity principle is therefore unchanged for hard and soft wall ducts.
The restriction on the impedance wall is interesting. If admittance is indeed discontinuous

along the wall, then f has to be discontinuous. Moehring [17] has noted that for
discontinuous admittance variation, there is no clear condition to be imposed on the
acoustic "eld or wall displacement at the discontinuity. Rebel and Ronneberger [18] have
shown that the condition of admittance discontinuity and the assumption of potential #ow
at the wall (no boundary layer) causes a problem with the underlying physics of the #ow.
What is known is that a numerical procedure such as the FEM restricts the solution for
acoustic potential to continuous functions, and the lining displacement never appears in the
"nal "eld equations and boundary condition. Thus one suspects that the restriction to
continuously varying admittance is not a critical issue in numerical comparisons, but it may
be in comparison with experiment.

Equation (15a) can also be written entirely in terms of acoustic potential:
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where the area S is now understood to include only the source and exit planes S
s
and S

e
,

shown in Figure 2.

4. APPLICATION TO A NON-UNIFORM DUCT

The discussion here is presented for a duct with a straight x-axis, but is more complicated
only in the notation if the axis is not straight. Figure 2 shows a representative non-uniform
duct with cross-section S (x) de"ned on 0)x)¸. The nominal source plane, identi"ed as
S
s

in Figure 1, is placed at x"0 and speci"cally identi"ed as S (0)"S
0
. Similarly, the

nominal exit plane S
e
in Figure 1 is placed at x"¸ and identi"ed as S (¸)"S

L
. With source

reversal, the roles of the source and exit planes reverse, but S
0

and S
L

are always related to
the co-ordinate system. There is a steady mean potential #ow in the duct M(x, r), de"ned as
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M
r
(x, r) is a non-dimensional velocity based on the reference speed of sound c

=
. M (x, r) is

the local Mach number de"ned in the usual way and c(x, r) is the local (dimensional) speed
of sound. (x, r) denotes a point in a cross-section at x in a co-ordinate system appropriate
for the duct geometry. The corresponding reversed #ow is !M. The non-dimensional
frequency g can also be de"ned locally (local speed of sound but with reference length R)
according to
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g is a local non-dimensional frequency based on the local speed of sound. In terms of local
Mach number and non-dimensional frequency, equation (23) becomes
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It is assumed that at the nominal in#ow end of the duct at x"0 the steady mean #ow is
uniform on the cross-section with M (x, r)"M

0
i, and at the nominal out#ow end x"¸ the

steady mean #ow is uniform with M(x, r)"M
L
i. Reference density o

r0
and o

rL
and local

non-dimensional frequency g
0

and g
L

are de"ned similarly. The assumption of uniform
conditions implies that the in#ow and out#ow planes are well removed from the
non-uniform region of the duct. In computational examples, it is found that for ducts with
circular or annular cross-sections, uniform inlet and outlet ducts of length two duct radii
ahead of and beyond the non-uniformity are su$cient. At x"0 the outward unit normal
n"!i and at x"¸ the normal is n"i. With these observations the reciprocity principle
of equation (26) becomes
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5. CIRCULAR DUCT EXAMPLE

In the regions of uniform #ow at the ends of the duct at x"0 and ¸ acoustic potential
can be approximated by an N term eigenfunction expansion in terms of duct modes
(Figure 2). In the case of a circular duct, the expansion can be expressed at x"0 in
vector-matrix form for angular dependence e~*mh as
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The derivative is
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[U(r)] is a 1]N row matrix of duct radial modes, the same for both right and left
propagating modes. [e`

m
(x)] and [e~

m
(x)] are N]N diagonal matrices with typical elements
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e~*k
$

xmnx ) [!ik`
x
] and [!ik~

x
] are N]N diagonal matrices with typical elements
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) Ma`
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N and Ma~

m
N are N]1 vectors of modal amplitude coe$cients for right (positive

x) and left (negative x) modes. k$

xmn
are axial wave numbers corrresponding to angular mode

number m and radial mode number n. Axial wave numbers for acoustic modes in the
context of the present problem are discussed in Appendix A.1.

With these observations, deleting for simplicity of notation the implied dependence on
the mode number m of the axial wave number, and taking the reversed #ow solution to have
angular dependence e*mh, it is possible to express the solution /

1
and its counterpart

reversed #ow solution /
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as
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At x"0 the diagonal matrices [e`
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(0)] become identity matrices. The
corresponding reversed #ow solution is
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Similar expansions with modal amplitudes Mb`
m
N and Mb~

m
N apply at plane x"¸. Here, the

phase information in the matrices [e`
m

(¸)] and [e~
m

(¸)] is absorbed into the amplitude
coe$cients.

The wave numbers and eigenfunctions are independent of whether angular dependence is
e~*mh or e*mh. The choice of angular dependence in the two solutions eliminates the angular
dependence in integration arising in equation (27). The physical implication is that of
a spinning mode which has the same vector sense with respect to the #ow direction. In
calculations, scattering coe$cients do not depend on the sign of m.

If equations [30}33] are introduced into equation (27) and the indicated integrations are
carried out taking advantage of orthogonality of the acoustic modes, the reverse #ow
theorem yields

Ma~
1
NT[J

0
][a

0
]Ma`

2
N#Mb`

1
NT[J

L
][a

L
]Mb~

2
N"

Ma~
2
NT[J

0
][a

0
]Ma`

1
N#Mb`

2
NT[J

L
][a

L
]Mb~

1
N. (34)

[J
0
], [J

L
], [a

0
], [a

L
] are diagonal matrices with elements dependent on the mode of

propagation. The composition of these matrices is given in Appendix A.2.
Equation (34) can be written in partitioned form as

G
a~
1

b`
1
H
T

C
[J

0
][a

0
]

[J
L
][a

L
]DG

a`
2

b~
2
H"G

a~
2

b`
2
H
T

C
[J

0
][a

0
]

[J
L
][a

L
]DG

a`
1

b~
1
H. (35)

Modal amplitudes a`
n

and a~
n

and b`
n

and b~
n

are related by the acoustic potential scattering
matrix according to

G
a~

b`H"[S]G
a`

b~H, (36)
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where the scattering matrix is de"ned as

[S]"C
[R] [¹I ]
[¹] [RI ]D . (37)

Contained in [S] are the usual re#ection matrix [R] and transmission matrix [¹] for
acoustic modes incident at x"0 and re#ection and transmission matrices [RI ] and [¹I ] for
modes incident at x"¸. There will be a scattering matrix [S

1
] for nominal mean #ow and

a second one [S
2
] for reversed #ow. The relationship between [S

1
] and [S

2
] can be obtained

using the reciprocity theorem.
Equation (35) is rewritten by introducing the de"nition of the scattering matrix from

equation (36) and by using the de"nition

C
[J

0
][a

0
]

[J
L
][a

L
]D"[J][a]. (37@)

The result is

G
a`
1

b~
1
H
T
[S

1
]T[J][a]G

a`
2

b~
2
H"G

a`
2

b~
2
H
T
[S

2
]T[J][a]G

a`
1

b~
1
H. (38)

Equation (38) reveals that

[S
1
]T[J][a]"[J][a][S

2
] (39)

or

[J][a][S
1
]"([J][a][S

2
])T. (40)

Equations (39) and (40) show that a weighted version of the nominal #ow acoustic potential
scattering matrix and similarly weighted version of the reversed #ow acoustic potential
scattering matrix are transposes of one another. In terms of the acoustic potential re#ection
and transmission coe$cient matrices, the result is

[R
1
]T[J

0
][a

0
]"[J

0
][a

0
][R

2
], [RI

1
]T[J

L
][a

L
]"[J

L
][a

L
][RI

2
], (41, 42)

[¹
1
]T[J

L
][a

L
]"[J

0
][a

0
][¹I

2
], [¹I

1
]T[J

0
][a

0
]"[J

L
][a

L
][¹

2
]. (43, 44)

The reciprocal relationships of equations (41)}(44) involve acoustic potential re#ection and
transmission coe$cient matrices, with diagonal elements representing re#ection
and transmission coe$cients in the incident modes (here referred to as direct re#ection or
transmission) and o! diagonal re#ection and transmission coe$cients from the incident
mode to another mode. Equations (41) and (42) show that direct acoustic potential
re#ection coe$cients are invariant in reversed #ow. The transmission coe$cient matrix
pairs [¹

1
], [¹

2
] and [¹I

1
], [¹I

2
] are not reciprocally related but the pairs [¹

1
], [¹I

2
] and

[¹I
1
], [¹

2
] are related by equations (43) and (44). These results for acoustic potential

re#ection and transmission coe$cient matrices are more interesting than those obtained for
acoustic pressure re#ection and transmission coe$cient matrices in the absence of #ow [2]
because they identify a relationship between re#ection coe$cient matrices in nominal and
reversed #ow which includes the observation that the direct re#ection coe$cient (in the
incident mode) is invariant to #ow direction.
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6. RECIPROCITY IN TERMS OF ACOUSTIC PRESSURE

The entire development to this point has been carried out in terms of acoustic potential
because the "eld equations (4) and (5) favor this formulation. Equation (7) provides a direct
relationship between acoustic pressure and acoustic potential which can be used to
restructure the reciprocity results in terms of acoustic pressure modal amplitudes. In terms
of local non-dimensional frequency and local Mach number in a uniform section of duct
with uniform #ow, equation (7) can be rewritten as

p"!o
r
c
rAig/#M

L/

LxB. (45)

With equation (45) a connection between acoustic potential modal amplitudes and acoustic
pressure modal amplitudes can be established. Consider an acoustic mode propagating in
the uniform section with the axial wave number given in Appendix A.1 by equations
(A1)}(A3). By referring, for example, to equation (33) which evaluates the potential
derivative, the pressure amplitude can be found in terms of the potential amplitude in
nominal #ow as

p$

1
"!igo

r
c
rA1!M

k$

x
g B /$

1
"

1

b$
/$

1
(46)

and in reversed #ow by

p$

2
"!igo

r
c
rA1#M

k$

x
g B/$

2
"

1

bG
/$

2
. (47)

The coe$cients b$, bG are de"ned in detail in Appendix A.3.
These relations between acoustic pressure modal coe$cients and acoustic potential

modal coe$cients are evaluated at x"0 and ¸ to produce transformations between
acoustic potential modal amplitudes Ma$N, Mb$N and acoustic pressure modal amplitudes
Mc$N, Md$N:

G
a~
1

b`
1
H"C

b~
0

b`
L
D G

c~
1

d`
1
H"[BG] G

c~
1

d`
1
H, (48)

G
a`
1

b~
1
H"C

b`
0

b~
L
D G

c`
1

d~
1
H"[B$] G

c`
1

d~
1
H, (49)

G
a~
2

b`
2
H"C

b`
0

b~
L
D G

c~
2

d`
2
H"[B$] G

c~
2

d`
2
H, (50)

G
a`
2

b~
2
H"C

b~
0

b`
L
D G

c`
2

d~
2
H"[BG] G

c`
2

d~
2
H. (51)

The 2N]2N diagonal matrices [B$] and [BG] have coe$cients de"ned by equations (46)
and (47) for each mode, evaluated at the appropriate end of the duct, arranged along the
diagonal. Equations (48)}(51) and equation (36) provide a relationship between the
scattering matrices for acoustic potential and the scattering matrices for acoustic pressure:

[SM
1
]"[BG]~1[S

1
][B$], [SM

2
]"[B$]~1[S

2
][BG]. (52, 53)
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[S
1
], [S

2
] are the scattering matrices in nominal and reversed #ow for acoustic potential

modal amplitudes and [SM
1
], [SM

2
] are the scattering matrices for acoustic pressure modal

amplitudes. Equations (48)}(53) and equation (38) are used to arrive at the reciprocity
relationship for acoustic pressure modal amplitudes in terms of the nominal #ow and
reverse #ow acoustic pressure scattering matrices:

[B$]~1[SM
1
]T[J][a][BG]"[B$][J][a][SM

2
][BG]~1. (54)

The four reciprocal relationships are

[b`
0

]~1[R1
1
]T[J

0
][a

0
][b~

0
]"[b`

0
][J

0
][a

0
][R1

2
][b~

0
]~1, (55)

[b~
L

]~1[R31
1
]T[J

L
][a

L
][b`

L
]"[b~

L
][J

L
][a

L
][R31

2
][b`

L
]~1, (56)

[b`
0
]~1[¹M

1
]T[J

L
][a

L
][b`

L
]"[b`

0
][J

0
][a

0
][¹3 1

2
][b`

L
]~1, (57)

[b~
L

]~1[¹31
1
]T[J

0
][a

0
][b~

0
]"[b~

L
][J

L
][a

L
][¹M

2
][b~

0
]~1. (58)

The reciprocal relationships of equations (55)}(58) involve acoustic pressure re#ection
and transmission coe$cient matrices, with diagonal elements representing re#ection and
transmission coe$cients in the incident modes (here referred to as direct re#ection
or transmission) and o! diagonal re#ection and transmission coe$cients from the incident
mode to another mode. From equations (55) and (56) it is seen that in terms of acoustic
pressure amplitude, direct re#ection and transmission coe$cients in nominal #ow and
reversed #ow are not invariant but are simply related. Transmission coe$cient matrix pairs
[¹M

1
], [¹M

2
] and [¹IM

1
], [¹IM

2
] are not directly related but pairs [¹M

1
], [¹I M

2
] and [¹IM

1
], [¹M

2
] are

related by equations (57) and (58).
Owing to the way in which equations (55)}(58) were developed, the weighted, or scaled,

matrices on the right- and left-hand sides are equivalent to their counterparts in equations
(41)}(44). This convenient de"nition of scaled pressure re#ection and transmission matrices
makes them numerically equal to their scaled acoustic potential counterparts.

7. RECIPROCITY IN ONE-DIMENSIONAL FLOW

In some cases it is possible to use a one-dimensional approximation for steady #ow and
acoustic perturbations. A reverse #ow reciprocity relationship can also be obtained in this
case. Figure 1 shows the duct under consideration, but which in this case satis"es the
requirements that the #ow and propagation can be considered as quasi-one dimensional.
Acoustic treatment is not considered in this case because at best it can only be included in
an ad hoc way not fully consistent with the one-dimensional restrictions. The cross-sectional
shape of the duct is not a consideration in this one-dimensional approximation. The
one-dimensional acoustic continuity equation is

A
Lo
Lt

#

L
Lx Ao

r
A

L/

Lx
#oA

L/
r

Lx B"0, (59)

where A is the local cross-sectional area of the duct. The one-dimensional acoustic
momentum equation is

o"!

o
r

c2
r
Aigr/#M

r

L/

LxB (60)
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or

p"!o
rAigr/#M

r

L/
LxB. (61)

The steady #ow is obtained from

L
Lx Ao

r
A

L/

LxB"0 (62)

and the relations between mean #ow velocity and mean #ow potential and acoustic particle
velocity and acoustic potential are

M
r
"

L/
r

Lx
, u"

L/
Lx

. (63, 64)

The acoustic relationship between pressure and density is

p"c2
r
o. (65)

The mean #ow speed of sound is determined by

c2
r
"1!

(c!1)

2
[M2

r
!M2

=
] (66)

and the mean #ow density is

o
r
"C1!

(c!1)

2
(M2

r
!M2

=BD
1@(c~1)

. (67)

Equations (59)}(67) are non-dimensional as in equations (4)}(11), with the convention here
that the reference length R is a (hypothetical) radius corresponding to a (circular) source
&&plane'' at x"0, the reference cross-sectional area. The non-dimensionalization described
here di!ers from the usual one-dimensional development in which some characteristic duct
length is generally used as a reference length. The non-dimensional frequency g

r
is de"ned

exactly as in the preceeding three-dimensional reciprocity development.
The duct which is locally of arbitrary cross-section, is terminated on each end by a section

of uniform duct, of length su$cient to assure uniform mean #ow and propagation in terms
of acoustic modes. The source plane x"0 is where the acoustic source is nominally
speci"ed and the exit plane x"¸ terminates the duct. The exit plane is assumed as
non-re#ecting.

The equivalent of equation (12) is

P M/
2
[ig

r
Ao

1
#+ ' (o

r
A+/

1
#M

r
Ao

1
)]!/

1
[ig

r
Ao

2
#+ ' (o

r
A+/

2
!M

r
Ao

2
)]Ndx"0.

(68)

Here, for ease of notation, and for a degree of similarity with the general development, the
gradient operator is used to denote

+"

L
Lx

e
x

(69)
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and

M
r
"M

r
e
x
, (70)

with e
x
the unit vector in the x direction. With application of integration by parts, which is

equivalent to the divergence theorem used to obtain equation (13), and by using
equation (60) to partially replace o

1
and o

2
, and to subsequently eliminate the remaining

integral on x, equation (68) is reduced to

C/2Ao
r
A

L/
1

Lx
#M

r
Ao

1B!/
1Ao

r
A

L/
2

Lx
!M

r
Ao

2BD
L

0

"0. (71)

When this is written entirely in terms of acoustic potential the result is

CAo
rG/2C(1!M2)

L/
1

Lx
!igM/

1D!/
1C(1!M2)

L/
2

Lx
#igM/

2DHD
L

0

"0. (72)

For multiple mode propagation, eigenfunction expansions were used to de"ne the acoustic
potential "eld in the uniform #ow regions at x"0 and ¸. This is still appropriate, with the
simpli"cation that only the plane waves propagate, and no analysis is required to determine
the modes and wave numbers.

There is one &&mode'' propagating in each direction in the uniform duct sections, so that
there is only a superposition of a right and left wave, given for example here for the nominal
#ow solution at x"0 in the form

/
1
"a`

1
#a~

1
,

L/
1

Lx
"(!ik`

x1
)a`

1
#(!ik~

x1
)a~

1
. (73, 74)

The axial wave numbers are determined from the general relations in Appendix A.1,
equations (A1) and (A3), with i

mn
"0, for the plane wave case,

A
k$

xmn

g B
1

"

1

1!M2
(!M$1), A

kG

xmn

g B
2

"

1

1!M2
(M$1). (75, 76)

The superscript choice $ corresponds to right and left waves. g and M represent local
values of non-dimensional frequency and Mach number determined by the local speed of
sound, with g still based on the reference length. The operator arising in equation (72),

¸M/N"(1!M2)
L/

Lx
!igM/"a/, (77)

introduces the parameters a` and a~ corresponding to right and left waves, for example at
x"0,

a`
1
"o

r
[!i (1!M2)k`

x1
!igM]"!io

r
g, (78)

a~
1
"o

r
[!i (1!M2)k`

x
!igM]"io

r
g. (79)

Similar expressions exist for a$

2
, in reversed #ow. It is noted that a`

2
"a`

1
"a and

a~
2
"a~

1
"!a. a is evaluated at the ends x"0 and ¸ as required.
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With these de"nitions, equation (72) can be rearranged in a form equivalent to equation
(38),

G
a~
1

b`
1
H
T

C
A

0
a
0

A
L
a
L
D G

a`
2

b~
2
H"G
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2
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2
H
T

C
A

0
a
0

A
L
a
L
D G

a`
1

b~
1
H. (80)

a`
n

and a~
n

and b`
n

and b~
n
, acoustic potential modal amplitudes at x"0 and ¸, are related

by the acoustic potential scattering matrix according to

G
a~

b`H"[S] G
a`

b~H , (81)

where the scattering matrix is de"ned as

[S]"C
R ¹I
¹ RI D. (82)

R and ¹ are the re#ection and transmission coe$cients (scalars) for a source at x"0 with
a re#ection free termination at x"¸. RI and ¹I are re#ection and transmission coe$cients
for a source at x"¸ and re#ection free at x"0. There will be a scattering matrix [S

1
] for

nominal mean #ow and a second one [S
2
] for reversed #ow. Equations (81) and (82) can be

used in equation (80) to obtain

G
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1

b~
1
H
T
[S

1
]T[A][a] G

a`
2

b~
2
H"G

a`
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b~
2
H
T
[S

2
]T[A][a] G

a`
1

b~
1
H , (83)

where the de"nition

C
A

0
a
0

A
L
a
L
D"[A][a] (84)

is introduced. The implications of equation (83) are summarized by the reciprocity relations

([S
1
]T[A][a])"[A][a][S

2
] (85)

and

[A][a][S
1
]"([A][a][S

2
])T. (86)

Equations (85) and (86) are used to establish the following relationships for the acoustic
potential re#ection and transmission coe$cients:

R
1
"R

2
, RI

1
"RI

2
, ¹I

2
A

0
a
0
"¹

1
A

L
a
L
, ¹I

1
A

0
a
0
"¹

2
A

L
a
L
. (87}90)

By using the de"nitions of a
0

and a
L

de"ned by equations (78) and (79) evaluated at x"0
and ¸, equations (89) and (90) are written as

¹
1
"

A
0

A
L

o
rL

o
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c
rL

c
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A
o
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rL
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0
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c
rL

c
r0
A
o
r0

o
rL
B
2
¹I
1
. (91, 92)

Equations (87) and (88) produce the interesting result that the acoustic potential re#ection
coe$cients, at the left end and at the right end are invariant to #ow direction. No reciprocal
relationships link the left to right transmission coe$cients ¹

1
and ¹

2
or the right to left

transmission coe$cients ¹I
1

and ¹I
2

in nominal #ow and reversed #ow. Equation (91) links
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the left to right transmission coe$cient ¹
1

in nominal #ow to the right to left transmission
coe$cient¹I

2
in reversed #ow. Equation (92) links the left to right transmission coe$cient in

reversed #ow ¹
2

to the right to left transmission coe$cient ¹I
1

in nominal #ow.
The reciprocal results of equations (87)}(90) are for acoustic potential modal amplitudes.

In the case of acoustic pressure modal amplitudes, a transition to acoustic potential modal
amplitudes is made through equation (61). By using equations (75) and (76), which are axial
wave numbers in the case of plane waves, the transformations from acoustic potential to
acoustic pressure for right and left waves in nominal and reversed #ow are found to be

/`
1
"b`p`

1
, /~

1
"b~p~

1
, (93)

/`
2
"b~p`

2
, /~

2
"b`p~

2
, (94)

where

b`"

1#M

!igo
r
c
r

, b~"

1!M

!igo
r
c
r

. (95)

Mach number and non-dimensional frequency are based on the local speed of sound.
Non-dimensional frequency is still based on the reference length. Non-dimensional density
and non-dimensional speed of sound are evaluated locally.

Equations (93) and (94) are used to introduce pressure modal amplitudes in
equation (83). The scattering matrix is now in terms of pressure scattering coe$cients,

[SM ]"C
RM ¹IM

¹M RIM D . (96)

After following the same steps leading to equations (87)}(90), reciprocity relations for
acoustic pressure scattering coe$cients are found to be
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Equations (97)}(100) are written both implicitly in terms of coe$cients de"ned above and
explicitly in terms of local area and #ow conditions. The mach number is for the nominal
#ow.

Pressure re#ection coe$cients are not invariant in reversed #ow but are reciprocally
related as given by equations (97) and (98). No reciprocal relationships link the left to right
transmission coe$cients ¹

1
and ¹

2
or the right to left transmission coe$cients ¹I

1
and ¹I

2
in

nominal #ow and reversed #ow. Equation (99) links the left to right transmission coe$cient
¹
1

in nominal #ow to the right to left transmission coe$cient ¹I
2

in reversed #ow.
Equation (100) links the left to right transmission coe$cient in reversed #ow¹

2
to the right

to left transmission coe$cient ¹I
1

in nominal #ow.
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8. ACOUSTIC POWER CONSIDERATIONS IN ONE-DIMENSIONAL PROPAGATION

In the case of one-dimensional propagation, additional results can be obtained by the
consideration of acoustic power. The de"nition of acoustic intensity due to Morfey [4] is
valid as part of a conservation law in non-uniform ducts for compressible potential #ow.
This de"nition of acoustic intensity is used in the uniform #ow sections either end of the
non-uniformity to obtain acoustic power expressions.

For propagation in uniform #ow, the Morfey intensity formulation simpli"es to the
time-averaged scalar form

I

o
=

c3
=

"T(1#M2)pu#o
r
c
r
Mu2#

1

o
r
c
r

Mp2U. (101)

Acoustic power is obtained by integration over a cross-section, to yield

P

A
ref

o
=

c3
=

"P
S

PT(1#M2)pu#o
r
c
r
Mu2#

1

o
r
c
r

Mp2U dS. (102)

A modal expansion as given by equations (73) and (74), with wave numbers given by
equations (75) and (76), is used to obtain an acoustic power in terms of acoustic potential
modal amplitudes. The result is

P

A
ref

o
=

c3
=

"a`*P``
11

a`#a~*P~~
11

a~, (103)

where, for example, a* denotes the complex conjugate of a. Power can be represented in
terms of acoustic potential amplitudes as in equation (46) in uniform duct sections at x"0
and ¸. The power coe$cients P``

11
and P~~

11
can be easily obtained by carrying out the

operations indicated in equation (102), having made use of the relation between acoustic
pressure and acoustic potential of equation (61), and the relation between acoustic particle
velocity and acoustic potential in equation (64). For example at x"0,
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0
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r0
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0
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0
. (104)

Energy conservation arguments lead to the conclusion that P
inc
#P

ref
"P

trans
, with the

observation that power is positive for incident and transmitted and negative for re#ected
contributions. Incident power at x"0 is given by

P
ref

"a`* P``
110

a`. (105)

Re#ected power in nominal and reversed #ow at x"0 is given by

P
ref

"a`*R*
1
P~~
110

R
1
a` , P
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2
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110

R
2
a`. (106)

Transmitted power in nominal and reversed #ow at x"¸ is given by
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¹
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11L

¹
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a`. (107)
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Subscripts on the power coe$cients denote the uniform section in which they are evaluated.
From equation (87), R

1
"R

2
, that is, the acoustic potential re#ection coe$cient is invariant

to #ow direction, as is P
11

. The power re#ection coe$cients are de"ned by either

Rn1"
R*

1
P
110

R
1

P
110

"DR
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D2 or Rn2

"

R*
2
P
110

R
2

P
110

"DR
2
D2. (108)

Use has been made of the fact that P~~
110

"!P``
110

, and the re#ection coe$cient is de"ned
without regard to the sign of the re#ected power. The power re#ection coe$cient is
therefore invariant to #ow direction, Rn1

"Rn2
. It is concluded that the power transmission

coe$cients are also invariant to #ow direction, ¹n1
"¹n2

. A similar development based on
equation (88) would show that RI n1"RI n2

and therefore that ¹I n1
"¹I n2

.
It is now possible to connect the power transmission coe$cients when the source is

moved from one end of the duct to the other. For a source at x"0 the power transmission
coe$cient (the ratio of transmitted to incident power) is in nominal #ow
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For a source at x"¸ in reverse #ow the power transmission coe$cient is de"ned for right
to left power according to
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Equations (109) and (110) are deduced by using the de"nitions of incident and transmitted
power appropriately evaluated at x"0 or ¸. The reciprocal relationship of equation (89) is
used to replace ¹I

2
in equation (110) yielding the result

¹I n2
"

o
rL

o
r0

c
r0

c
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A
L

A
0
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1
D2. (111)

It has thus been shown that ¹I n2
"¹n1

. It is therefore concluded that ¹n1
"¹n2

"¹I n1
"¹I n2

and thence from power conservation arguments that Rn1
"Rn2

"RI n1
"RI n2

. This
completes the interesting result that for the one-dimensional model power re#ection and
transmission coe$cients are invariant to #ow reversal and switching of the source location.

The result that ¹n1"¹I n1
states that the transmission coe$cient for the nominal #ow

direction is the same from either end of the duct. This result contains the invariance theorem
of Davis [4], but also admits a generalization. Davis found that for a converging}diverging
non-uniformity in an otherwise uniform duct, for equal pressure amplitude input at the
upstream and downstream ends of the duct, the transmitted power is related by

P
1

PI
1

"

(1#M)2

(1!M)2
. (112)

Here, P
1

is the transmitted power at the downstream end due to a source at the upstream
end and P3

1
is the transmitted power at the upstream end due to a source at the downstream

end, both in the nominal #ow. Since the result of Davis is for a converging diverging duct,
with both ends of the same area, M

0
"M

L
"M.
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By using equations (103) and (104), which de"ne acoustic power in terms of acoustic
potential amplitudes, and by modifying them using equations (93)}(95) to relate acoustic
pressure amplitude to acoustic potential amplitude, the incident power at x"0 is

P
inc

(x"0)"
1

2
Dp`

0
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A
0

o
r0
c
r0

(1#M
0
)2. (113)

Similarly, for an acoustic pressure input at x"¸, the incident power there is
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2
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(1!M
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)2. (114)

p`
0

and pJ ~
L

are pressure mode amplitudes incident at the ends x"0 and x"¸. Superscripts
# and ! reinforce the idea that at x"0, the incident mode is a right running wave and at
x"¸, the incident mode is a left running wave. The tilde (&) is a reminder that the source is
at the end x"¸. By using the fact that the transmitted power in each case is the product of
the incident power and the appropriate power transmission coe$cient, which is the same
for either case (¹n1

"¹I n1
), and that the incident modal pressure amplitudes are the same for

either source ( Dp`
0

D"DpJ ~
L

D), it follows that
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Equation (115) contains Davis' result [4] in the case of a converging}diverging duct when
the duct area, #ow density, speed of sound and Mach number are the same at both ends.
Other results are possible involving acoustic potential and acoustic pressure amplitudes
from the core result that the power transmission coe$cients are invariant.

9. CONCLUSION

A reverse #ow theorem for acoustic propagation in compressible potential #ow has been
obtained directly from the "eld equations without recourse to energy conservation
arguments. A reciprocity theorem for the scattering matrix for the propagation of acoustic
modes in a duct with either hard walls, or a section of locally reacting absorbing wall
imbedded in an otherwise hard wall, follows. It is found that for a source at a speci"c end of
the duct, suitably scaled re#ection matrices in direct and reverse #ow have a reciprocal
relationship. Scaled transmission matrices obtained for direct #ow and reversed #ow with
simultaneous switching of source location from one end to the other also have a reciprocal
relationship.

The approach presented here is an alternative to the approach of Moehring [3, 17], with
the distinction that no energy conservation condition is used. It has been exploited to
provide explicit reciprocal relations which are of theoretical interest, but which also have
the more pragmatic signi"cance of providing a convenient means for benchmarking
large-scale propagation codes such as those used in the numerical experiments supporting
this investigation [10].

A similar reverse #ow theorem for acoustic propagation in one-dimensional compressible
potential #ow also has been established, and the corresponding reciprocity theorem for the
scattering coe$cients for propagation of incident plane wave acoustic modes obtained.
Reciprocal relations and power conservation arguments are used to show that scaled power
re#ection and transmission coe$cients are invariant to #ow reversal and switching of
source location from one end of the duct to the other.
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Numerical veri"cation of the reciprocal relationships is the subject of a companion
paper.
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APPENDIX A: MULTIPLE MODE PROPAGATION

A.1. ACOUSTIC MODES AND AXIAL WAVE NUMBERS

Acoustic propagation in uniform duct segments is described as a superposition of duct
modes. The characteristics of these modes depend on the axial wave numbers, explained
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extensively in reference [19]. Results for circular ducts are given explicitly here. Results for
annular ducts require only minor modi"cations.

Axial wave numbers are given in the nominal #ow for modes which are cut on by

A
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and for modes which are cut o! by
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In reversed #ow for cut on modes,
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and for cut o! modes,
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pg B
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!1 . (A4)

The non-dimensional frequency g is based on the local speed of sound and the reference
radius in the uniform duct section in which the reference conditions are de"ned, in this
problem at x"0. i

mn
p are eigenvalues determined from the uniform duct eigenproblem

[19] in a uniform duct with local radius possibly di!erent than the reference radius, for
example, at the other end of the duct at x"¸. In the case of the circular duct, they are
determined from J@

m
(i

mn
p)"0, with J

m
being the Bessel function. m is the angular mode

number and n, 1)n)N, is the radial mode number. p is the ratio of the local duct radius
to the reference radius, p"R

l
/R. pg is therefore non-dimensional frequency based on local

speed of sound and local duct radius. At x"0 where the reference radius and c
=

are
de"ned, p"1 and g"g

r
. The convention on the sign choice in equations (A1)}(A4)

corresponding to k`
xmn

is that the positive sign is chosen if the radical is real and the minus
sign is chosen if the radical is imaginary. The opposite choices are made for k~

xmn
. k`

xmn
then

corresponds to waves propagating in the positive x direction (except for the possibility that
with Mach number negative some propagating waves may appear not to propagate in the
positive x direction due to convection) and to cut-o! modes decaying in the positive
x direction. The opposite interpretation applies for k~

xmn
.

A.2. ACOUSTIC MODES IN RECIPROCITY RELATIONSHIPS

In carrying out the integrals of equation (27), the notation

P
S0

P[U]T[U]dS"[J
0
], P

SL

P[U]T[U] dS"[J
L
] (A5, 6)
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is introduced. [J
0
] and [J

L
] are N]N diagonal matrices resulting from the orthogonality

of the duct eigenfunctions at x"0 and x"¸. For a circular duct, the eigenfunctions U
mn

(r)
are Bessel functions of the "rst kind of order m. In numerical implementations, it is
convenient to generate the Bessel functions, solve the related eigenproblem, and generate
[J

0
] and [J

L
] using an FEM formulation.

With the eigenfunction expansions of equations (30)}(33), the integrals of equation (27)
can be written as
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The notation k$

x01
designates the axial wave number evaluated at x"0 for the nominal #ow

direction. k$

x02
corresponds to reversed #ow. k$

xL1
designates the axial wave number evaluated at

x"¸ for the nominal #ow direction. k$

xL2
corresponds to reversed #ow. In

equations (A7)}(A10) amplitude coe$cients Ma$N are associated with an eigenfunction
expansion at x"0 and Mb$N correspond to x" .̧ With the use of equations (A1) and (A2),
introduce the following de"nitions for the nominal #ow direction for propagating modes (k

x
real):
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and for cut-o! modes (k
x

complex):
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Analogous de"nitions can be introduced in reversed #ow using equations (A3) and (A4).
For example, for a propagating mode
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it becomes apparent that the de"nitions do not change in reversed #ow so the conclusion is
made that a`

2
"a`

1
"a` and a~

2
"a~

1
"a~ for both propagating and cut-o! modes.

Furthermore, it is apparent that a~"!a` and these are to be evaluated at x"0 and ¸ as
required.

Equations (A7)}(A10) can be rewritten in the form
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The diagonal matrices [a$

0
] and [a$

L
] have elements de"ned by equations (A11)}(A15).

Elements a
0

are evaluated at x"0 and a
L

are evaluated at x"¸ and the distinction
between nominal #ow and reversed #ow disappears.

When the integral evaluations of equations (A16)}(A19) are used in equation (27), there is
considerable simpli"cation due to the fact that a~

0
"!a`

0
"!a

0
and a~
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L
.

The diagonal matrices [a
0
] and [a

L
] are constructed by evaluating equations (42)}(45) at

x"0 or ¸ for each acoustic mode included in the acoustic potential expansions of
equations (30) or (32). [J

0
][a

0
] and [J

L
][a

L
] are diagonal and therefore equal to their

transpose.

A.3. ACOUSTIC WAVE NUMBERS IN PRESSURE FORMULATION

Equations (46) and (47) introduce coe$cients b$, bG which are determined from the
axial wave numbers k$

x
de"ned from equations (A1)}(A30). For nominal #ow and

propagating modes, this yields
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and for nominal #ow and cut-o! modes
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For reversed #ow and propagating modes,
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